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CS151

1. (a) Given the following propositionsP , Q, andR, [6 marks]

P : ∀x, x is odd
Q : ∃x, x + 1 = 1
R : ∀x, if 2x is even thenx is even

determine the truth values for each of the following compound propositions.

i. NOT P AND (R OR NOT Q)

ii. (P OR Q) IF AND ONLY IF (R AND NOT P)

iii. NOT (IF P THEN (Q AND NOT R))

(b) Using truth tables, prove the truth or falsity of each of the following equivalence [4 marks]
statements, where¬A means “not A,” and≡ means “is equivalent to.”

i. ¬(A → B) ≡ ¬A ∨ B

ii. A → B ≡ (A ∧ ¬B) → False

(c) Prove each of the following propositions. Clearly statethe proof strategy used [15 marks]
in your solution.

i. If n2 is odd, thenn is odd

ii. If c|a andc|b, thenc|(am + bn) for any integersm andn

iii. There exists a primep such that2p − 1 is not a prime
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2. (a) In a survey of 120 adult shoppers at a supermarket, the following facts were [6 marks]
recorded.

• 46 shoppers had driven there

• 60 of the shoppers were women

• 43 of the women had a loyalty card, as did 40 of the men

• 26 of the women had driven there

• 12 of the women drivers had a loyalty card

• 34 non-driving men had a loyalty card

Answer each of the following questions.

i. How many non-driving men were in the survey?

ii. How many men drivers had a loyalty card?

iii. How many driving shoppers did not have a loyalty card?

(b) For each of the following relationsR ⊂ A × B, add pairs to turn the relations [2 marks]
into functions. (The default notion of a function is that it is a total function.) You
just need to state the pairs added, not the whole function. Let A = {a, b, c, d, e}
and letB = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

i. R = {(c, 2), (e, 7), (a, 3)}

ii. R = {(a, 1), (c, 3), (e, 4)}

(c) For each of the following two bijections, (i) give a definition for the range of the [8 marks]
bijection, and (ii) give a definition for the inverse of the bijection.

i. f : N → A, f(x) = 2x + 1

ii. g : N → A, g(x) =

{

−x+1

2
, if x is odd

x/2, if x is even

(d) Give a definition for the range of the compositiong ◦ f , whereg andf were [3 marks]
defined in question 2c.

(e) Answer each of the following parts. [6 marks]

i. If x andy are odd integers, thenxy is an even integer. Prove this false using
a counter example.

ii. If x andy are odd integers, thenxy is an odd integer. Prove this true using
the direct approach.

iii. What is wrong with the following proof for part 2(e)ii: “We showed in
part 2(e)i by a counterexample that it is not true to say that if x andy are
odd integers, thenxy is an even integer. Therefore this proves that ifx and
y are odd integers, thenxy is an odd integer.”
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3. (a) Write down each step in the evaluation off(20) wheref has the following [4 marks]
recursive definition.
f(1) = 0
f(n) = f(⌈n/3⌉) + n

(b) Write a recursive definition for each of the following functions. [6 marks]

i. f : N → N, f(n) = 1(2) + 2(3) + 3(4) + . . . + n(n + 1)

ii. f : String → String that replaces each occurrence of the lettera by
zz in a string over the alphabet{a, b, c}

(c) Construct an inductive proof to show that the following statement is true for all [6 marks]
natural numbers greater than zero.
12 + 22 + 32 + . . . + n2 = (n(n + 1)(2n + 1))/6

(d) Write a recursive definition that prints the even elements of a list of integers. [9 marks]
You may assume the existence of aprint procedure that prints a single integer.
Provide an inductive proof to show that the function definition is correct for all
input lists.

4. (a) Write out the elements in the power set of{∅, a, {b}, {∅, a}}. [4 marks]

(b) Let A = {(a, b) : a, b ∈ S, a|b}, let B = {(a, b) : a, b ∈ S, a ≤ b}, and let [6 marks]
S = {1, 2, 3, 4}.

i. Prove thatB 6⊂ A.

ii. Prove thatA ⊂ B.

