

THE NATIONAL BIOPHOTONICS & IMAGING PLATFORM IRELAND

BIGSS'08 Programme Timetable

Organising Committee:

Martin Leahy (Chair) Chris Dainty Valery Tuchin Peter Dockery Alan Ryder Paul Whelan Brendan Wilkins Hugh Byrne Noel Buckley Elfed Lewis Conleth Hussey Michael Connelly

Michelle Lanigan (admin) Telephone 061 202746 Fax 061 202734 Email <u>Michelle.Lanigan@ul.ie</u>

Higher Education Authority An tÚdarás um Ard-Oideachas

BIGSS' 08 BioPhotonics and Imaging Graduate Summer School

August 29 – September 02, 2008 Ballyvaughan, Co. Clare, IRELAND

Friday 29th August 2008

Valery Tuchin Tissue Optics and Optical Clearing of Tissues

09:30	Structural and optical models of tissues
11:00	Break
11:30	Mechanisms of optical clearing
13:00	Lunch
14:00	Optical Coherence Tomography (Gordon McKenzie)
15:00	Michelson Diagnostics OCT demo (Gordon
	McKenzie)
15:30	Break
16:00	Applications of Optical Clearing

Ivan FedosovFundamentals of laser speckles andtheir applications

- 17:00 Interference and coherence
- 17:30 Laser Speckles in free space
- 17:45 Laser Speckles in imaging geometry
- 18:00 Dynamic speckles
- 18:10 Statistical properties of dynamic speckles
- 18:40 Speckle interferometry and other applications
- 19:00 Hang Posters
- 19:30 Dinner at the Burren Coast Hotel

Saturday 30th August 2008

Peter So	Fluorescence Imaging
09:00	Introduction
09:15	Basic fluorescence spectroscopy: history, Jablonski description, de-excitation mechanisms
10:00	Nonlinear optics: semi-classical treatment for 1P fluorescence, SHG, THG, & 2P fluorescence
11:00	Break
11:30	Nonlinear optics: semi-classical treatment for 1P fluorescence, SHG, THG, & 2P fluorescence (cont)
12:00	Optical imaging & microscopy: ray tracing, microscopy, interference, diffraction view of Abbè limit, Fourier view of Abbè limit
13:00	Lunch
14:00	Confocal and two-photon 3D microscopy: basic theory & applications
14:50	Advanced fluorescence microscopy: FCS, FLIM, FRET
15:40	Conclusion, Q&A
16:00	Break

Rodney Gush Laser Doppler and Speckle techniques for tissue blood flow imaging: Performance and Applications

- 16:30 Introduction and basic theory of LD and Speckle
- 16:40 Validation of the techniques
- 17:05 Clinical and Physiological Applications
- 17:20 Potential and Opportunities
- 17:30 Questions
- 18:00 Hands on Laser Doppler and Laser Speckle Imaging

Sunday 31st August 2008

Jannick Rolland Optical Coherence Tomography

- 09:00 Principles of OCT
- 09:45 Light Sources for OCT
- 10:15 Fourier Domain OCT (FD- OCT)
- 11:00 Break
- 11:30 Optical Coherence Microscopy
- 12:15 Functional OCT
- 13:00 Finish
- 14:30 Bus Transfer to Burren Perfumery
- 15:00 Burren Perfumery
- 16:00 Bus Transfer to Cliffs of Moher
- 16:30 Visit to the Cliffs of Moher
- 18:15 Bus Transfer to Bunratty Medieval Banquet
- 20:45 Bunratty Medieval Banquet

Monday 1st September 2008

Lihong Wang Photoacoustic Tomography: High-Resolution *in vivo* Imaging of Optical Contrast at new Depths

09:00	Motivation and challenges
09:20	Photoacoustic computed tomography
11:00	Break
11:30	Dark-field confocal photoacoustic microscopy, Part I
13:00	Lunch
14:00	Dark-field confocal photoacoustic microscopy, Part
II	
14:10	RF-induced thermoacoustic tomography
14:2	Summary and discussion
14:30	Break
Gert Nilss	son Medical Needs meet New Technologies to form novel Bioengineering Innovations:
Gert Nilss 15:00	Son Medical Needs meet New Technologies to form novel Bioengineering Innovations: Introduction
Gert Nilss 15:00 15:10	Son Medical Needs meet New Technologies to form novel Bioengineering Innovations: Introduction Major Biomedical Innovations
Gert Nilss 15:00 15:10 15:30	Son Medical Needs meet New Technologies to form novel Bioengineering Innovations: Introduction Major Biomedical Innovations The Innovation Grid
Gert Nilss 15:00 15:10 15:30 15:50	Son Medical Needs meet New Technologies to form novel Bioengineering Innovations: Introduction Major Biomedical Innovations The Innovation Grid Minor Biomedical Innovations (Examples)
Gert Nilss 15:00 15:10 15:30 15:50	Son Medical Needs meet New Technologies to form novel Bioengineering Innovations: Introduction Major Biomedical Innovations The Innovation Grid Minor Biomedical Innovations (Examples) Evaporimeter
Gert Nilss 15:00 15:10 15:30 15:50	Son Medical Needs meet New Technologies to form novel Bioengineering Innovations: Introduction Major Biomedical Innovations The Innovation Grid Minor Biomedical Innovations (Examples) Evaporimeter Laser Doppler Flowmetry

17:40 Hands-on TiVi

Public Event

19:00 NBIP Medical Technology Commercialisation Colloquium: Bringing bioengineering innovations to the market

Gert Nilsson, Professor of biomedical instrumentation, Linköping University, Sweden

Tuesday 2nd September 2008

Thomas Naughton Introduction to Digital Holography

Introduction and overview
Coherent light and diffraction
Conventional holography
Digital capture of holograms
Break
Phase-shifting digital holography
Reconstruction algorithms
Reduction of speckle and twin image
Digital holographic microscopy
Displays
3D information extraction
Lunch

Rasmus Larsen Hyperspectral Image Analysis - Methods for Regression and classification in Hyperdimensional Spaces

- 14.30 Linear methods for classification and regression and the curse of dimensionality
- 15.30 Regularization, Variable selection, and subspace projection
- 16.30 Break
- 17.00 Spectral Alignment
- 18.00 Applications and examples

END.