

SEMESTER 2 2024-2025

CS605 The Mathematics and Theory of Computer Science

Asst. Prof. G. Di Liberto, Assoc. Prof. A. Mooney, Prof. T. Naughton

Time allowed: 3 hours

Answer all **seven** questions

All questions carry equal marks

Instructions

	Yes	No	N/A
Formulae and Tables book allowed (i.e. available on request)		Χ	
Formulae and Tables book required (i.e. distributed prior to exam commencing)		Χ	
Statistics Tables and Formulae allowed (i.e. available on request)		Х	
Statistics Tables and Formulae required (i.e. distributed prior to exam commencing)		Χ	
Dictionary allowed (supplied by the student)		Χ	
Non-programmable calculator allowed		Χ	
Students required to write in and return the exam question paper	X		
One physical (paper) copy of textbook Michael Sipser, Introduction to the Theory of Computation, without annotations or extra pages (supplied by the student)	Х		
Students required to sign the declaration page at the end of this document	Х		

Only the answers on this exam question paper not be marked. If your answer requires more s bottom of your answer in the exam question pa booklet where your answer continues.	pace than the exam question p	aper allows, at the
Write your name, student number, and desk nu	umber below.	
Name S	tudent no	Desk no

1	You	must use this exam question sheet for your proofs.	[10 marks]
	(a)	Prove that the following language is not regular.	
	(α)	Trove that the following language is not regular.	
		L1A = $\{0^m + 0^n = 0^q : m, n \ge 0, q = m + n\}$ e.g. an example word in the language is $00 + 0 = 000$	[4 marks]
	(b)	Prove that the following language is not context-free.	
		(b) L1B = $\{wx0^m1^n : w \in \{0, 1\}^*, m, n \ge 0, w \text{ contains } m \text{ zeros and } n \text{ ones } \}$ e.g. example words in the language include 1101x0111, 1111x1111, and 1001011x0001111.	[6 marks]
Pro	<u>ofs</u>		
		Page in answer booklet where this answer contin	iues:

2	Yo	u	mι	JS	t u	ıse	e t	hi	s	ex	aı	m	qι	ле	st	ioi	n :	sh	e	et	fo	ry	yΟ	ur	· p	rc	of	fs.														[1	0 ı	ma	arl	ks]
	(a)		Pı																						Ċ																					
	(α)				vc		iu			, ,	01		<i>,</i> , , ,	ı ıg	, "	<i>A</i> 11	gı	Ju	g	٠ ،	J	uc	,01	u	20	10	•																			
			po L2	os 2A	sik	oly : {•	ı a	C	се	pt	in	g	ot	he	r '	W	oro	ds	. I	t i	S	de	fii	ne	d	fo	rn	na	lly	/ 8	เร		L1), 1								[ṭ	5 r	ma	ırk	s]	
	(b)		P	ro	ve	tŀ	na	t t	he	e f	ol	lo۱	νi	ng	j la	an	gı	Ja	ge	e i	S	Τι	ıri	nç	g-r	e	co	gr	nis	al	ole) .														
			de	ЭС		e	d	in	J	, ;	an	ıd	W	h	en																		nte alu								[;	5 r	na	ırk	s]	
<u>Pro</u>	<u>of</u>																																													
																																										•				
																																										•				
												٠																																		
		•			•				•					•	•			•		•			•	•	•	•		•	•									•				•	•	٠		
					•							٠		•	•					٠				•	•										•			•				•		•		•
		•		•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•		•	•	٠	٠	•	•	•		•	•	•	•	•
		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•
		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	٠	•	•	•	•		•	•	•	•	•
		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•		•	•	•	•	•
																																											•			
		•		•	•	•	•																																				•	•	•	•
		•		•	•	•	•	•	•	•	•	•	•	•	•																										 ทม			•	•	•

[10	mar	ks]
-----	-----	-----

3	[10 marks Prove that the problem associated with language L3 defined below is undecidable. You are
	given that HALT = $\{: M \text{ is a Turing machine and } M \text{ halts on } w\}$ is undecidable. Use the template provided to perform a mapping reduction. You must give your answer on this exam question sheet.
	The language L3 is defined as
	L3 = { $, g>: J is a Java program and g is an integer and while running, J uses a maximum of g gigabytes of memory (one gigabyte is 10^9 bytes)}.$
	Note, in the template below, some blanks have a small subscript number. Blanks with the same subscript number must have the same value. Blank $N = "\dots"$ is worth 10 marks, and each other blank scores -1 if incorrect.
Prod	<u>of</u>
Opti	ional: The complement $\overline{L3}$ =
We	will use a mapping reduction to prove the reduction
	≤
Ass	ume that $\ldots \ldots \ldots \ldots$ is decidable.
The	transition function f that maps instances of to instances of
	is given by TM <i>F</i> given by the following pseudocode.
F=	"On input <
1	. Construct the following N given by the following pseudocode.
	N = "
2	. Output < <u>.</u> ≥."
Nov	sic an alamont of iff a
INON	u, <

is undecidable; the complement of an undecidable language is undecidable.)

is an element of

. A contradiction.

