OLLSCOIL NA hÉIREANN, MÁ NUAD
NATIONAL UNIVERSITY OF IRELAND, MAYNOOTH
FIRST COMPUTER SCIENCE AND SOFTWARE ENGINEERING EXAMINATION

SAMPLE SOLUTIONS 2003

PAPER SE120

DISCRETE STRUCTURES II
Mr. T. Naughton.

1. (a) As a consequence of $\{P\} S\{R\}$ evaluating to true, we know that if predicate [3 marks] P evaluates to true, and S is executed, then R will be true after S terminates.
(b) From the If-Then-Else Rule we have to prove (i) $\{P \wedge C\} S_{1}\{Q\}$ and (ii) $\{P \wedge \quad$ [12 marks] $\neg C\} S_{2}\{Q\}$.
(i) Prove $\{\operatorname{true} \wedge \operatorname{odd}(x)\} y:=x+2\{\operatorname{odd}(y) \wedge y>x\}$
2. $\{\operatorname{odd}(x+2) \wedge x+2>x\} y:=x+2\{\operatorname{odd}(y) \wedge y>x\} \quad$ AA
3. true $\wedge \operatorname{odd}(x) \quad$ precondition
4. odd (x)
5. odd $(x+2) \quad$ 3,T
6. $x+2>x$

T
6. odd $(x+2) \wedge x+2>x$

4,5
7. true $\wedge \operatorname{odd}(x) \rightarrow \operatorname{odd}(x+2) \wedge x+2>x$

2,6
8. $\{\operatorname{true} \wedge \operatorname{odd}(x)\} y:=x+2\{\operatorname{odd}(y) \wedge y>x\}$

1,7,consequence
(ii) Prove $\{\operatorname{true} \wedge \neg \operatorname{odd}(x)\} y:=x+1\{\operatorname{odd}(y) \wedge y>x\}$. Although not essential, let us first simplify this to $\{\operatorname{even}(x)\} y:=x+1\{\operatorname{odd}(y) \wedge y>x\}$
9. $\{\operatorname{odd}(x+1) \wedge x+1>x\} y:=x+1\{\operatorname{odd}(y) \wedge y>x\}$ AA
10. even (x)
11. odd $(x+1)$ precondition
12. $x+1>x$ 10,T
13. $\operatorname{odd}(x+1) \wedge x+1>x$

T
14. $\operatorname{even}(x) \rightarrow \operatorname{odd}(x+1) \wedge x+1>x$

11,12
15. $\{\operatorname{even}(x)\} y:=x+1\{\operatorname{odd}(y) \wedge y>x\}$

10,13
9,14, consequence
QED
8,15,If-Then-Else Rule
(c) There are four equivalence classes
i. $[0]=\{0,4,8, \ldots\}$
ii. $[1]=\{1,5,9, \ldots\}$
iii. $[2]=\{2,6,10, \ldots\}$
iv. $[3]=\{3,7,11, \ldots\}$
and indeed these do form a partition of \mathbb{N}, because $[0] \cup[1] \cup[2] \cup[3]=$ \mathbb{N} and $[0] \cap[1] \cap[2] \cap[3]=\emptyset$. Then, one possible expression for these equivalence classes (and one possible answer to this question) is $[n]=\{x \mid x \in$ $\mathbb{N}, x \bmod 3=n\}$.
2. (a) The language consists of all pairs (a, b) where a is a list of integers, and b is list sorted in ascending order containing the exact same integers as in a. For example, the pair $((7,55,3,23),(3,7,23,55))$ would be in this language. If we can accept this language, then we can sort lists of integers.
(b) $R^{3}=\{(1,4),(2,5)\}$
(c) /* This proof would involve equating the set of all problems with the set of all languages over some alphabet (the alphabet $\{0,1\}$, for example) and then a diagonalisation proof showing that this set cannot be ordered. */
3. (a) Language acceptance (language recognition) problems are of interest to computer scientists because it is the most general form of computation. Every computation that a particular machine (finite automaton, pushdown automaton, Turing machine) can perform can be represented as a language that the machine can accept. Languages that the machine cannot accept correspond exactly to computations that that machine cannot perform.
(b) In order to calculate the loop invariant P, we must first reformat the while [10 marks] loop according to the While Rule. This gives us
$\{x>0 \wedge z \geq x\}$
$y:=0$;
$\{P\}$
while $(x+y)<z$ do

