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Abstract

We prove computability and complexity results for an original model of computation called the
continuous space machine. Our model is inspired by the theory of Fourier optics. We prove our model
can simulate analog recurrent neural networks, thus establishing a lower bound on its computational
power. We also define @(log, n) unordered search algorithm with our model.
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1. Introduction

In this paper, we prove some computability and complexity results for an original contin-
uous space model of computation called the continuous space machine (CSM). The CSM
was developed for the analysis of (analog) Fourier optical computing architectures and al-
gorithms, specifically pattern recognition and matrix algebra procef%@®21,23] The
functionality of the CSM is inspired by operations routinely performed by optical infor-
mation processing scientists and engineers. The CSM operates in discrete timesteps over
a finite number of two-dimensional (2D) complex-valued images of finite size and infinite
spatial resolution. A finite control is used to traverse, copy, and perform other optical oper-
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ations on the images. A useful analogy would be to describe the CSM as a random access
machine, without conditional branching and with registers that hold continuous complex-
valued images. It has recently been establigii8¢l5]that the CSM can simulate Turing
machines and Type-2 machin@el]. However, the CSM's exact computational power has

not yet been characterised.

In Section2, we define our optical model of computation and give the data representations
that will be used subsequently. In SectBuve demonstrate a lower bound on computational
power by proving that the CSM can simulate a type of dynamical system called analog
recurrent neural networks (ARNNE)8,19] This simulation result proves our analog model
can decide the membership problem for any language (of finite length words over a finite
alphabet) in finite time. In Sectidgh a®(log, n) binary search algorithm that can be applied
to certain unordered search problems is presented.

2. CSM

Each instance of the CSM consists of a memory containing a program (an ordered list of
operations) and an input. Informally, the memory structure is in the form of a 2D grid of
rectangular elements, as shown in Hig). The grid has finite size and a scheme to address
each element uniquely. Each grid element holds a 2D image. There is a program start address
staand two well-known addresses labelkedndb. The model has a number of operations
that effect optical image processing tasks. For example, two operations available to the
programmerst andld (parameterised by two column addresses and two row addresses),
copy rectangular subsets of the grid out of and into im@gespectively. Upon such load-
ing and storing the image contents are rescaled to the full extent of the target location
[as depicted in Figl(b)]. The other operations are image Fourier transform (FT), com-
plex conjugation, multiplication, addition, amplitude thresholding, and some control flow
operations.

2.1. CSM definition

Before defining the CSM we define its basic data unit and some of the functions it
implements.

Definition 1 (Complex-valued image A complex-valued image (or simply, an image) is
a functionf : [0, 1) x [0, 1) — C, where[O0, 1) is the half-open real unit interval aridis
the set of complex numbers.

We letZ be the set of all complex-valued images. We now define six functions that are
implemented in six of the CSM’s ten operations. Let egcle Z be parameterised by
orthogonal dimensions and y; we indicate this by writingf as f (x, y). The function
h : T — T gives the one-dimensional (1D) Fourier transformation (inxtdérection) of
its 2D argument imag¢. The function. is defined as

h(f (x, ) = B (F (2 y), (1)
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Fig. 1. Schematics of (a) the grid memory structure of the CSM, showing example locations for the ‘well-known’
addresses, b, andsta, and (b) loading (and automatically rescaling) a subset of the grid into adaré@se

program(Id[2[3[1][3[Alz] instructs the machine to load into default addragke portion of the grid addressed by
columns 2-3 and rows 1-3.

whereF («, y) is the FT in thex-direction of f (x, y), defined a$21,9]
o0
F(o,y) = / f(x,y) expli2mox] dx,
—00

wherei= /=1, and wheré'(F («, y)) = F(0x, y). Here, i’ uses the constafitto linearly
rescale its argument so thatF is defined ovef0, 1) x [0, 1). The functionv : Z — 7
gives the 1D Fourier transformation (in thedirection) of its 2D argument imagg, and
is defined as

v(f(x,y) =V (F(x, p) , 2
whereF (x, ) is the FT in they-direction of f (x, y), defined a$21,9]

F(L[)’)Z/ f(x,y) exgi2nfy]dy,

and where'(F (x, §)) = F(x, 0f). The functionx : Z — T gives the complex conjugate
of its argument image,

