# OLLSCOIL NA hÉIREANN, MÁ NUAD

## NATIONAL UNIVERSITY OF IRELAND, MAYNOOTH

### THIRD COMPUTER SCIENCE AND SOFTWARE ENGINEERING EXAMINATION

#### FEBRUARY 2002

#### PAPER SE307

#### COMPUTATION AND COMPLEXITY THEORY

Dr. P. Stevens, Prof. R. Reilly, Mr. T. Naughton.

Answer ALL QUESTIONS from Section A and any TWO questions from Section B.

Use a MCQ Answer Sheet for Section A - enter your name, student ID, and module code. Negative marking will be applied for Section A (2 marks for a correct answer, -0.5 for an incorrect answer, 0 for no attempt).

#### Time Allowed: 2 hours.

# **SECTION A (40 marks)**

- 1. Consider Turing machine T of the form  $(Q, \Sigma, I, q_0, F)$ , where I is a set of tuples [2 marks] of the form (q, s, q', s', m), and where all symbols have their usual meaning. Which of the following conditions <u>must</u> be true for T to be a valid Turing machine?
  - (a) T has exactly two tapes, even if one is not used
  - (b)  $F \subset Q$
  - (c) Q is finite
  - (d)  $s \neq s'$  for each tuple in *I*
  - (e) none of the above
- 2. Consider T from Question A.1. Which of the following conditions <u>must</u> be true for [2 marks]T to be a valid Turing machine?
  - (a) if some Turing machine accepts a word w then T accepts w
  - (b) each  $i \in 2^{\Sigma}$  is a valid input
  - (c) T halts on at least one input
  - (d) all of the above
  - (e) none of the above

- 3. Consider T from Question A.1. Which of the following conditions <u>must</u> be true for [2 marks] T to be a <u>universal</u> machine?
  - (a)  $q_0 \notin F$
  - (b)  $m \in \{L, R, S\}$  for each tuple in I
  - (c)  $q \neq q'$  for each tuple in *I*
  - (d)  $F \neq Q$
  - (e) none of the above
- 4. Consider T from Question A.1. Under which of the following restrictions will T [2 marks] definitely <u>not</u> be a <u>universal</u> machine?
  - (a)  $m \in \{L, R\}$  for each tuple in I
  - (b)  $m \in \{L, S\}$  for each tuple in I
  - (c)  $\Sigma$  is finite
  - (d) Q is finite
  - (e) none of the above
- 5. Alice has a personal computer with 128 Mbytes of memory. Which of the following [2 marks] will increase the power (in terms of computability) of her computer?
  - (a) adding more memory
  - (b) increasing the clock speed of her processor
  - (c) adding MMX (multimedia instructions) to her processor
  - (d) all of the above
  - (e) none of the above
- 6. Consider a finite alphabet A, and a finite word over A called w. Consider also a [2 marks] language over A called L. Which of the following is true for some A, w, and L?
  - (a)  $w \in L$
  - (b)  $w \in A$
  - (c)  $A \subseteq L$
  - (d) all of the above
  - (e) none of the above
- 7. Consider a finite alphabet A, and a finite word over A called w. Consider also a [2 marks] language over A called L. Which of the following is true for all A, w, and L?
  - (a)  $w \in L$
  - (b)  $w \in A$
  - (c)  $A \subseteq L$
  - (d) all of the above
  - (e) none of the above

