

AUTUMN 2024-2025

CS605 The Mathematics and Theory of Computer Science

Asst. Prof. G. Di Liberto, Assoc. Prof. A. Mooney, Prof. T. Naughton

Time allowed: 3 hours

Answer all **seven** questions

All questions carry equal marks

Instructions

	Yes	No	N/A
Formulae and Tables book allowed (i.e. available on request)		Χ	
Formulae and Tables book required (i.e. distributed prior to exam commencing)		Х	
Statistics Tables and Formulae allowed (i.e. available on request)		Х	
Statistics Tables and Formulae required (i.e. distributed prior to exam commencing)		Х	
Dictionary allowed (supplied by the student)		Х	
Non-programmable calculator allowed		Х	
Students required to write in and return the exam question paper	Х		
One physical (paper) copy of textbook Michael Sipser, Introduction to the Theory of Computation, without annotations or extra pages (supplied by the student)	Х		
Students required to sign the declaration page at the end of this document	Х		

Only the answers on this exam question paper will be marked – r not be marked. If your answer requires more space than the exam bottom of your answer in the exam question paper, specify the pabooklet where your answer continues.	n question paper allows, at the
Write your name, student number, and desk number below.	
Name Student no	Desk no

			[10 marks]											
1	(a)	Prove that the following language is not regular.												
		L1A = $\{w \in \{0, 1\}^*: w \text{ is odd, } w \text{ has a 1 in the middle} \}$ e.g. an example word in the language is 0101011												
	(b)	Prove that the following language is not context-free.												
		$\begin{split} L1B = & \{w v_1s_1 v_2s_2 v_ns_n: w \in \{a,b\}^*, w =n,v_i \in \{a,b\},w=v_1v_2v_n\;,\\ \text{and } s_i \in & \{a\}^*\;\}\;\;e.g.\;\text{an example word in the language is abba aaa b ba aa} \end{split}$	[6 marks]											
		You must use this exam question sheet for your proofs.												
⊃ro	ofs													
•														
•														
•														
•														
•														
•														
•														
•														
•		Page in answer booklet where this answer contin	nues [.]											

			[10 marks]
2	(a)	Prove that the following language is decidable.	
		L2A is the language of finite automata that accepts all words beginning with symbol a and no other words. It is defined formally as L2A = $\{: M \text{ is a finite automaton and } \mathcal{L}(M) = \{w \in \{a, b\}^*, w \text{ begins with a}\}$.	[5 marks]
	(b)	Prove that the following language is Turing-recognisable.	
		L2B = $\{ : J \text{ is a Java program, } a, b, \text{ and } c \text{ are string variables declared in } J, \text{ and when } J \text{ is run, both } a \text{ and } b \text{ have values that are substrings of } c \text{ at the same time at least once} \}$	[5 marks]
		You must use this exam question sheet for your proofs.	
<u>Pro</u>	oof		
		Page in answer booklet where this answer contin	nues:

[10	mar	ks]
-----	-----	-----

	[10 marks
3	Prove that the problem associated with language L3 defined below is undecidable. You are given that HALT = $\{: M \text{ is a Turing machine and } M \text{ halts on } w\}$ is undecidable. Use the template provided to perform a mapping reduction. You must give your answer on this exam question sheet.
	The language L3 is defined as L3 = $\{: M \text{ is a Java program that instantiates (constructs) an object of type MyClass at least once during the running of M}.$
	Note, in the template below, some blanks have a small subscript number. Blanks with the same subscript number must have the same value. Blank $N = "\dots"$ is worth 10 marks, and each other blank scores -1 if incorrect.

<u>Proof</u> .	
Optional: The complement $\overline{L3}$ =	
We will use a mapping reduction to	prove the reduction
≤	
Assume that	is decidable.
The transition function f that maps in	nstances of to instances of
is given by TM	1 <i>F</i> given by the following pseudocode.
<i>F</i> = "On input <	.2>:
1. Construct the following N given	by the following pseudocode.
N = "	
2. Output <	>."
Now, <	element of
is an element of	
So, using f and the assumption that	
A contradiction	on.
Therefore,	undecidable. (Also, the complement of \cdot .
is undecidable; the complement of a	n undecidable language is undecidable.)

