Rules that can be applied in any question

Simplification (Simp): $\frac{A \wedge B}{A}$

Addition (Add): $\frac{A}{A \vee B}$

Conjunction (Conj): $\frac{A, B}{A \wedge B}$

Transitive: $\frac{a>b \wedge b>c}{a>c}$

If there is a proof of B from the
Conditional Proof Rule (CP): assumption that A is true (i.e. if B can be derived from A), then $A \rightarrow B$

Assignment Axiom (AA): $\{Q(x / t)\} x:=t\{Q\}$

Consequence Rule: $\frac{P \rightarrow R \text { and }\{R\} S\{Q\}}{\{P\} S\{Q\}}$

Composition Rule: $\frac{\{P\} S_{1}\{R\} \text { and }\{R\} S_{2}\{Q\}}{\{P\} S_{1} ; S_{2}\{Q\}}$

If-Then Rule: $\frac{\{P \wedge C\} S\{Q\} \text { and } P \wedge \neg C \rightarrow Q}{\{P\} \text { if } C \text { then } S\{Q\}}$

If-Then-Else Rule: $\frac{\{P \wedge C\} S_{1}\{Q\} \text { and }\{P \wedge \neg C\} S_{2}\{Q\}}{\{P\} \text { if } C \text { then } S_{1} \text { else } S_{2}\{Q\}}$

While Rule: $\frac{\{P \wedge C\} S\{P\}}{\{P\} \text { while } C \text { do } S\{P \wedge \neg C\}}$

Statements that can be quoted without proof:

1. \mathbb{N} is countable
2. Any set that has a bijection with a subset of \mathbb{N} is countable
3. Let $B=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$. If each A_{i} is countable then B is countable. If at least one A_{i} is uncountable then B is uncountable.
4. Let $B=A_{1} \times A_{2} \times \ldots \times A_{n}$. If each A_{i} is countable then B is countable. If at least one A_{i} is uncountable then B is uncountable.