*(f(x, ) = fH(x,y), ()

wheref* denotes the complex conjugatefafThe complex conjugate of a scatae a+ib
is defined ag* = a —ib. The function : Z x T — 7 gives the pointwise complex product
of its two argument images,

S(f Gy, 8, ) = fx, y)gx, y). 4)
The functiort : Z x Z — 7 gives the pointwise complex sum of its two argument images,
+ (f (e, ), 80, ) = flx,y) +g(x, ). ®)

The functionp : 7 x T x Z — T performs amplitude thresholding on its first image
argument using its other two real valuegl ¢, : [0, 1) x [0, 1) — R) image arguments as
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lower and upper amplitude thresholds, respectively,

2, y) i 1fG ] < ax, ),
p(f(x,y), 21(x, ), zulx, y) = 1 1 f e, ] iF 200, ) <[ f(x, ) <zulx, y),
zu(x,y) i [f (e, 0 > zulx, ).
(6)

The amplitude of an arbitrary € C is denotedz| and is defined ag| = /z(z*).
We letN be the set of nonnegative integers and for a given CSM wg'Ibe a finite set
of images that encode that CSM’s addresses (see S&c@dor an example encoding).

Definition 2 (Continuous space machineA continuous space machine is a quintuple
M = (D, L, 1, P, 0), where

D = (m,n), D e N x N are the grid dimensions

L = ((s¢, sp), (ag, ay), (be, by)) are the addressesa, a, andb

I ={(1,11,), .-, (ks 15} ATE the addresses of thenput images

P ={{1. pr.P1). - oo P Prh (€ {hivox, -+, post,1d, br R UN) C

T are ther programming symbols and their addresses

0 ={(01;,01,), ..., (01, 0,)} are the addresses of theutput images.
Also, (s¢, sy), (ag, ay), (be, by), (lké, lk;]), (p,é, pr;]), (olé, 01;1)6{0, coo,m—1} x {0, ...,
n— 1) forall k., k e {1,...,k},ré,r,’7 € {1,2..,r},1é,'z;7 e{l,...,1}.

Addresses whose contents are not specifiedlbig a CSM definition are assumed to
contain the constant imag&(x, y) = 0.

We adopt a few notational conveniences. In a given CSM the addresseKy, ) are
both elements fromthe s@, ..., m —1} x {0, ..., n—1}. For the remainder of the current
sectiong, u, andw are sequences of elements fromth&sefo, ..., m—1}x{0, ..., n—1}.

In a CSM the image at addresds denotecr. In the case where represents an integer
from {0, ..., |\] — 1}, that integer is denotetl

Definition 3 (CSM configuration A configuration of a CSMV is a pair{c, e¢), wherec €
{0,...,m—1}x{0,...,n—1}isan address called the control. Alsos= ((igo, 0, 0), ...,
(im—1n-1,m — 1, n — 1)) is amn-tuple that containg/’s mn images and each of their
addresses, with, s € 7 being the image at addresg J). The elements of tuple are
ordered first by each then by each.

An initial configurationof M is a configuratiorCsta = (csta esta), Wherecsta = (s¢, sy)
is the address dfta, andesta contains all elements af and elementsgg,, 15 11,)s - - -
@k, ;> ik,) (thek input images at the addresses given/hyA final configurationof M
is a configuration of the forn@h; = ((y, ), (u, (hlt, y, 0), w)), whereu andw are given

above. Notice tha(tw??) = hlt.
In Definition 4 we adopt the following notations. The functigi(y, §)) = (y + 1, 9)
advances the control. The notatigh(c) is shorthand for function composition, e¢if(c) =

p————

(¢ (c)). At a given configuratioric, ¢) we letgr = ¢*(c), i.e. gx represents the integer
encoded by the image at addr@aﬁ%(c). We let the scaling relationships fer andid be
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x'=x+y-91/(@2—q1+ 1 andy = (y + 6 —q3)/(qa — g3+ 1). We leta(x, y) be
the image stored in addreasRecall that(a¢, a,) is the address af.

Definition 4 (Fy). Letty be a binary relation on configurations of CSWI containing
exactly the following 10 elements.

