SE120 - Discrete Structures II Test 2 Thursday 22 April 2004, 13:00, Th2

T. Naughton, Computer Science, NUI Maynooth, tom.naughton@may.ie

Instructions. Remove everything from your desk except pens/pencils. Paper will be provided. Answer all questions. Remember to be mathematically precise in all of your answers. You have until 13:45. You can leave as soon as you hand your script to an invigilator.

- 1. Prove the correctness of the following computer program. [8 marks] $\{\text{true}\}$ if $x \ge 0$ then x := x + 1 else $x := -x \{x > 0\}$
- 2. Find the loop invariant P for the following while loop and prove that $P \land \neg C \to x = 0$. [8 marks] $\{x \ge 99\}$

while x > 0 do x := x - 1od $\{x = 0\}$

3. Let $A = \{a, \{a\}, \emptyset\}, B = \{b, \{b\}, \emptyset\}$. Answer each of the following. [8 marks]

- (a) What is $|A \times A \times B|$? (I'm looking for an integer here.)
- (b) Is $\{\{a\}, b\} \in A \times B$?
- (c) Is $(\{b\}, a) \in A \times B$?
- (d) Is $[\{b\}, b] \in B \times B$?
- (e) Is $\{\emptyset\} \in A \times B$?
- (f) Is $\{\emptyset\} \subset A \times B$?
- (g) Give an element of $A \times B$ not already mentioned above.
- (h) Give an element of $2^{A \times B}$ not already mentioned above.

Rules that can be applied in any question

Implication truth table:	P	Q	$P \to Q$
	Т	Т	Т
	Т	\mathbf{F}	\mathbf{F}
	\mathbf{F}	Т	Т
	\mathbf{F}	\mathbf{F}	Т

Simplification (Simp):
$$A \wedge B$$

Addition (Add):
$$A \lor B$$

Conjunction (Conj): A, B $A \wedge B$

Transitive:
$$\frac{a > b \land b > c}{a > c}$$

Conditional Proof Rule (CP):

If there is a proof of B from the assumption that A is true (i.e. if B can be derived from A), then $A \rightarrow B$

Assignment Axiom (AA): $\{Q(x/t)\} x := t \{Q\}$

Consequence Rule:
$$\frac{P \to R \text{ and } \{R\} S \{Q\}}{\{P\} S \{Q\}}$$

Composition Rule:
$$\frac{\{P\} S_1 \{R\} \text{ and } \{R\} S_2 \{Q\}}{\{P\} S_1; S_2 \{Q\}}$$

 $\begin{array}{ccc} \text{If-Then Rule:} & \displaystyle \frac{\{P \land C\} S \{Q\} & \text{and} & P \land \neg C \to Q \\ \hline \{P\} \text{ if } C \text{ then } S \{Q\} \end{array} \end{array}$

While Rule:
$$\frac{\{P \land C\} S \{P\}}{\{P\} \text{ while } C \text{ do } S \{P \land \neg C\}}$$

Statements that can be quoted without proof:

- 1. $\mathbb N$ is countable
- 2. Any set that has a bijection with a subset of \mathbb{N} is countable
- 3. Let $B = A_1 \cup A_2 \cup \ldots \cup A_n$. If each A_i is countable then B is countable. If at least one A_i is uncountable then B is uncountable.
- 4. Let $B = A_1 \times A_2 \times \ldots \times A_n$. If each A_i is countable then B is countable. If at least one A_i is uncountable then B is uncountable.