$$
y:=y+1
$$

od
$\{P \wedge \neg(x+y<z)\}$
$\{x+y=z\}$
From this, we can see that the second last line must imply the last line:
$P \wedge \neg(x+y<z) \rightarrow x+y=z$
and this gives us a method of solving for P.
The expression can be simplified to
$P \wedge x+y \geq z \rightarrow x+y=z$
The weakest predicate P (the predicate for P that allows the most possibilities) is therefore $P=x+y \leq z$.
(c) i. Uncountable
ii. Countably infinite
iii. Countably infinite
iv. Finite
(d) A relation is an equivalence relation if it is reflexive, symmetric, and transitive. So, to turn R into an equivalence relation we need only find the union of the reflexive, symmetric, and transitive closures of R.
$r(R)=\{(1,1),(2,2),(2,3),(3,2),(3,3),(4,4),(4,5),(5,5)\}$
$s(R)=\{(1,1),(2,2),(2,3),(3,2),(4,5),(5,4)\}$
$t(R)=\{(1,1),(2,2),(2,3),(3,2),(3,3),(4,5)\}$
Let $R^{\prime}=r(R) \cup s(R) \cup t(R)$
$=\{(1,1),(2,2),(2,3),(3,2),(3,3),(4,4),(4,5),(5,4),(5,5)\} . R^{\prime}$ is an equivalence relation.
4. (a) The set X is countable because a bijection exists between the elements of X and \mathbb{N}. One such function that maps naturals to X is $f: \mathbb{N} \rightarrow X, f(a)=$ $a \div 100$. This function is a bijection because its inverse $\left(f^{-1}: X \rightarrow \mathbb{N}\right.$, $f(a)=a \times 100$) maps X back to \mathbb{N}.
(b) i. To prove the truth or falsity of $\{x>0\} x:=x * x ; x:=x \div 2\left\{x^{4}=10\right\} \quad$ [6 marks] we apply the composition rule and the assignment axiom.

$$
\begin{array}{ll}
\text { 1. }\left\{(x \div 2)^{4}=10\right\} x:=x \div 2\left\{x^{4}=10\right\} & \text { AA } \\
\text { 2. }\left\{(x * x \div 2)^{4}=10\right\} x:=x * x\left\{(x \div 2)^{4}=10\right\} & \text { 1,AA } \\
\text { 3. } x>0 & \text { precondition } \\
\text { 4. } x>0 \nrightarrow(x * x \div 2)^{4}=10 &
\end{array}
$$

We can prove that the left hand side does not imply the right hand side in line 4 , by identifying a single value for x which satisfies the left hand side but which does not satisfy the right hand side. For example, $x=1$. Therefore, this program is not correct (with respect to its precondition and postcondition).
ii. To prove the truth or falsity of $\{$ true $\} x:=5 ; x:=x+1\{x>5\}$ we [6 marks] apply the composition rule and the assignment axiom.

1. $\{x+1>5\} x:=x+1\{x>5\}$	AA
2. $\{5+1>5\} x:=5\{x+1>5\}$	1,AA
3. true	precondition
4. $5+1>5$	T
5. true $\rightarrow 5+1>5$	T \rightarrow T from truth table
6. $\{$ true $\}:=5\{x+1>5\}$	2,5 ,consequence
QED	1,6, composition

(c) The relation \sim is an equivalence relation so the partition of \mathbb{N} can be obtained [5 marks] by writing out the equivalence classes:

$$
\begin{aligned}
& {[0]=\{0,10,20, \ldots\}[1]=\{1,11,21, \ldots\}[2]=\{2,12,22, \ldots\}} \\
& {[3]=\{3,13,23, \ldots\}[4]=\{4,14,24, \ldots\}[5]=\{5,15,25, \ldots\}} \\
& {[6]=\{6,16,26, \ldots\}[7]=\{7,17,27, \ldots\}[8]=\{8,18,28, \ldots\}} \\
& {[9]=\{9,19,29, \ldots\}}
\end{aligned}
$$

