Rules, Definitions, and Theorems that can be applied to any question

Not $(\overline{P}, \neg P)$ true	,								
And truth table:	P T T F F	Q T F T F		∧ <i>Q</i> Γ F F	_				
Or truth table:	P T T F F	Q T F T F	<i>P</i> ∨ T T T F	\overline{Q}	-				
Implication $(P \rightarrow Q)$ truth table:					P T T F F	Q T F T F	if P	then (T F T T	5
If and only if (iff) truth table: $\begin{bmatrix} P \\ T \\ F \\ F \\ F \end{bmatrix}$					Q T F T F	<u>P</u>	iff Q T F F T	- -	

Equivalence laws

not $(A \text{ and } B) \equiv (\text{not } A) \text{ or } (\text{not } B)$ not $(A \text{ or } B) \equiv (\text{not } A) \text{ and } (\text{not } B)$ $A \text{ and } (B \text{ or } C) \equiv (A \text{ and } B) \text{ or } (A \text{ and } C)$ $A \text{ or } (B \text{ and } C) \equiv (A \text{ or } B) \text{ and } (A \text{ or } C)$ if $A \text{ then } B \equiv \text{ if not } B \text{ then not } A$ if $A \text{ then } B \equiv (\text{not } A) \text{ or } B$

Divisibility and prime numbers

 \mathbb{Z} is the set of whole numbers (includes negative numbers and 0) called integers.

 $\mathbb N$ is the set of nonnegative whole numbers (includes 0) called naturals.

 \mathbb{R} is the set of real numbers.

The set of prime numbers is $\{x : x \in \mathbb{N}, x \text{ has exactly two factors: } 1 \text{ and } x\}$. Therefore, 2 is the smallest prime number.

Integer d divides integer n (written d|n) if $d \neq 0$ and there is a $k \in \mathbb{Z}$ such that n = dk.

Proof techniques

- Proof by exhaustive techniques. To prove a statement is true by exhaustive checking one must prove that the statement is true for every possible value.
- Proof by counter example. To prove a statement false by a counter example one simply finds a single value for which the statement is false.
- Conditional proof (direct proof). One uses a conditional proof if one is asked to prove a statement of the form "if A then B." It requires one to first assume that A is true. Then one makes a statement consisting of A and any other known facts. If using the valid rules of logic one can derive B from this statement then this proves that the "if A then B" statement must be true.
- Conditional proof (proving the contrapositive). One might also prove a statement of the form "if A then B" by proving the contrapositive: proving that "if not B then not A." Here one would assume that B is false and then continue as in a direct proof to derive that A is false.
- Proof by contradiction. A proof by contradiction would involve one assuming the statement is false and then using this fact and any other known facts to derive a contradiction (i.e. such as deriving that an integer is both even and odd, or deriving that an element is both in and out of a particular set).
- If and only if proof. Proving a statement "A if and only if B," sometimes abbreviated to "A iff B," would require one to prove both "if A then B" and "if B then A."

Sets and tuples

A set A is a subset of B, written $A \subset B$, if for every $x \in A$ it is true that $x \in B$. For every set A, both $\emptyset \subset A$ and $A \subset A$ are true. A set A is equal to B, written A = B, if $A \subset B$ and $B \subset A$. A set A is a proper subset of B if $A \subset B$ and $A \neq B$. The union of two sets A and B is $A \cup B = \{x : x \in A \text{ or } x \in B\}$. The intersection of two sets A and B is $A \cap B = \{x : x \in A \text{ and } x \in B\}$. The difference of two sets A and B is $A - B = \{x : x \in A \text{ and } x \notin B\}$. The power set 2^A [sometimes written power(A)] of a set A is $\{x : x \subset A\}$. A tuple is an ordered collection of objects that can contain duplicates. Tuples are written using parentheses (...) rather than the braces $\{...\}$ used for sets. The cross product of two sets A and B is $A \times B = \{(a, b) : a \in A, b \in B\}$.

Functions

 $f: A \to B$ is a function called f mapping elements from domain A to co-domain B. The range of $f: A \to B$ is $\{f(a): a \in A\}$. $f: A \to B$ is equal to $g: A \to B$ if f(a) = g(a) for all $a \in A$. abs: $\mathbb{R} \to \mathbb{R}$ is defined $abs(x) = if x \ge 0$ then x else -x. floor: $\mathbb{R} \to \mathbb{Z}$, written $\lfloor x \rfloor$, is defined as the largest integer $\le x$. ceiling: $\mathbb{R} \to \mathbb{Z}$, written $\lceil x \rceil$, is defined as the smallest integer $\ge x$. mod: $\mathbb{Z} \times (\mathbb{N} - \{0\}) \to \mathbb{N}$ is defined $mod(a, b) = a - b\lfloor a/b \rfloor$.