OLLSCOIL NA hÉIREANN, MÁ NUAD

NATIONAL UNIVERSITY OF IRELAND, MAYNOOTH

FIRST COMPUTER SCIENCE AND SOFTWARE ENGINEERING EXAMINATION

SUMMER 2003

PAPER SE120

DISCRETE STRUCTURES II

Dr. P. Stevens, Prof. R. Reilly, Mr. T. Naughton.

Attempt any THREE questions. Time Allowed: 2 hours.

- (a) What does it mean if a Hoare triple evaluates to true, and how can this be used [5 marks] to prove that a computer program is correct? Make reference to each of the three parts of the triple in your answer.
 - (b) Prove the correctness or incorrectness of each of the following computer programs. You must use the technique based on calculating the most general (or weakest) precondition.
 - i. $\{y < 0\} x := 5; x := x + y \{x < 10\}$
 - ii. $\{x > 0\} x := x * x \{x^4 = 10\}$
 - iii. $\{x > 5\} x := 5; x := x + 1 \{x > 5\}$
- 2. (a) Let a function $f : \mathcal{N} \to \mathcal{N}$ be defined as $f(x) = \text{floor}(\sqrt{x})$. [15 marks]
 - i. Write an expression for the equivalence classes in the partition of \mathbb{N} induced by the kernel relation of f.
 - ii. Write out the first four equivalence classes.
 - (b) Prove the correctness of the following computer program. [10 marks] $\{x > 0\}$ if x > 5 then $x := 5 \{0 \le x \le 5\}$

- 3. (a) Why are language acceptance (language recognition) problems of interest to [5 marks] computer scientists?
 - (b) Let the set X be defined as $X = \{x | x \in \mathbb{R} \land 100x \in \mathbb{N}\}$. For example, [5 marks] $5.21 \in X$ and $0.99 \in X$. Prove that X is countable.
 - (c) Prove the correctness of the following computer program. [15 marks]

 $\{x > 0\}$ y := 17; $\{x > 0 \land y \le 17\} // P$ while x > y dox := x - yod $\{0 < x \le 17\}$

- 4. (a) Given the binary relation $R = \{(1, 2), (3, 1), (3, 2), (2, 4)\}$ over $\{1, 2, 3, 4\}$, [9 marks] construct each of the following relations.
 - i. r(R) (reflexive closure)
 - ii. s(R) (symmetric closure)
 - iii. t(R) (transitive closure)
 - (b) Given some finite alphabet Σ, the set of all words over Σ is countable and is [16 marks] denoted L = Σ*. Prove that the set of all languages over Σ, denoted 2^L or power(L), is uncountable.

SE120 Axioms and Theorems

Implication truth table:	P	Q	$P \to Q$
	Т	Т	Т
	Т	F	F
	F	Т	Т
	F	F	Т
	F F	T F	T T

Assignment axiom (AA): $\{Q(x/t)\}x := t\{Q\}$

Consequence Rule:
$$\frac{P \to R \text{ and } \{R\} S \{Q\}}{\{P\} S \{Q\}}$$

Composition Rule:
$$\frac{\{P\} S_1 \{R\} \text{ and } \{R\} S_2 \{Q\}}{\{P\} S_1; S_2 \{Q\}}$$

If-Then Rule:
$$\frac{\{P \land C\} S \{Q\} \text{ and } P \land \neg C \to Q}{\{P\} \text{ if } C \text{ then } S \{Q\}}$$

If-Then-Else Rule:
$$\frac{\{P \land C\} S_1 \{Q\} \text{ and } \{P \land \neg C\} S_2 \{Q\}}{\{P\} \text{ if } C \text{ then } S_1 \text{ else } S_2 \{Q\}}$$

While Rule:
$$\frac{\{P \land C\} S \{P\}}{\{P\} \text{ while } C \text{ do } S \{P \land \neg C\}}$$

Selected theorems that can be quoted without proof:

- 1. The union of any finite number of countable sets is a countable set
- 2. The cross product of any finite number of countable sets is a countable set
- 3. The intersection of any finite number of countable sets is a countable set
- 4. The power set of a finite set is a finite set