•		J11	ius	, ,		uu	gii	toi																												
4																		le.	me	ent	t L	.3,	pr	ov	e '	wł	et	he	r e	eac	ch	laı) n .ge		s]
		n	ot	to	old	W	h	eth	r Ĺ																									u a ex		
<u>Pr</u>	<u>oc</u>	<u>of</u>																																		
																			•																	
																			•																	
																			•																	
																			•																	
																			•																	,
																			•																	
					•									•																		•				ı
												•																								ı
					•							•		•											•					•		•				

Page in answer booklet where this answer continues: _____

© In	omas J. Naugnton
5	Prove that the problem associated with language L5 defined below is undecidable. You are given that HALT = $\{: M \text{ is a Turing machine and } M \text{ halts on } w\}$ is undecidable. Use the template provided to perform a mapping reduction. You must give your answer on this exam question sheet.
	The language L5 is defined as L5 = $\{ < J >: J \text{ is a Java program and while running, } J \text{ never prints anything to the screen} \}$.
	Note, in the template below, some blanks have a small subscript number. Blanks with the same subscript number must have the same value. Blank $N = "\dots"$ is worth 10 marks, and each other blank scores -1 if incorrect.
Proc	<u>of</u>
Opti	onal: The complement $\overline{L5}$ =
We	will use a mapping reduction to prove the reduction
	≤
Assı	ume that $\ldots \ldots \ldots \ldots$ is decidable.
The	transition function f that maps instances of to instances of
	is given by TM <i>F</i> given by the following pseudocode.
F = '	"On input <
1.	Construct the following N given by the following pseudocode.
	N = "
2.	Output <

is undecidable; the complement of an undecidable language is undecidable.)

is an element of

. A contradiction.

		[10 marks]									
6	Prove that each of these problems is in \mathcal{NP} . You must use this exam question sheet for your proofs.	-									
(a)	3D-MATCHING = { $, k> : A is a set of triples A\subseteq (X\times Y\times Z) where X,Y,Z are disjoint finite sets (they share no elements) each containing k elements, and there exists a subset A'\subseteq A, also of size k, with the property that no element appears in multiple triples in A'}.$	[5 marks]									
	As examples, where $X=\{0,1\}$, $Y=\{x, y\}$, $Z=\{+, -\}$, $<\{(1, y, +), (0, x, -), (1, x, +)\}$, $2> \in 3D$ -MATCHING $<\{(1, y, +), (0, y, -), (1, x, -)\}$, $2> \notin 3D$ -MATCHING $<\{(1, y, +), (0, y, -), (1, x, -)\}$, $1> \in 3D$ -MATCHING										
(b)	SUBSET-SUM-U = { $<$ S, t > : $S = \{x_1,, x_m\}$, where each $x_i \in \{0\}^*$, where t $\in \{0\}^*$, and for some subset $\{y_1,, y_n\} \subseteq \{x_1,, x_m\}$, it is the case that $\Sigma y_i = t $ (i.e. the sum of the lengths of strings y_i equals the length of t) }.	[5 marks]									
	As examples, <{0, 00, 000}, 0000> ∈ SUBSET-SUM-U, and <{00, 000, 00000}, 0000> ∉ SUBSET-SUM-U.										
<u>Proofs</u>											
	Page in answer booklet where this answer contin	ues:									

7	The HITTING-SET-0 problem is defined as HITTING-SET-0 = $\{: T = \{S_1,, S_n\}$ is a system of sets and k is an integer, where each set $S_i \subseteq X$ is a subset of an underlying set $X = \{x_1,, x_m\}$, where each $x_i \in \{0\}^*$ is an integer represented in unary notation, and there exists another subset $H \subseteq X$ of size k that has a nonzero intersection with each $S_0,, S_n\}$.
	Prove that HITTING-SET-0 is \mathcal{NP} -complete. You are given that 3-SAT is \mathcal{NP} -complete. You must use this exam question sheet for your proof.
Proo	
•	Page in answer booklet where this answer continues:

[10 marks]

OLLSCOIL NA hÉIREANN MÁ NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH

AUTUMN 2025 EXAMINATION

CS605

The Mathematics and Theory of Computer Science

Asst. Prof. G. Di Liberto, Assoc. Prof. A. Mooney, Prof. T. Naughton

Declaration

To be signed by each student and returned with their exam paper at the end of the examination

- i. I have searched through my copy of M. Sipser, *Introduction to the Theory of Computation*, any edition, (the Sipser book) and it does not contain any extra pages or annotations (except for annotations that correct minor typographical errors).
- ii. I understand that by failing to notify an invigilator of any annotations or extra pages in my copies of the Sipser book, I will receive a mark of zero in this examination. This does not affect any further disciplinary actions that the University may wish to take.
- iii. I understand also that directly copying large amounts of material from the Sipser books without substantially tailoring it to the question asked will not gain any marks for that question.

Name (capital letters)	
Student number	Desk number
Signature	Date