OLLSCOIL NA hÉIREANN, MÁ NUAD

NATIONAL UNIVERSITY OF IRELAND, MAYNOOTH

FIRST COMPUTER SCIENCE AND SOFTWARE ENGINEERING EXAMINATION

AUTUMN 2003

PAPER SE120

DISCRETE STRUCTURES II

Dr. P. Stevens, Prof. R. Reilly, Mr. T. Naughton.

Attempt any THREE questions. Time Allowed: 2 hours.

- 1. (a) Replace X in each of the following Hoare triples such that the triple evaluates [9 marks] to true.
 - i. $\{X\} x := 5 \{y > 5\}$

ii.
$$\{x > 5 \land y > 5\} X \{x > 0 \land y > 5\}$$

- iii. $\{x > 0 \land y > 5\} y := x \{X\}$
- (b) Let $P = \{x > 5 \land y < 0\}$. State two predicates that are strictly more general [8 marks] (weaker) than P and two predicates that are strictly less general (stronger) than P.
- (c) Define the language acceptance (language recognition) problem that corre- [8 marks] sponds to each of the following problems.
 - i. The problem of taking two natural numbers and returning their sum.
 - ii. The problem of taking a list of integers and returning the maximum value in the list.
- (a) Determine if the following relation over N is an equivalence relation, by es- [6 marks] tablishing if it is reflexive, symmetric, and transitive.
 aRb iff |a b| ≤ 2
 - (b) For a finite alphabet of your choice, prove that the set of all languages over [19 marks] that alphabet is an uncountable set. Use a diagonalisation argument in your proof.
- 3. (a) Let \sim be a relation on the natural numbers defined by $x \sim y$ iff mod(x, 10) = [5 marks] mod(y, 10). Use this relation to partition \mathbb{N} .
 - (b) Prove the correctness of the following computer program. You must determine [20 marks] the loop invariant P yourself.

```
{x \ge 99}
while x > 0 do
x := x - 1
od
{x = 0}
```

- 4. (a) Prove the correctness of the following computer program. [8 marks] $\{\text{true}\}$ if $x \ge 0$ then x := x + 1 else $x := -x \{x > 0\}$
 - (b) Prove that the set of all Java computer programs is countable. [9 marks]
 - (c) Given the binary relation $R = \{(1, 2), (2, 3), (3, 4), (4, 5)\}$, construct each of [8 marks] the following relations.
 - i. R^2
 - ii. R^3
 - iii. R^4
 - iv. R^5

SE120 Axioms and Theorems

	P	Q	$P \to Q$
Implication truth table:	Т	Т	Т
	Т	F	F
	F	Т	Т
	F	F	Т

Assignment axiom (AA): $\{Q(x/t)\}x := t\{Q\}$

Consequence Rule:
$$\frac{P \to R \text{ and } \{R\} S \{Q\}}{\{P\} S \{Q\}}$$

Composition Rule:
$$\frac{\{P\} S_1 \{R\} \text{ and } \{R\} S_2 \{Q\}}{\{P\} S_1; S_2 \{Q\}}$$

If-Then Rule:
$$\frac{\{P \land C\} S \{Q\} \text{ and } P \land \neg C \to Q}{\{P\} \text{ if } C \text{ then } S \{Q\}}$$

If-Then-Else Rule:
$$\frac{\{P \land C\} S_1 \{Q\} \text{ and } \{P \land \neg C\} S_2 \{Q\}}{\{P\} \text{ if } C \text{ then } S_1 \text{ else } S_2 \{Q\}}$$

While Rule:
$$\frac{\{P \land C\} S \{P\}}{\{P\} \text{ while } C \text{ do } S \{P \land \neg C\}}$$

Selected theorems that can be quoted without proof:

- 1. The union of any finite number of countable sets is a countable set
- 2. The cross product of any finite number of countable sets is a countable set
- 3. The intersection of any finite number of countable sets is a countable set
- 4. The power set of a finite set is a finite set