SE120 - Discrete Structures II Test 3 Thursday 22 April 2004, 17:00, Th1

T. Naughton, Computer Science, NUI Maynooth, tom.naughton@may.ie

Instructions. Remove everything from your desk except pens/pencils. Paper will be provided. Answer all questions. Remember to be mathematically precise in all of your answers. You have until 17:45. You can leave as soon as you hand your script to an invigilator. There is no tutorial tomorrow.

- 1. Let $A = \{a, b, c\}, B = \{1, 2\}, C = \emptyset$. Write out the elements of each of the following relations by filling in the blanks. [3 marks]
 - (a) $A \times B = \{ ___ \}$
 - (b) $A \times B \times C = \{ ___ \}$
 - (c) $R = \{ ___ \}$ is a relation over $A \times B$ and |R| = 3
- 2. Let R be a relation over $\mathbb{N} \times (\mathbb{Z} \times \mathbb{Z})$ defined as $R = \{(a, (b, c)) : a \in \mathbb{N}, b, c \in \mathbb{Z}, a = b + c\}$. [4 marks]
 - (a) Explain why R is not a function.
 - (b) Rewrite R (without changing its meaning) so that it becomes a function.
- 3. Let the problem WORDLENGTH be the problem of taking a word over the alphabet $\{a, b\}$ and calculating its length. Express this problem as a language acceptance problem. [3 marks]

Rules that can be applied in any question

Implication truth table:	P	Q	$P \to Q$
	Т	Т	Т
	Т	\mathbf{F}	\mathbf{F}
	\mathbf{F}	Т	Т
	\mathbf{F}	\mathbf{F}	Т

Simplification (Simp): $\frac{A \wedge B}{A}$

Addition (Add): $A \lor B$

Conjunction (Conj):
$$A, B$$

 $A \wedge B$

Transitive: $a > b \land b > c$ a > c

Conditional Proof Rule (CP):

If there is a proof of B from the assumption that A is true (i.e. if B can be derived from A), then $A \to B$

Assignment Axiom (AA): $\{Q(x/t)\} x := t \{Q\}$

Consequence Rule:
$$\frac{P \to R \text{ and } \{R\} S \{Q\}}{\{P\} S \{Q\}}$$

Composition Rule:
$$\frac{\{P\} S_1 \{R\} \text{ and } \{R\} S_2 \{Q\}}{\{P\} S_1; S_2 \{Q\}}$$

If-Then Rule:
$$\frac{\{P \land C\} S \{Q\} \text{ and } P \land \neg C \to Q}{\{P\} \text{ if } C \text{ then } S \{Q\}}$$

If-Then-Else Rule:
$$\frac{\{P \land C\} S_1 \{Q\} \text{ and } \{P \land \neg C\} S_2 \{Q\}}{\{P\} \text{ if } C \text{ then } S_1 \text{ else } S_2 \{Q\}}$$

While Rule: $\frac{\{P \land C\} S \{P\}}{\{P\} \text{ while } C \text{ do } S \{P \land \neg C\}}$

Statements that can be quoted without proof:

- 1. $\mathbb N$ is countable
- 2. Any set that has a bijection with a subset of \mathbb{N} is countable
- 3. Let $B = A_1 \cup A_2 \cup \ldots \cup A_n$. If each A_i is countable then B is countable. If at least one A_i is uncountable then B is uncountable.
- 4. Let $B = A_1 \times A_2 \times \ldots \times A_n$. If each A_i is countable then B is countable. If at least one A_i is uncountable then B is uncountable.