CS403/SE307/CS355 - Computation and Complexity Department of Computer Science National University of Ireland, Maynooth

T Naughton, NUIM http://www.cs.may.ie/~tnaughton/teaching/se307

Lab 4 - Decidability and undecidability - Group A - 18 Nov 2003 - Sample solutions

Question 1(i)

Proof that VAREQUAL_J is undecidable. We will use a mapping reduction to prove the reduction $HALT_J \leq VAREQUAL_J$. Assume that $VAREQUAL_J$ is decidable. The function f that maps instances of $HALT_J$ to instances of $VAREQUAL_J$ is performed by TM F given by the following pseudocode.

F = "On input $\langle J, w \rangle$:

1. Construct the following M' given by the following pseudocode.

$$M' = \text{``class Mprime } \{ \\ \text{public static void main(String args[]) } \{ \\ \text{int } u = 5; \\ \text{int } v = 6; \\ J(w); \\ v - -; \\ \} \\ \}^{"}_{}$$
2. Output $\langle M', u, v \rangle$ "

Now, $\langle M', u, v \rangle$ is an element of VAREQUAL_J iff $\langle J, w \rangle$ is an element of HALT_J. So using f and the assumption that VAREQUAL_J is decidable, we can decide HALT_J. A contradiction. Therefore, VAREQUAL_J is undecidable.

Question 1(ii)

Proof that VAREQUAL_J is Turing recognisable. We construct a TM M to recognise VAREQUAL_J as follows.

M = "On input $\langle J, u, v \rangle$:

- 1. If u and v are initialised to the same value in J, accept.
- 2. Run J.
- 3. After each line of J is executed, check if u and v are equal.
- 4. If they are equal, accept."

M recognises VAREQUAL_J. I.e. M is guaranteed to accept all instances of VAREQUAL_J and M will never accept triples $\langle J, u, v \rangle$ that are not instances of VAREQUAL_J. Therefore, VAREQUAL_J is Turing-recognisable.

Question 1(iii)

 $\overline{\text{VAREQUAL}_J} = \{ \langle J, u, v \rangle : J \text{ is a Java program, } u \text{ and } v \text{ are integer variables declared in } J, and u \text{ and } v \text{ never have the same value during the execution of } J \}$

Question 1(iv)

Proof that $\overrightarrow{VAREQUAL_J}$ is not Turing recognisable. VAREQUAL_J is undecidable and VAREQUAL_J is Turing recognisable, therefore $\overrightarrow{VAREQUAL_J}$ must not be Turing recognisable.