(c) Let P (x) denote the statement “x has a sweet tooth” and letQ(x) denote the [9 marks]
statement “x likes chocolate.” The domain is the set of all people. Write each
of the following propositions in English.

i. ∃x(P (x) ∧ Q(x))

ii. ∀x(P (x) ∨ Q(x))

iii. ∀x(P (x) → Q(x))

(d) Formalise each of the following English sentences whereP (x) denotes the state- [6 marks]
ment “x is a swan” andC(x, r) denotes the statement “x has colourr.”

i. All swans are white

ii. Not all swans are white

iii. If some swan is blue then not all swans are white
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Rules, Definitions, and Theorems that can be applied to any question

Not (P , ¬P ) truth table:
P ¬P
T F
F T

And truth table:

P Q P ∧ Q
T T T
T F F
F T F
F F F

Or truth table:

P Q P ∨ Q
T T T
T F T
F T T
F F F

Implication (P → Q) truth table:

P Q if P thenQ
T T T
T F F
F T T
F F T

If and only if (iff) truth table:

P Q P iff Q
T T T
T F F
F T F
F F T

Equivalence laws
not (A andB) ≡ (notA) or (notB)
not (A or B) ≡ (notA) and (notB)
A and (B or C) ≡ (A andB) or (A andC)
A or (B andC) ≡ (A or B) and (A or C)
if A thenB ≡ if not B then notA
if A thenB ≡ (notA) or B

Divisibility and prime numbers
Z is the set of whole numbers (includes negative numbers and 0)called integers.
N is the set of nonnegative whole numbers (includes 0) called naturals.
R is the set of real numbers.
The set of prime numbers is{x : x ∈ N, x has exactly two factors: 1 andx}. There-
fore, 2 is the smallest prime number.
Integerd divides integern (written d|n) if d 6= 0 and there is ak ∈ Z such that
n = dk.
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Proof techniques

• Proof by exhaustive techniques. To prove a statement is trueby exhaustive
checking one must prove that the statement is true for every possible value.

• Proof by counter example. To prove a statement false by a counter example one
simply finds a single value for which the statement is false.

• Conditional proof (direct proof). One uses a conditional proof if one is asked
to prove a statement of the form “if A then B.” It requires one to first assume
that A is true. Then one makes a statement consisting of A and any other known
facts. If using the valid rules of logic one can derive B from this statement then
this proves that the “if A then B” statement must be true.

• Conditional proof (proving the contrapositive). One mightalso prove a state-
ment of the form “if A then B” by proving the contrapositive: proving that “if
not B then not A.” Here one would assume that B is false and thencontinue as
in a direct proof to derive that A is false.

• Proof by contradiction. A proof by contradiction would involve one assuming
the statement is false and then using this fact and any other known facts to
derive a contradiction (i.e. such as deriving that an integer is both even and odd,
or deriving that an element is both in and out of a particular set).

• If and only if proof. Proving a statement “A if and only if B,” sometimes abbre-
viated to “A iff B,” would require one to prove both “if A then B” and “if B then
A.”

Sets and tuples
A setA is a subset ofB, writtenA ⊂ B, if for everyx ∈ A it is true thatx ∈ B.
For every setA, both∅ ⊂ A andA ⊂ A are true.
A setA is equal toB, writtenA = B, if A ⊂ B andB ⊂ A.
A setA is a proper subset ofB if A ⊂ B andA 6= B.
The union of two setsA andB is A ∪ B = {x : x ∈ A or x ∈ B}.
The intersection of two setsA andB is A ∩ B = {x : x ∈ A andx ∈ B}.
The difference of two setsA andB is A − B = {x : x ∈ A andx 6∈ B}.
The power set2A [sometimes written power(A)] of a setA is {x : x ⊂ A}.
A tuple is an ordered collection of objects that can contain duplicates.
Tuples are written using parentheses (. . . ) rather than the braces{. . .} used for sets.
The cross product of two setsA andB is A × B = {(a, b) : a ∈ A, b ∈ B}.

Functions
f : A → B is a function calledf mapping elements from domainA to co-domainB.
The range off : A → B is {f(a) : a ∈ A}.
f : A → B is equal tog : A → B if f(a) = g(a) for all a ∈ A.
abs: R → R is defined abs(x) = if x ≥ 0 thenx else−x.
floor: R → Z, written⌊x⌋, is defined as the largest integer≤ x.
ceiling: R → Z, written⌈x⌉, is defined as the smallest integer≥ x.
mod: Z × (N − {0}) → N is defined mod(a, b) = a − b⌊a/b⌋.
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