CS403/SE307/CS355 - Computation and Complexity Department of Computer Science National University of Ireland, Maynooth

T Naughton, NUIM http://www.cs.may.ie/~tnaughton/teaching/se307

Lab 4 - Decidability and undecidability - Group B - 11 Nov 2003 - Sample solutions

Question 1(i)

Proof that HASVAR_J is Turing recognisable. We construct a TM M to recognise HASVAR_J as follows.

M = "On input $\langle J, v \rangle$:

- 1. Search through J looking for a declaration for v.
- 2. Where it is declared, check what value it is initialised to.
- 3. If it is initialised to zero, accept."

M recognises HASVAR_J. (I.e. M is guaranteed to accept all instances of HASVAR_J and M will never accept pairs $\langle J, v \rangle$ that are not instances of HASVAR_J.) Therefore, HASVAR_J is Turing-recognisable.

Question 1(ii)

Proof that $\overline{\text{HASVAR}_J}$ is Turing recognisable. We construct a TM *M* to recognise $\overline{\text{HASVAR}_J}$ as follows.

M = "On input $\langle J, v \rangle$:

- 1. Search through J looking for a declaration for v.
- 2. If no declaration is found, accept.
- 3. Where it is declared, check what value it is initialised to.
- 4. If it is not initialised to zero, accept."

M recognises $\overline{\text{HASVAR}_J}$. Therefore, $\overline{\text{HASVAR}_J}$ is Turing-recognisable.

Question 1(iii)

Yes. (Because it and its complement are Turing recognisable.)

Question 2(i)

Proof that VARZERO_J is Turing recognisable. We construct a TM M to recognise VARZERO_J as follows.

M = "On input $\langle J, v \rangle$:

- 1. If v is initialised to zero in J, accept.
- 2. Run J.
- 3. After each line of J is executed, check if v has value zero.
- 4. If it is zero, accept."

M recognises VARZERO_J. Therefore, VARZERO_J is Turing-recognisable.

Question 2(ii)

Proof that VARZERO_J is undecidable. We will use a mapping reduction to prove the reduction $HALTS_J \leq VARZERO_J$. Assume that $VARZERO_J$ is decidable. The function f that maps instances of $HALTS_J$ to instances of $VARZERO_J$ is performed by TM F given by the following pseudocode.

```
F = \text{``On input } \langle J \rangle :
1. Construct the following M' given by the following pseudocode.

M' = \text{``class Mprime } \{
public static void main(String args[]) {
    int v = -1;
    J();
    v++;
}
}''
2. Output \langle M', v \rangle''
```

Now, $\langle M', v \rangle$ is an element of VARZERO_J iff $\langle J \rangle$ is an element of HALTS_J. So using f and the assumption that VARZERO_J is decidable, we can decide HALTS_J. A contradiction. Therefore, VARZERO_J is undecidable.

Question 2(iii)

No. (Because $VARZERO_J$ is undecidable and Turing recognisable, its complement cannot also be Turing recognisable.)