OLLSCOIL NA hÉIREANN, MÁ NUAD
 NATIONAL UNIVERSITY OF IRELAND, MAYNOOTH
 THIRD COMPUTER SCIENCE EXAMINATION
 FOURTH COMPUTER SCIENCE EXAMINATION
 THIRD COMPUTER SCIENCE AND SOFTWARE ENGINEERING EXAMINATION FOURTH COMPUTER SCIENCE AND SOFTWARE ENGINEERING EXAMINATION MASTERS OF COMPUTER SCIENCE (YEAR 1) EXAMINATION MASTERS OF COMPUTER SCIENCE (YEAR 2) EXAMINATION

SAMPLE 2004
PAPER CS355/SE307/CS403

COMPUTATION AND COMPLEXITY

Mr. T. Naughton

Attempt any THREE questions. Time Allowed: 2 hours.

1. (a) Construct a TM that recognises the language $L=\left\{a^{n} b^{2 n}: n \geq 0\right\}$. You [8 marks] must write out the table of behaviour explicitly. Writing pseudocode alone will result in only minimal marks.
(b) How can you use a reduction to prove nonmembership of a class?
(c) Prove that the language $W=\{\langle M, w\rangle: M$ is a TM and when M is run on [8 marks] input string w, M runs for at least $2^{|w|}$ timesteps $\}$ is decidable.
(d) Prove that PrinterProblem is in $\mathcal{N P}$.
2. (a) What is a model of computation?
(b) Let the language INFINITE $_{\mathrm{TM}}$ be defined as INFINITE $_{\mathrm{TM}}=\{\langle M\rangle: M$ is \quad [20 marks] a TM and $L(M)$ is an infinite language $\}$. Prove that INFINITE $_{\text {TM }}$ is undecidable. You are given that $\mathrm{AT}_{\mathrm{TM}}$ is undecidable. $\mathrm{AT}_{\mathrm{TM}}$ is defined as $\mathrm{AT}_{\mathrm{TM}}$ $=\{\langle M, w\rangle: M$ is a TM and w is a word and M accepts $w\}$.
You may answer this question by assigning a name, mathematical construct, or piece of pseudocode to each of the numbered blanks in the proof template in Figure 1. Where blanks have the same number, this denotes their contents will be the same. Alternatively, you can choose to ignore the template and construct your own proof from scratch (such as a subroutine reduction).

Proof. We will use a mapping reduction to prove the reduction 1 . Assume that __2_ is decidable. The function f that maps instances of 3 to instances of \qquad is performed by TM F given by the following pseudocode.
$F=$ "On input $\left\langle _\right.$5_ \rangle:

1. Construct the following M^{\prime} given by the following pseudocode.
2. Output $\left\langle\begin{array}{rl}M^{\prime} & \left.=" \frac{6}{7}\right\rangle "\end{array}\right.$

Now, $\langle\quad 7\rangle$ is an element of $\quad 8$ iff $\langle\quad 5\rangle$ is an element of $\quad 9$. . So using f and the assumption that $\quad 2$ is decidable, we can decide 10 . A contradiction. Therefore, _2_ is undecidable. (This also means that the complement of $\quad 2$ is undecidable; the complement of any undecidable language is itself undecidable.)

Figure 1: Proof template for questions 2 b and 3a.
3. Let the language NEVEROVERFLOW $_{\mathrm{J}}$ be defined as NEVEROVERFLOW $_{\mathrm{J}}=$ $\{\langle J, v\rangle: J$ is a Java program, v is an integer variable declared in J, and throughout the execution of J variable v does not overflow\}. (A variable overflows when it exceeds its maximum value. For example, if an 8 -bit unsigned integer with value 255 is incremented it might take the value 0 , or cause a crash, but either way we would say that the variable has overflowed.) You are given that A_{J} is undecidable. A_{J} is defined $\mathrm{A}_{\mathrm{J}}=\{\langle J, w\rangle: J$ is a Java function that accepts on input $w\}$.
(a) Prove that NEVEROVERFLOW ${ }_{J}$ is undecidable. You may answer this question by assigning a name, mathematical construct, or piece of pseudocode to each of the numbered blanks in the proof template in Figure 1. Where blanks have the same number, this denotes their contents will be the same. Alternatively, you can choose to ignore the template and construct your own proof from scratch (such as a subroutine reduction).
(b) Prove that NEVEROVERFLOW ${ }_{J}$ is Turing recognisable or prove that it is not [5 marks] Turing recognisable.
(c) Give a definition of the language $\overline{\text { NEVEROVERFLOW }_{\mathrm{J}}}$ (the complement of NEVEROVERFLOW $_{J}$). Prove that $\overline{\text { NEVEROVERFLOW }}_{\mathrm{J}}$ is Turing recognisable or prove that it is not Turing recognisable.

Figure 2: Illustration of the space of languages for question 4c: EXP denotes EXPTIME, Dec denotes the decidable languages (sometimes called the recursive languages), and T-r denotes the Turing recognisable languages (sometimes called the recursively enumerable languages).
4. (a) What is the Church-Turing thesis?
(b) Prove that the set of all languages over the alphabet $\Sigma=\{a, b\}$ is an uncountable set.
(c) Figure 2 illustrates the space of languages $2^{\Sigma^{*}}$ for some finite Σ, where $|\Sigma|>\quad$ [10 marks]

1. Place each of the following languages, and its complement, in its appropriate place in this space.
i. $\mathrm{A}_{\mathrm{TM}}=\{\langle M, w\rangle: M$ is a TM and w is a word and M accepts $w\}$
ii. $W=\{\langle M, w\rangle: M$ is a TM and when M is run on input string w, M runs for at least $2^{|w|}$ timesteps $\}$
iii. Partition
iv. $\mathrm{EQ}_{\text {Tм }}=\left\{\left\langle M_{1}, M_{2}\right\rangle: M_{1}, M_{2}\right.$ are TMs and $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$
v. $M=\left\{a x b x c: a, b, c \in\{1\}^{*},|c|=|a| \cdot|b|\right\}$
