NUI MAYNOOTH

Ollscoil na hÉireann Má Nuad

OLLSCOIL NA hÉIREANN, MÁ NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH First Computer Science and Software Engineering Examination

AUTUMN

2003-2004

SE120
DISCRETE STRUCTURES 2

Dr. Andrew Martin, Prof. R. Reilly, Mr. T. Naughton

Time allowed: 2 hours

Answer three questions
All questions carry equal marks

1. Consider the following Hoare triple.
```
\(\{x>0\}\)
\(a:=1 ; b:=-1\);
while \((a \leq x)\) do
    \(b:=b+1 ; a:=a * 2\);
od
\(a:=a / 2\);
\(\left\{2^{b} \leq x \wedge 2^{b+1}>x \wedge a=2^{b}\right\}\)
```

Appropriately reformatting the triple gives the following, where P is the loop invariant and Q is a predicate that must be calculated in order to prove the triple is correct.
$\{x>0\}$
$a:=1 ; b:=-1$;
$\{P\}$
while $(a \leq x)$ do

$$
b:=b+1 ; a:=a * 2
$$

od
$\{P \wedge \neg(a \leq x)\}$
$\{Q\}$
$a:=a / 2 ;$
$\left\{2^{b} \leq x \wedge 2^{b+1}>x \wedge a=2^{b}\right\}$
Assume that all variables are integer variables. Complete each of the following steps.
(a) Show that $Q=\left\{2^{b} \leq x \wedge 2^{b+1}>x \wedge a=2^{b+1}\right\}$ by a calculation using the [5 marks] assignment axiom.
(b) Show that $P=\left\{a / 2 \leq x \wedge a=2^{b+1}\right\}$ using the fact that $P \wedge \neg(a \leq x) \rightarrow Q$. [7 marks]
(c) Prove the loop is correct by proving $\{P \wedge(a \leq x)\} b:=b+1 ; a:=a * 2\{P\}$. [10 marks]
(d) Explain what remains to be done in order to prove that the Hoare triple is [3 marks] correct.
2. (a) For each of the following predicates, state one predicate that is strictly stronger, [12 marks] and one that is strictly weaker. In each case, identify which is which. Each predicate must be unique: do not re-use an answer to one part in another part.
i. $(x=0)$
ii. $(x>0 \wedge y=0)$
iii. $(x=0 \wedge y=0)$
(b) For each of the following sets, prove that it is countable or prove that it is [13 marks] uncountable. Assume that $\mathbb{Z}_{\text {odd }}^{-}=\{x: x \in \mathbb{Z}, x<0 \wedge \bmod (\operatorname{abs}(x), 2)=1\}$ and assume that $\mathbb{R}_{0}^{1}=\{x: x \in \mathbb{R}, 0 \leq x \leq 1\}$.
i. $\mathbb{N} \times \mathbb{Z}$
ii. $\mathbb{N} \cup \mathbb{Z}_{\text {odd }}^{-}$
iii. \mathbb{R}_{0}^{1}
3. (a) Write out three elements of each of the following relations.
i. $\operatorname{SQRT}=\{(a, b): a \in \mathbb{N}, b \in \mathbb{R}, \sqrt{a}=b\}$
ii. $\operatorname{SQR}=\left\{(a, b): a \in \mathbb{Z}, b \in \mathbb{N}, a^{2}=b\right\}$
iii. $\operatorname{SWAP}=\{((a, b),(c, d)): a, b, c, d \in \mathbb{N}, a=d, b=c\}$
(b) For each of the relations in part (a) of this question, state whether it is a function or not. For each relation that is not a function, redefine it without changing its meaning so that it is a function.
(c) Let \sim be a relation on \mathbb{Z} defined by $x \sim y$ iff $(x>5)=(y>5)$. Use this [5 marks] relation to partition \mathbb{Z}.
(d) Given the binary relation $R=\{(0,2),(1,2),(2,3),(3,4)\}$ construct each of [5 marks] the following compositions.
i. R^{2}
ii. R^{3}
iii. R^{4}
4. (a) Each of the following Hoare triples claims to correctly perform the swapping process. The first one uses a temporary variable. The second does not. Prove that each triple is correct. Assume that all variables are integer variables.
i. $\{x<y\}$ temp $:=x ; x:=y ; y:=\operatorname{temp}\{y<x\}$
ii. $\{x<y\} y:=y+x ; x:=y-x ; y:=y-x\{y<x\}$
(b) Let the language $L=\{a, a b, a a b, a b a, a b a b, b a a a\}$. Define an equivalence [10 marks] relation of your choice that partitions L into the following numbers of classes. Write out the contents of the classes in each case.
i. An equivalance relation that partitions L into exactly two classes
ii. An equivalance relation that partitions L into exactly three classes

Rules that can be applied in any question

Implication truth table:	P	Q	$P \rightarrow Q$
	T	T	T
	T	F	F
	F	T	T
	F	F	T

Simplification (Simp): $\frac{A \wedge B}{A}$

Addition (Add): $\frac{A}{A \vee B}$

Conjunction (Conj): $\frac{A, B}{A \wedge B}$

Transitive: $\frac{a>b \wedge b>c}{a>c}$

If there is a proof of B from the
Conditional Proof Rule (CP): assumption that A is true (i.e. if B can be derived from A), then $A \rightarrow B$

Assignment Axiom (AA): $\{Q(x / t)\} x:=t\{Q\}$

Consequence Rule: $\frac{P \rightarrow R \text { and }\{R\} S\{Q\}}{\{P\} S\{Q\}}$

Composition Rule: $\frac{\{P\} S_{1}\{R\} \text { and }\{R\} S_{2}\{Q\}}{\{P\} S_{1} ; S_{2}\{Q\}}$

If-Then Rule: $\frac{\{P \wedge C\} S\{Q\} \text { and } P \wedge \neg C \rightarrow Q}{\{P\} \text { if } C \text { then } S\{Q\}}$

If-Then-Else Rule: $\frac{\{P \wedge C\} S_{1}\{Q\} \text { and } \quad\{P \wedge \neg C\} S_{2}\{Q\}}{\{P\} \text { if } C \text { then } S_{1} \text { else } S_{2}\{Q\}}$

While Rule: $\frac{\{P \wedge C\} S\{P\}}{\{P\} \text { while } C \text { do } S\{P \wedge \neg C\}}$

Statements that can be quoted without proof:

1. \mathbb{N} is countable
2. Any set that has a bijection with a subset of \mathbb{N} is countable
3. Let $B=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$. If each A_{i} is countable then B is countable. If at least one A_{i} is uncountable then B is uncountable.
4. Let $B=A_{1} \times A_{2} \times \ldots \times A_{n}$. If each A_{i} is countable then B is countable. If at least one A_{i} is uncountable then B is uncountable.