•		J11	ia	3 0		vai	J.G.	iic	,,,,																											
4																	m sak		ne	nt	L;	3,	pr	0V	e v	wh	etl	ne	r e	ac	h	lar) n ge		s]
		r	o	t to	olo	v b	vh		he	er																								u a ex		
Pr	00	<u>f</u>																																		

Page in answer booklet where this answer continues: _____

[10	marks]
-----	--------

5	Prove that the problem associated with language L5 defined below is undecidable. You are given that HALT = $\{: M \text{ is a Turing machine and } M \text{ halts on } w\}$ is undecidable. Use the template provided to perform a mapping reduction. You must give your answer on this exam question sheet.
	The language L5 is defined as L5 = $\{ < J >: J \text{ is a Java program that tries to write something to disk} \}$.
	Note, in the template below, some blanks have a small subscript number. Blanks with the same subscript number must have the same value. Blank $N = "\dots"$ is worth 10 marks, and each other blank scores -1 if incorrect.
Proo	<u>f</u>
Optio	onal: The complement $\overline{L5}$ =
We v	vill use a mapping reduction to prove the reduction
	≤
Assu	ıme that <u>.</u> is decidable.
The	transition function f that maps instances of $\ldots \ldots \ldots \ldots$ to instances of
	is given by TM <i>F</i> given by the following pseudocode.
F = "	On input <

1. Construct the following *N* given by the following pseudocode.

6		Prove that each of these problems is in \mathcal{NP} . You must use this exam question sheet for your proofs.	sj
	(a)	L6A = { $, k>: G = (V, E) is an undirected graph of vertices V and [5 marks] edges E and there exists a subset of vertices S \subseteq V of size S = k such that each edge in E touches one of the vertices in S}$	
	(b)	L6B = $\{: A = \{x_1,, x_m\}$ is a set of natural numbers and there exists [5 marks] a subset $Q \subseteq A$ where the sum of the elements in Q is exactly a quarter of the sum of the elements in A }	
Proo	<u>fs</u>		
		Page in answer booklet where this answer continues:	

7		(a	1)	t	co ha	mp at l	ole L6	ete A). `	Yc in	ou 1 ∕	aı √7	re	gi	ve	en	th	a	t 3	3-8	SΑ	١T	is	,	VΤ)-C	0	mį	ple	ete	€.	ed Re ar	efe	er t	to	yo	u	r p	ro	of						r ks ks]	J
		(b)																													e i				Τ.							[3	m	arl	ks]	
<u>Pro</u>	00	<u>f</u>																																													
	٠																																														
	٠																																														
	•								•		•					•		•					•	•	•		•									•		•									
	٠	٠								•				٠	•	•			•		•											•				•							•				
	•	•		•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•			•	•	•	•		
	٠	•	•	•	•			•	•	٠	•	•	•	٠	•	•	•	٠	•	•	•	•	٠	•	•	•	•		•			•	•	•	•	٠	•	•	•			•	•				
	•	•	•	•	•	•		•	•	•	•	•	•	•																															•		
	•	•	•	•	•	•		•	•	٠	•	•	•	٠																															•		
	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•																												•	•		
	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	-	-	-	-	-	-	•	•	-		_			-	-	-	-	-	-	-		-	-	•	•		
	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•				•			•	•																•	•		
	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		
	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		
	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		
	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		
	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		
	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		
		•	•	•	•	•		•	•	•	•	·	•	•	•	•	•		•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	• •	
•	•	•						•		•			•		•	•																	•	•	•	•											
								•																																							
																		F	a	ge	e i	n	ar	۱S۱	νe	er	bo	00	kle	et	W	he	re	th	iis	aı	าร	W	er	CC	nt	inι	ıes	s: ˌ			_

OLLSCOIL NA hÉIREANN MÁ NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH

SUMMER 2025 EXAMINATION

CS605

The Mathematics and Theory of Computer Science

Asst. Prof. G. Di Liberto, Assoc. Prof. A. Mooney, Prof. T. Naughton

Declaration

To be signed by each student and returned with their exam paper at the end of the examination

- i. I have searched through my copy of M. Sipser, *Introduction to the Theory of Computation*, any edition, (the Sipser book) and it does not contain any extra pages or annotations (except for annotations that correct minor typographical errors).
- ii. I understand that by failing to notify an invigilator of any annotations or extra pages in my copies of the Sipser book, I will receive a mark of zero in this examination. This does not affect any further disciplinary actions that the University may wish to take.
- iii. I understand also that directly copying large amounts of material from the Sipser books without substantially tailoring it to the question asked will not gain any marks for that question.

Name (capital letters)	
Student number	Desk number
Signature	Date