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COMPUTATION AND COMPLEXITY

Mr. T. Naughton.

Attempt any THREE questions. Time Allowed: 2 hours.

1. (a) The table of behaviour of a TM to accept L. The start state is 00. The accept [8 marks]
state is 99.

Si R Sf W M

00 a 01 − R
01 a 01 a R
01 b 02 b R
02 b 02 b R
02 − 03 − L
03 b 04 − L
04 b 05 − L
05 b 05 b L
05 a 05 a L
05 − 00 − R
00 − 99 − R

(b) Illustration of how a reduction can be used to prove nonmembership of [5 marks]
a class. Given a problem x not a member of class A, by finding a reduction
x ≤ y you would prove that y is not a member of A either.
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(c) Proof that W is decidable. [8 marks]
X = “On input 〈M, w〉 :

1. Let a = 2|w|.
2. Run M on w and count the number of timesteps.
3. If M halts before a timesteps, reject, otherwise accept.”

X is a TM that decides W , therefore W is decidable.

(d) Proof that PRINTERPROBLEM ∈ NP . The certificate c = (Q1, Q2) is the [4 marks]
two lists of jobs for the two printers.

V = “On input (n, P, t, (Q1, Q2)):
1. Check that each element of Q1 ∪Q2 is in P : n× n = O(n2).
2. Check that each element of P is in Q1 ∪Q2 : n× n = O(n2).
3. Check that Q1 ∩Q2 = ∅ : n× n = O(n2).
4. Check that the sum of Q1 ≤ t and that the sum of Q2 ≤ t : 2n = O(n).
5. If all checks are passed, accept : 1 = O(1).”

Machine V verifies PRINTERPROBLEM. V requires O(n2) timesteps in total
so PRINTERPROBLEM is in NP .

2. (a) Definition of a model of computation. A model of computation is a list of [5 marks]
assumptions about the capabilities of a computing device.

(b) Proof that INFINITETM is undecidable. [20 marks]

i. ATTM ≤ INFINITETM

ii. INFINITETM

iii. ATTM

iv. INFINITETM

v. 〈M, w〉

vi. “On input x :
1. If x ∈ {01, 11, 100}, then accept x.
2. Run M on w.
3. If M accepts w, then accept x.”

vii. 〈M ′〉

viii. INFINITETM

ix. ATTM

x. ATTM
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3. (a) Proof that NEVEROVERFLOWJ is undecidable. [15 marks]

i. AJ ≤ NEVEROVERFLOWJ

ii. NEVEROVERFLOWJ

iii. AJ

iv. NEVEROVERFLOWJ

v. 〈J, w〉

vi. “class Mprime {
public static void main(String args[]) {

int a = 0;
if (J(w) == accept) {

while (1 == 1) {
a++;

}
}

}
}”

vii. 〈M ′, a〉

viii. NEVEROVERFLOWJ

ix. AJ

x. AJ

(b) Proof that NEVEROVERFLOWJ is not Turing recognisable. We construct [5 marks]
a TM M to recognise NEVEROVERFLOWJ as follows.

X = “On input 〈J, v〉 :
1. Run J checking the value in v at each timestep.
2. If v overflows, accept.”

X recognises NEVEROVERFLOWJ therefore NEVEROVERFLOWJ is Tur-
ing recognisable. Since NEVEROVERFLOWJ is undecidable, and
NEVEROVERFLOWJ is Turing recognisable, this proves that
NEVEROVERFLOWJ is not Turing recognisable.

(c) i. NEVEROVERFLOWTM = {〈J, v〉 : J is a Java program, v is an integer [2 marks]
variable declared in J , and when J is run variable v overflows at least
once}.

ii. Proof that NEVEROVERFLOWTM is Turing recognisable. This has [3 marks]
been proved in 3b above.

4. (a) Definition of the Church-Turing thesis. Turing machines are equivalent to [5 marks]
all other reasonable computing devices.

(b) Proof that 2Σ
∗

is uncountable. Assume that 2Σ
∗

is countable. Then it should [10 marks]
be possible to create a list (infinite in this case) containing all of the elements
of 2Σ

∗

(all of the languages over Σ). Consider such a list of languages, and
represent each language by an infinite sequence over {T, F} where a T at the
nth position indicates that the nth word in the lexicographic ordering of Σ∗ is
in that language, and a F at the nth position indicates that the nth word in the
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lexicographic ordering of Σ∗ is not in that language. We can represent this
infinite list of infinite sequences as a table, infinite in both directions. Now,
if we extract the diagonal of this table, and convert each T to F and each F

to T , we get a valid representation of a language over Σ that is not in the list.
A contradiction, because this list was supposed to contain all such languages.
Therefore our assumption was wrong and 2Σ

∗

must be uncountable.

(c) Placement of each language and its complement in the space of languages. [10 marks]
The solutions will be given in the following form (smallest class the language
is in, smallest class its complement is in).

i. (T-r, 2Σ
∗

)

ii. (EXP, EXP)

iii. (NP, coP)

iv. (2Σ
∗

, 2Σ
∗

)

v. (P, P)
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