Rules that can be applied in any question

Implication truth table:	P	Q	$P \to Q$
	Т	Т	Т
	Т	\mathbf{F}	\mathbf{F}
	\mathbf{F}	Т	Т
	\mathbf{F}	\mathbf{F}	Т

Simplification (Simp): $A \wedge B$

Addition (Add): $A \lor B$

Conjunction (Conj): A, B $A \wedge B$

Transitive: $\frac{a > b \land b > c}{a > c}$

Conditional Proof Rule (CP): If there is a proof of B from the assumption that A is true (i.e. if B can be derived from A), then $A \to B$

Assignment Axiom (AA): $\{Q(x/t)\} x := t \{Q\}$

Consequence Rule: $\frac{P \to R \text{ and } \{R\} S \{Q\}}{\{P\} S \{Q\}}$

Composition Rule: $\frac{\{P\} S_1 \{R\} \text{ and } \{R\} S_2 \{Q\}}{\{P\} S_1; S_2 \{Q\}}$

If-Then Rule: $\frac{\{P \land C\} S \{Q\} \text{ and } P \land \neg C \to Q}{\{P\} \text{ if } C \text{ then } S \{Q\}}$

If-Then-Else Rule:
$$\frac{\{P \land C\} S_1 \{Q\} \text{ and } \{P \land \neg C\} S_2 \{Q\}}{\{P\} \text{ if } C \text{ then } S_1 \text{ else } S_2 \{Q\}}$$

While Rule:
$$\frac{\{P \land C\} S \{P\}}{\{P\} \text{ while } C \text{ do } S \{P \land \neg C\}}$$

Statements that can be quoted without proof:

- 1. \mathbb{N} is countable
- 2. Any set that has a bijection with a subset of \mathbb{N} is countable
- 3. Let $B = A_1 \cup A_2 \cup \ldots \cup A_n$. If each A_i is countable then B is countable. If at least one A_i is uncountable then B is uncountable.
- 4. Let $B = A_1 \times A_2 \times \ldots \times A_n$. If each A_i is countable then B is countable. If at least one A_i is uncountable then B is uncountable.