(e, (@, Gazays az, an), W)Fa{P©), W, (higza,), az. ay), w)) if T=h (i)

(e, (t, Gagays gy ay), WD), (, Wliaza), az, an)s w))  if €= v (i)
(e, (t, Gazay s ay)s W) Fa (D), (, ((iaza)s az. an), w))  if €= x (il
(e, (t, Gasays s ay)s W) FADE), , (Gazays b)) gy ay), w)) if c=- (V)
(C. (@, Gazays az. an)s W) Fa (D), @y (Flazays ibeb,)s as ay), w)) i €=+ (V)

(c, (u, (iaga”, ag, ay), w)) o
M {D(C), (0, (Pliasays D), GAEN), ag, ap), w)) if T=p (vi)

<C’ (uyé’ (i}'é(xs y), 7 5)7 wyb‘))

Fa{ (), (uys. (a (x', ) 7. 8), W)
vy, 08t g1<y<q2,¢3<0<qs,V(x,y) €[0,1) x [0,1) if c=st (vii)

<C7 (M7 (a(xl, y/)ﬂ Clé’, aﬂ)’ U))>

Fa(d>(0), (. (iys(x. ). ag. ay), w))
Vy, 08t g1<y<q2,¢3<0<qs,V(x,y) €[0,1) x [0,1) if c=1d (viii)

—

(e ) (B, 2. () if T= br (i%)
(c, W))Fplc, () if ¢ = hlt. (X)

Elements (i)—(vi) oft-y; define the CSM’s implementation of the functions defined in
Egs. ()—(6). Notice that in each case the image at the well-known addrisssverwritten
by the result of applying one @f, v, x, -, + or p to its argument (or arguments). The value
of the controlc is then simply incremented to the next address, as defined in DefiBition
Element (vii) oft-»; defines how the store operation copies the image at well-known address
atoa‘rectangle’ofimages specified by theparameterss, g2, g3, g4. Element (viii) ofty,
defines how the load operation copies a rectangle of images specified/lbyhemeters
q1, 92, g3, g4 10 the image at well-known addreas Elements (ix) and (x) ofj, define
the control flow operations branch and halt, respectively. When the image at the address
specified by the contralis br, the value ot is updated to the address encoded by the two
br parameters. Finally, the hit operation always maps a final configuration to itself.

Let |-}, denote the reflexive and transitive closure-gf. A halting computation by
is a finite sequence of configurations beginning in an initial configuration and ending in a
final configurationCstat, Chit.

For convenience, we use an informal ‘grid’ notation when specifying programs for the
CSM, see for example Fid. In our grid notation the first and second elements of an address
tuple refer to the horizontal and vertical axes of the grid, respectively, and if@aQis at
the bottom left-hand corner of the grid. The images in a grid must have the same orientation
as the grid. Hence in a given image the first and second elements of a coordinate tuple
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h |: perform a horizontal 1D FT on the 2D image in a.
Store result in a.
: perform a vertical 1D FT on the 2D image in a. Store

result in a.
: replace image in a with its complex conjugate.

: multiply (point by point) the two images in a and b.
Store result in a.
+ | : perform a complex addition of a and b. Store result
in a.
zu |+ 21,20 € T filter the image in a by amplitude using 2
and z, as lower and upper amplitude threshold images,
respectively.

st ‘ Al ‘ q2 ‘ a3 ‘ q4 ‘ 1 41,92, 93,94 € N; copy the image in a into the rectan-
gle of images whose bottom left-hand corner address
is (g1, ¢3) and whose top right-hand corner address is
(92, q4)-

q1 ‘ q2 ‘ q3 ’ qa ‘ 1 q1,492,93,q4 € N; copy into a the rectangle of images
whose bottom left-hand corner address is (¢1,¢3) and
whose top right-hand corner address is (g2, 4).

: q1,q2 € N; unconditionally branch to the address

((Ih QQ) .
: halt.

1d

Fig. 2. The set of CSM operations, given in our informal grid notation. For formal definitions see Defhition

refer to the horizontal and vertical axes gf respectively, and the coordinage, 0) is
located at the bottom left-hand corner fFig. 2 informally explains the elements bf;,,

as they appear in this grid notation. After giving some data representations in Sadtion
we will then define language membership deciding by CSM. First we suggest physical
interpretations for some of the CSM’s operations and then we give a number of complexity
measures.

2.2. Optical realisation

In this section, we outline how some of the elementary operations of our model could
be carried out physically. We do not intend to specify the definitive realisation of any of
the operations, but simply convince the reader that the model’'s operations have physical
interpretations. Furthermore, although we concentrate on implementations employing vis-
ible light (optical frequencies detectable to the human eye) the CSM definition does not
preclude employing other portion(s) of the electromagnetic spectrum.

