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COMPLEXITY THEORY
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Answer ALL QUESTIONS from Section A and any TWO questions from Section B. Negative
marking will be applied for Section A (2 marks for a correct answer, -0.5 for incorrect, 0 for no
attempt). Time Allowed: 2 hours.

SECTION A (30 marks)

1. Given an alphabetΣ, a language overΣ is a [2 marks]

(a) superset of2Σ

(b) subset ofΣ∗

(c) superset ofΣ∗

(d) proper subset ofΣ∗
0

(e) none of the above

2. Which of the following functions has the largest growth rate? [2 marks]

(a) n1/2

(b) n1/10

(c) n100

(d) 2n/2

(e) 2n!

3. Whenn doubles [2 marks]

(a) logn increments

(b) a linear function inn doubles

(c) a quadratic function inn quadruples

(d) a quadratic function inn squares

(e) an exponential function inn squares
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4. The ‘strongest’ of the following statements we can make about the summation [2 marks]
1 + 2 + 3 + ... + n is

(a) = O(n2)

(b) = 1
2n

2 + O(n)

(c) = O(n2) + O(n)

(d) = O(n2)− n

(e) = n2 + O(n)

5. The sum12 + 22 + 32 + . . . + n2 = 1
3n(n + 1

2)(n + 1) would also be [2 marks]

(a) = O(n3)

(b) = 1
3n + O(n3)

(c) = O(n4)

(d) all of the above

(e) none of the above

6. We can reduce our number of unique tape symbols in a TM table of behaviour by [2 marks]

(a) increasing the size of the set of symbols

(b) writing more symbols on the tape

(c) increasing the number of states of mind

(d) a method requiring both (b) and (c)

(e) either (b) or (c)

7. The minimum number of symbols we can reduce our set of symbols to without [2 marks]
changing the functionality of any possible TM is

(a) 0

(b) 1

(c) 2

(d) greater than 2

(e) no limit

8. Which of the following are not one of the ‘unrestricted’ models of computation? [2 marks]

(a) TMs with only one tape

(b) k-tape TMs with a finite set of symbols

(c) k-tape TMs whose tapes are infinite in one direction only

(d) RAMs with fixed sized registers

(e) none of the above
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9. Given a countable setA of subsets of a setX, where eacha ∈ A ⇒ a ⊆ X, it can [2 marks]
be said that

(a) A 6= 2X

(b) A = 2X

(c) (cardinality ofA)>(cardinality of2X)

(d) if X is not finite thenA is not uncountable

(e) none of the above

10. Which of the following languages is not recursively enumerable? [2 marks]

(a) {a, b, c}
(b) the odd integers

(c) the prime numbers

(d) the halting Turing machines

(e) none of the above

11. Which of the following languages is not recursive? [2 marks]

(a) {a, b, c}
(b) the odd integers

(c) the prime numbers

(d) the halting Turing machines

(e) none of the above

12. The infinite set of all words over an alphabetΣ is denoted [2 marks]

(a) Σ∗

(b) Σ∗
0

(c) |Σ|
(d) 2Σ

(e) none of the above
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13. Given the diagram below, depicting setsX ⊆ Y ⊆ Z and elementsa ∈ X, b ∈ Y, [2 marks]
c ∈ Z, which of the following statements is false?

X

Y

Z

a

b

c

Complete1.eps

(a) b is X-hard

(b) b is Y-complete

(c) c is Z-hard

(d) b is Z-hard

(e) none of the above

14. Given a countable setA of subsets of a setX, where eacha ∈ A ⇒ a ⊆ X, it can [2 marks]
be said that

(a) A 6= 2X

(b) A = 2X

(c) |A| > |2X|
(d) if X is not finite thenA is not uncountable

(e) none of the above

15. Given that ak-tape deterministic Turing machineT with k ≥ 1 can be defined by [2 marks]
the tuple〈Q, Σ, I, q0, F 〉 which of the following is false?

(a) Σ always includes a ‘blank’ symbol

(b) I is a set of quintuples

(c) q0 ∈ Q is always the initial state

(d) |F | ≥ |Q|
(e) none of the above
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SECTION B (40 marks)

1. You are given a 2-tape Turing machineT = 〈Q, Σ, I, q0, F 〉 =
〈{00, 01, 02, 03, 09}, {0, 1,−}, I, 00, {09}〉 that operates on binary strings. As usual,
the head of the first tape will be positioned at the beginning of the input and the sec-
ond tape will be blank.I is

q s q′ s′ m
00 〈0,−〉 00 〈0,−〉 〈R,S〉
00 〈1,−〉 01 〈1,−〉 〈R,S〉
00 〈−,−〉 02 〈−,−〉 〈L,S〉
01 〈0,−〉 00 〈0,−〉 〈R,S〉
01 〈1,−〉 01 〈1,−〉 〈R,S〉
01 〈−,−〉 03 〈−,−〉 〈L,S〉
02 〈0,−〉 09 〈0, 0〉 〈S,S〉
02 〈1,−〉 09 〈1, 0〉 〈S,S〉
02 〈−,−〉 09 〈−,−〉 〈R,S〉
03 〈0,−〉 09 〈0, 1〉 〈S,S〉
03 〈1,−〉 09 〈1, 1〉 〈S,S〉
03 〈−,−〉 09 〈−,−〉 〈R,S〉

(a) What doesT do? Give as concise an explanation as you can. [7 marks]

(b) ConvertT into a functionally-identical Turing machine that requires at least [7 marks]
one less state thanT .

(c) What would be the implications if a RAM algorithm solving an NP-complete [6 marks]
problem was found to have (i) an exponential upper bound, or (ii) an exponen-
tial lower bound?

2. (a) Explain how we can view the construction of a deterministic Turing machine [4 marks]
as a search through an ordered set.

(b) Outline how a RAM (random-access machine) could be simulated on a Turing [10 marks]
machine. Explain how your simulation lends weight to the Invariance thesis.

(c) What does a polynomial reductionA ≤ B between two problems establish [6 marks]
about their relative complexities? How could one use a reduction to prove
non-membership of a class?

3. (a) Define the 1-D (one-dimensional) tiling problem and prove that it is decidable. [8 marks]

(b) At a recent Clubs and Societies awards function a particularly bored individual [12 marks]
got to thinking about whether it would be possible to nominatek clubs or
societies for awards such that every participating student was a member of one,
but only one, nominated club or society. Prove this problem is NP-complete.
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