| 8.  | The infinite set of all words over an alphabet $\Sigma$ is denoted                                                               | [2 marks] |
|-----|----------------------------------------------------------------------------------------------------------------------------------|-----------|
|     | (a) $\Sigma^*$                                                                                                                   |           |
|     | (b) $\Sigma_0^*$                                                                                                                 |           |
|     | (c) $ \Sigma $                                                                                                                   |           |
|     | (d) $2^{\Sigma}$                                                                                                                 |           |
|     | (e) none of the above                                                                                                            |           |
| 9.  | Given a countably infinite set A of subsets of a set X (such that each $a \in A \Rightarrow a \subseteq X$ ) it can be said that | [2 marks] |
|     | (a) $\mathbf{A} \neq 2^{\mathbf{X}}$                                                                                             |           |
|     | (b) $A = 2^{X}$                                                                                                                  |           |
|     | (c) $ \mathbf{A}  >  2^{\mathbf{X}} $ , where $ \mathbf{A} $ means 'the cardinality of $\mathbf{A}$ '                            |           |
|     | (d) X must be finite                                                                                                             |           |
|     | (e) none of the above                                                                                                            |           |
| 10. | Which of the following is not one of the 'unrestricted' models of computation?                                                   | [2 marks] |
|     | (a) TMs with only one tape                                                                                                       |           |
|     | (b) $k$ -tape TMs with a finite set of symbols                                                                                   |           |
|     | (c) $k$ -tape TMs whose tapes are infinite in one direction only                                                                 |           |
|     | (d) RAMs with a fixed number of registers                                                                                        |           |
|     | (e) RAMs with fixed sized registers                                                                                              |           |
| 11. | Which of the following languages is not recursively enumerable?                                                                  | [2 marks] |
|     | (a) $\{a, b, c\}$                                                                                                                |           |
|     | (b) the odd integers                                                                                                             |           |
|     | (c) the prime numbers                                                                                                            |           |
|     | (d) the halting Turing machines                                                                                                  |           |
|     | (e) none of the above                                                                                                            |           |
| 12. | Which of the following languages is not recursive?                                                                               | [2 marks] |
|     | (a) $\{a, b, c\}$                                                                                                                |           |
|     | (b) the odd integers                                                                                                             |           |
|     | (c) the prime numbers                                                                                                            |           |
|     | (d) the halting Turing machines                                                                                                  |           |
|     | (e) none of the above                                                                                                            |           |

13. Consider a 2-tape Turing machine  $T = (Q, \Sigma, I, q_0, F) =$  [2 marks]  $(\{00, 01, 09\}, \{0, 1, -\}, I, 00, \{09\})$  that operates on binary strings. As usual, the head of the first tape will be positioned at the beginning of the input and the second tape will be blank. *I* is

| q  | S      | q' | s'     | m                          |
|----|--------|----|--------|----------------------------|
| 00 | (0, -) | 00 | (0,0)  | $(\mathbf{R},\mathbf{R})$  |
| 00 | (1, -) | 01 | (1, 1) | $(\mathbf{R},\mathbf{R})$  |
| 00 | (-, -) | 09 | (-, -) | $(\mathbf{S}, \mathbf{S})$ |
| 01 | (0, -) | 00 | (0,0)  | $(\mathbf{R},\mathbf{R})$  |
| 01 | (1, -) | 00 | (1, -) | $(\mathbf{R}, \mathbf{S})$ |
| 01 | (-, -) | 09 | (-, -) | $(\mathbf{S}, \mathbf{S})$ |

What would be written on the second tape when T halts on input "010110"?

- (a) 01001
- (b) 01010
- (c) 01011
- (d) T will not halt on that input
- (e) none of the above
- 14. Consider T from Question A.13. What would be written on the second tape when [2 marks] T halts on input "11101"?
  - (a) 110
  - (b) 1101
  - (c) 101
  - (d) T will not halt on that input
  - (e) none of the above
- 15. Given the diagram below, depicting sets  $X \subseteq Y \subseteq Z$  and elements  $a \in X$ ,  $b \in Y$ , [2 marks]  $c \in Z$ , which of the following statements is false?



