SE120 - Discrete Structures II Test 4 Friday 7 May 2004, 11:00, Lab4

T. Naughton, Computer Science, NUI Maynooth, tom.naughton@may.ie

Instructions. Remove everything from your desk except pens/pencils. Paper will be provided. Answer all questions. Remember to be mathematically precise in all of your answers. You have until 11:45. You can leave as soon as you hand your script to an invigilator. The results for your previous tests will be available in the middle of next week.

- 1. Complete the following bijection between \mathbb{N} and the set $B = \{b : b \in \mathbb{Z}, b \text{ is negative and odd}\}$: [2 marks] $f : \mathbb{N} \to B, f(x) = _$ $g : B \to \mathbb{N}, g(x) = _$
- 2. Prove that the set $A = \{a : a \in \mathbb{N}, \text{ when } a \text{ is written in decimal it ends in a 7 (i.e. it has a 7 in its least significant position)} \}$ is countable. [3 marks]

Rules that can be applied in any question

Implication truth table:	P	Q	$P \to Q$
	Т	Т	Т
	Т	\mathbf{F}	\mathbf{F}
	\mathbf{F}	Т	Т
	\mathbf{F}	\mathbf{F}	Т

Simplification (Simp):
$$\frac{A \wedge B}{A}$$

Addition (Add):
$$A \lor B$$

Conjunction (Conj): A, B $A \wedge B$

Transitive:
$$\frac{a > b \land b > c}{a > c}$$

Conditional Proof Rule (CP): If there is a proof of B from the assumption that A is true (i.e. if B can be derived from A), then $A \to B$

Assignment Axiom (AA): $\{Q(x/t)\} x := t \{Q\}$

Consequence Rule:
$$\frac{P \to R \text{ and } \{R\} S \{Q\}}{\{P\} S \{Q\}}$$

Composition Rule: $\frac{\{P\}S_1\{R\} \text{ and } \{R\}S_2\{Q\}}{\{P\}S_1;S_2\{Q\}}$

 $\begin{array}{ccc} \text{If-Then Rule:} & \displaystyle \frac{ \left\{ P \land C \right\} S \left\{ Q \right\} & \text{and} & P \land \neg C \to Q \\ \hline & \left\{ P \right\} \text{ if } C \text{ then } S \left\{ Q \right\} \\ \end{array} \end{array}$

If-Then-Else Rule:
$$\frac{\{P \land C\} S_1 \{Q\} \text{ and } \{P \land \neg C\} S_2 \{Q\}}{\{P\} \text{ if } C \text{ then } S_1 \text{ else } S_2 \{Q\}}$$

While Rule: $\frac{\{P \land C\} S \{P\}}{\{P\} \text{ while } C \text{ do } S \{P \land \neg C\}}$

Statements that can be quoted without proof:

- 1. $\mathbb N$ is countable
- 2. Any set that has a bijection with a subset of \mathbb{N} is countable
- 3. Let $B = A_1 \cup A_2 \cup \ldots \cup A_n$. If each A_i is countable then B is countable. If at least one A_i is uncountable then B is uncountable.
- 4. Let $B = A_1 \times A_2 \times \ldots \times A_n$. If each A_i is countable then B is countable. If at least one A_i is uncountable then B is uncountable.