A complex-valued image could be represented physically by a spatially coherent optical
wavefront. Spatially coherent illumination (light of a single wavelength and emitted with
the same phase angle) can be produced by a laser. A spatial light modulator (SLM) could
be used to encode the image onto the expanded and collimated laser beam. One could write
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to a SLM offline (expose photographic film, or laser print or relief etch a transparency) or
online (inthe case of a liquid—crystal displdy,22,25]Jor holographic materig6,16]). The
functionsh andv could be effected using two convex cylindrical lenses, oriented horizontally
and vertically, respectivell8,9,14,21] A coherent optical wavefront will naturally evolve

into its own Fourier spectrum as it propagates to infinity. What we do with a convex lens
is simply image at a finite distance this spectrum at infinity. This finite distance is called
the focal length of the lens. The constahtsed in the definitions of andv could be
effected using Fourier spectrum size reduction techni¢@i@4] such as varying the focal
length of the lens, varying the separation of the lens and SLM, employing cascaded Fourier
transformation, increasing the dimensions/reducing the spatial resolution of the SLM, or
using light with a shorter wavelength. The functierould be implemented using a phase
conjugate mirrof7]. The function could be realised by placing a SLM encoding animgge

in the path of a wavefront encoding another imggd®,20,21] The wavefrontimmediately
behind the SLM would then b€ f, g). The function+ describes the superposition of
two optical wavefronts. This could be achieved using a 50:50 beam spli{fdr,23] The
function p could be implemented using an electronic camera or a liquid—crystal light valve
[22]. The parametersg andz, would then be physical characteristics of the particular
cameral/light valve used. Parametgcorresponds to the minimum intensity value that the
device responds to, known as the dark current signalzgedrresponds to the maximum
intensity (the saturation level).

A note will be made about the possibility of automating of these operations. If suitable
SLMs can be prepared with the appropriate 2D pattern(s), each of the operatigrs -,
and+ could be effected autonomously and without user intervention using appropriately
positioned lenses and free space propagation. The time to effect these operations would
be the sum of the flight time of the image (distance divided by velocity of light) and
the response time of the analog 2D detector; both of which are constants independent of
the size or resolution of the images if an appropriate 2D detector is chosen. Examples of
appropriate detectors would be holographic maté@idl6] and a liquid—crystal light valve
with a continuous (not pixellated) arf2?]. Since these analog detectors are also optically-
addressed SLMs, we can very easily arrange for the output of one function to act as the
input to another, again in constant time independent of the size or resolution of the image.
A set of angled mirrors will allow the optical image to be fed back to the first SLM in the
sequence, also in constant time. It is not known, howeverc#n be carried out completely
autonomously for arbitrary parameters. Setting arbitrary parameters might fundamentally
require offline user intervention (adjusting the gain of the camera, and so on), but at least for
a small range of values this can be simulated online using a pair of liquid—crystal intensity
filters.

We have outlined some optics principles that could be employed to implement the opera-
tions of the model. The simplicity of the implementations hides some imperfections in our
suggested realisations. For example, the implementation af teration outlined above
results in an output image that has been unnecessarily multiplied by the constant factor 0.5
due to the operation of the beam splitter. Also, in our suggested technique, the output of the
p function is squared unnecessarily. However, all of these effects can be compensated for
with a more elaborate optical setup and/or at the algorithm design stage, and do not affect
the proofs presented in this paper.
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Table 1
Summary of complexity measures for characterising CSMs
Symbol Name Description
1. T TIME Number of timesteps
2. G GRID Number of grid images
3. Rg SPATIALRES Spatial resolution
4. Ry AMPLRES Amplitude resolution
5. Rp PHASERES Phase resolution
6. Rp DYRANGE Dynamic range
7. \ FREQ Frequency of illumination

A more important issue concerns the quantum nature of light. According to our cur-
rent understanding, light exists as individual packets called photons. As such, in order to
physically realise the CSM one would have to modify it such that images would have dis-
crete, instead of continuous, amplitudes. The atomic operations outlined above, in particular
the FT, are not affected by the restriction to quantised amplitudes, as the many experiments
with electron interference patterns indicate. We would still assume, however, that in the
physical world space is continuous.

