OLLSCOIL NA hÉIREANN, MÁ NUAD

NATIONAL UNIVERSITY OF IRELAND, MAYNOOTH

THIRD COMPUTER SCIENCE AND SOFTWARE ENGINEERING EXAMINATION

SAMPLE 2002

PAPER SE307

COMPUTATION AND COMPLEXITY THEORY

Dr. P. Stevens, Prof. R. Reilly, Mr. T. Naughton.

Answer ALL QUESTIONS from Section A and any TWO questions from Section B.

Use a MCQ Answer Sheet for Section A - enter your name, student ID, and module code. Negative marking will be applied for Section A (2 marks for a correct answer, -0.5 for an incorrect answer, 0 for no attempt).

Time Allowed: 2 hours.

SECTION A (40 marks)

- 1. Consider Turing machine T of the form (Q, Σ, I, q_0, F) , where I is a set of tuples [2 marks] of the form (q, s, q', s', m), and where all symbols have their usual meaning. Which of the following conditions <u>must</u> be true for T to be a valid Turing machine?
 - (a) *I* is finite
 - (b) if I is finite then T will halt
 - (c) F is nonempty
 - (d) if F is nonempty then T will halt
 - (e) if F is nonempty then T will halt on at least one input
- 2. Consider *T* from Question A.1. Which of the following conditions <u>can</u> be true for [2 marks] *T* to be a valid Turing machine?
 - (a) Σ is finite
 - (b) 2^{Σ} is finite
 - (c) s = s' for each tuple in I
 - (d) all of the above
 - (e) none of the above
- 3. through 20. Eighteen other questions similar to those from previous SE307 and CS403 exam papers.

SECTION B (30 marks)

- 1. (a) Consider a set X of all tuples of the form (a, b), where for each tuple the [7 marks] following two conditions hold: $a, b \in \mathbb{N}$ and a < b. Prove that X is countable.
 - (b) Explain in your own words, and as concisely as possible, the differences be- [8 marks] tween the following three classes of problem: NP problems, NP-hard problems, and NP-complete problems.
- 2. (a) Explain the difference between the terms *intractable* and *unsolvable*. Give [7 marks] examples of three intractable problems and three unsolvable problems.
 - (b) Prove that the halting problem is unsolvable. [8 marks]
- 3. One more question similar in content to Sect. B from previous SE307 and CS403 exam papers.