
SE120 - Discrete Structures II

OLLSCOIL NA hÉIREANN, MÁ NUAD
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1. (a) As a consequence of
�����������	�

evaluating to true, we know that if predicate [3 marks]�
evaluates to true, and

�
is executed, then

�
will be true after

�
terminates.

(b) From the If-Then-Else Rule we have to prove (i)
����
�������������

and (ii)
����


[12 marks]� ������������� .
(i) Prove

�
true



odd ����� ������� �! #" � odd � � � 
$��% � �

1.
�
odd ���� #"&� 
 �! #" % � ������� �� #" � odd � � � 
'��% � � AA

2. true



odd ����� precondition
3. odd ����� 2,AND-simplification
4. odd ���� #"&� 3,T
5. �� #" % � T
6. odd ���� #"&� 
 �! #" % � 4,5
7. true



odd ������( odd ���� #"&� 
 �! #" % � 2,6

8.
�
true



odd ����� ������� �! #" � odd � � � 
$��% � � 1,7,consequence

(ii) Prove
�
true


 � odd ����� ���)��� �* ,+ � odd � � � 
-�)% � � . Although not
essential, let us first simplify this to

�
even ����� ���.��� �� /+ � odd � � � 
'��% � �

9.
�
odd ���� /+0� 
 �! /+ % � ������� �� /+ � odd � � � 
'��% � � AA

10. even ����� precondition
11. odd ���� /+0� 10,T
12. �� /+ % � T
13. odd ���� /+0� 
 �! /+ % � 11,12
14. even ������( odd ���� /+0� 
 �� /+ % � 10,13
15.

�
even ����� ���.��� �� /+ � odd � � � 
'��% � � 9,14,consequence

QED 8,15,If-Then-Else Rule
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(c) There are four equivalence classes [10 marks]

i.
� ��� � ���������
	����������

ii.
� + � � � + ����
�����������

iii.
� " � � � " �
��� + �����������

iv.
� ��� � ��������� +&+ ���������

and indeed these do form a partition of � , because
� ������� + ����� " ����� ������ and

� ������� + ����� " ����� ��� ���
. Then, one possible expression for these

equivalence classes (and one possible answer to this question) is
� ����� � �! �#"

� � � mod
�	�$� �

.

2. (a) The language consists of all pairs �&% �
' � where % is a list of integers, and
'

is [3 marks]
list sorted in ascending order containing the exact same integers as in % . For
example, the pair � � ����(��
��� " � � � � ������� " ����( � � would be in this language. If
we can accept this language, then we can sort lists of integers.

(b)
�*) � � � + ��� � � � " �� � � [3 marks]

(c) /* This proof would involve equating the set of all problems with the set of [19 marks]
all languages over some alphabet (the alphabet

����� + � , for example) and then
a diagonalisation proof showing that this set cannot be ordered. */

3. (a) Language acceptance (language recognition) problems are of interest to com- [5 marks]
puter scientists because it is the most general form of computation. Every
computation that a particular machine (finite automaton, pushdown automa-
ton, Turing machine) can perform can be represented as a language that the
machine can accept. Languages that the machine cannot accept correspond
exactly to computations that that machine cannot perform.

(b) In order to calculate the loop invariant
�

, we must first reformat the while [10 marks]
loop according to the While Rule. This gives us� � %+�
-,/. � ���������0
�����
while ���! � �21 , do����� �  /+
od��� 
 � ���! � 1 , � �� �! �!�3, �

From this, we can see that the second last line must imply the last line:� 
 � ���� � 1 , � ( �! �!�3,
and this gives us a method of solving for

�
.

The expression can be simplified to� 
 �� �4.$, ( �� �!��,

The weakest predicate
�

(the predicate for
�

that allows the most possibili-
ties) is therefore

� � �! �45$, .
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(c) i. Uncountable [1 marks]

ii. Countably infinite [1 marks]

iii. Countably infinite [1 marks]
iv. Finite [1 marks]

(d) A relation is an equivalence relation if it is reflexive, symmetric, and transi- [6 marks]
tive. So, to turn

�
into an equivalence relation we need only find the union of

the reflexive, symmetric, and transitive closures of
�

.� � � � � � � + � +0� � � " � "&� � � " �
� � � � ��� "&� � � ���
� � � � ����� � � � ���
 � � � ��
 � �� � � � � � � + � +0� � � " � "&� � � " �
� � � � ��� "&� � � ���� � � � ���� � �� � � � � � � + � +0� � � " � "&� � � " �
� � � � ��� "&� � � ���
� � � � ���� � �
Let

��� � � � � � � � � � � � � � � �� � � + � +0� � � " � "&� � � " �
� � � � ��� "&� � � ���
� � � � ��� � � � � ���� � � � ���� � � � ��� � � . � � is an equiv-
alence relation.

4. (a) The set � is countable because a bijection exists between the elements of � [8 marks]
and � . One such function that maps naturals to � is � � � (�� , � �&% � �
%	� + �(� . This function is a bijection because its inverse ( ��


� � � ( � ,
� �&% � � %	� + �(� ) maps � back to � .

(b) i. To prove the truth or falsity of
� � % � � � ��� ���� 0 � ��� ��� " � ��� � + � � [6 marks]

we apply the composition rule and the assignment axiom.

1.
� ����� "&� � � + � � � ��� ��� " � � � � + � � AA

2.
� �������� "&� � � + � � � ��� ���� � ����� "&� � � + � � 1,AA

3. � %+� precondition
4. � %+���( �������� "&� � � + �

We can prove that the left hand side does not imply the right hand side
in line 4, by identifying a single value for � which satisfies the left hand
side but which does not satisfy the right hand side. For example, � � + .
Therefore, this program is not correct (with respect to its precondition
and postcondition).

ii. To prove the truth or falsity of
�
true

� � ��� �0 � ��� �' + � � %  �
we [6 marks]

apply the composition rule and the assignment axiom.

1.
� �! /+ %$ � � ��� �� /+ � � %$ � AA

2.
�   /+ %$ � � ������ �� /+ %$ � 1,AA

3. true precondition
4.
  /+ %+ T

5. true (   /+ %+ T ( T from truth table
6.
�
true

� � ������ �� /+ %$ � 2,5,consequence
QED 1,6,composition

(c) The relation � is an equivalence relation so the partition of � can be obtained [5 marks]
by writing out the equivalence classes:� ����� ����� + ��� " ��������� � � + � � � + � +&+ � " + ������� � � " � � � " � +0" � "&" ������� �� ����� ����� + ��� " ��������� � � � � � � ��� + ��� " ��������� � �  � � � �� + �� " �������� �� ����� ����� + ��� " ��������� � � � � � � ��� + ��� " ��������� � � 	�� � ��	�� + 	�� " 	�������� �� ����� ����� + ��� " ��������� �

SE120 Page 3 of 3 SAMPLE SOLUTIONS 2003