- (a) a is X-hard
- (b) c is X-hard
- (c) *b* is **Y**-complete
- (d) c is Z-hard
- (e) none of the above

- 16. What would be the implications if an  $\mathcal{NP}$ -complete problem was found to have an [2 marks] exponential upper bound?
  - (a)  $\mathcal{P} = \mathcal{NP}$
  - (b)  $\mathcal{P} \neq \mathcal{NP}$
  - (c) the RAM model would be thrown out of the class of reasonable machines (the first machine class)
  - (d) it would lend weight to the Invariance thesis
  - (e) there are no implications
- 17. What would be the implications if an  $\mathcal{NP}$ -complete problem was found to have an [2 marks] exponential lower bound?
  - (a)  $\mathcal{P} = \mathcal{NP}$
  - (b)  $\mathcal{P} \neq \mathcal{NP}$
  - (c) the RAM model would be thrown out of the class of reasonable machines (the first machine class)
  - (d) it would lend weight to the Invariance thesis
  - (e) there are no implications
- 18. What is required in order to prove that  $\mathcal{NP}$ -hard problem X is  $\mathcal{NP}$ -complete? [2 marks] Assume that problem Y is known to be  $\mathcal{NP}$ -complete.
  - (a) find the polynomial reduction  $Y \leq X$
  - (b) show that a solution to X can be verified in polynomial time
  - (c) show that the solution to an instance of X can be used to solve an instance of Y
  - (d) all of the above
  - (e) none of the above
- 19. You want to find an algorithmic solution for problem A. You know that A is in  $\mathcal{NP}$ . [2 marks] Should you look for an efficient algorithm for A?
  - (a) yes, because we only suspect that  $\mathcal{NP}$ -complete problems are difficult
  - (b) no, because the existence of  $\mathcal{NP}$  has not been proved
  - (c) yes, because  $\mathcal{NP} \neq \mathcal{NP}$ -complete
  - (d) no, because the  $\mathcal{NP}$ -complete problems are outside  $\mathcal{P}$
  - (e) yes, because the  $\mathcal{NP}$ -complete problems are outside  $\mathcal{NP}$
- 20. Is the problem of writing out the factorial of a number in unary  $\mathcal{NP}$ -complete or [2 marks]  $\mathcal{NP}$ -hard (e.g. n! = 111111 for n = 3)?
  - (a)  $\mathcal{NP}$ -hard, because it cannot be solved efficiently
  - (b)  $\mathcal{NP}$ -complete, because it cannot be solved efficiently
  - (c)  $\mathcal{NP}$ -complete, because it can be verified, but not solved, in polynomial time
  - (d) it is both  $\mathcal{NP}$ -complete and  $\mathcal{NP}$ -hard
  - (e) it is neither  $\mathcal{NP}$ -complete nor  $\mathcal{NP}$ -hard

# **SECTION B (30 marks)**

| 1. | . , | Prove that the set of prime numbers is countable.<br>Explain the relationship between countable sets and computability. For example, why is it important for a language to be countable if it is to be accepted?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [7 marks]<br>[8 marks]  |
|----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 2. | . , | Show how a reduction could be used to prove nonmembership of a class.<br>The European Space Agency (ESA) wants to avoid the software fault that<br>caused the Arianne 5 rocket to fail. If they can ensure that variables will not<br>overflow during program execution, then the rocket should not fail next time.<br>They intend to check each function in the rocket's software separately. In or-<br>der to ease the checking process, they have made the following simplifications<br>to library functions: (i) function calls take only one argument, (ii) all variables<br>are integers, (iii) there are no other function calls within a function, and (iv)<br>the values of arguments are limited to a small finite range. Prove that, de-<br>spite their simplifications, the problem of determining if a variable overflows | [4 marks]<br>[11 marks] |
| 3. | (a) | in even one such function is unsolvable.<br>" $\mathcal{NP}$ problems are unsolvable." Make three (3) concise points about the va-<br>lidity of the interpretation (or interpretations) of this statement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [6 marks]               |

- (b) " $\mathcal{NP}$ -complete problems are the easiest of intractable problems." Do you [5 marks] agree with this statement? Explain your reasoning.
- (c) Define a language that is  $\mathcal{P}$ -hard.

[4 marks]