A final issue concerns how a theoretically infinite Fourier spectrum could be represented
by an image (or encoded by a SLM) of finite extent. This difficulty is addressed with the
FREQcomplexity measure in the next section.

2.3. Complexity measures

Computational complexity measures are used to analyse CSMs. We define seven com-
plexity measures (summarised in TalhjeTheTIME complexity of a CSMV is the number
of configurations in the computation sequence of an arbitrary instardeloéginning with
the initial configuration and ending with the first final configuration. GreD complexity
ofa CSMM is the number of image elementsiifis grid. In this paper therID complexity
of M is always a constant (independent of its input).

The sPATIALRES complexity of a CSMM is the minimum spatial resolution @f’s im-
ages necessary faf to compute correctly on all inputs. This is formalised as follows. Let
a pixel be a constant function : [0, 1/®) x [0,1/¥) — z where®, ¥ € {1,2,3,...}
and[0, 1/9),[0,1/¥) c Randz € C. Let araster imagebe an image composed entirely
of nonoverlapping pixels, each of the pixels are of widtkPLheight I/ ¥, identical orien-
tation, and arranged inté rows and¥ columns. (An image displayed on a monochrome
television screen or liquid crystal display panel would be an example of a raster image, if we
letits height and width equal 1.) Let tepatial resolutiorof a raster image b@ ¥, the num-
ber of pixels in that image. Let the procesgasterisingan image be the functio$i: 7 x
(NxN) — Z,definedas(f(x, y), (®, ¥)) = f'(x, y), wheref’(x, y) is arasterimage,
with @Y pixels arranged i® columns and? rows, that somehow approximatgsgx, y).
The details ofS are not important; it suffices to say th@, ¥) can be regarded as defining
a sampling grid with uniform sampling both horizontally and vertically, although the sam-
pling rates in both directions can differ. Increasing the spatial resolution of the sampling
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(increasing? and/or¥) results in a better approximation ¢fx, y). ThespATIALREScom-
plexity of a CSMM is then defined as the minimud¥ (the lowest resolution uniform
sampling) such that if each imaggs(x, y) in M is replaced withS(f,s(x, ), (®, ¥))
then M computes correctly on all inputs. If no sudh? exists thenM has infinitespPa-
TIALRES complexity. It can be seen that if the result Mfs computation is determined
solely by features within its images that are located at rational (respectively, irrational) co-
ordinates the/ would require finite (respectively, infinite&PATIALRES. In optical image
processing terms, and given the fixed size of our images;IALRES corresponds to the
space-bandwidth product of a detector or SLM.

TheampLREscomplexity of a CSMV is the minimum amplitude resolution necessary for
M to compute correctly on all inputs. This is formalised as follows. Consider the following
functionA : 7 x {1,2,3,...} — Z defined as

A(f (e 3), 0 = LIf (v, 0+ 0.5]u expli x angle(f (x, y))) , ()

where| - | returns the amplitudes of its image argument, aqgleturns the phase angles
(inthe rangg —m, n]) of its image argument, and the floor operation is defined as operating
separately on each value in its image argument. The yala¢he cardinality of the set of
discrete nonzero amplitude values that each complex valué fhu) can take, per half-
open unitinterval of amplitude. (Zero will always be a possible amplitude value irrespective
of the value ofu.) To aid in the understanding of E@, note that the following equality
always holds

fx,y)=1f(x, )l expli x angle f (x, y))).

Then, theampLRES complexity of a CSMM is defined as the minimum such that if
each imagef,s(x, y) in M is replaced byA(f,s(x, y), ) thenM computes correctly on
all inputs. If no suchu exists thenM has infiniteAMPLRES complexity. It can be seen
that if the result ofM’s computation is determined solely by amplitude values within its
images that are rational (respectively, irrational), or by a finite (respectively, infinite) set
of rational amplitude values, the¥t would require finite (respectively, infiniteMPLRES.
The only two values fosmMPLREScomplexity of interest in this paper are constambL RES
and infiniteAMPLRES. CSM instances that only make use of unary and binary images (see
Section2.4) have constamtMPLRES of 1. Instances that use real number and real matrix
images (see Sectiadh4) have infiniteAMPLRES complexity. In optical image processing
termsaMPLRES corresponds to the amplitude quantisation of a signal.

ThePHASERES complexity of a CSMM is the minimum phase resolution necessary for
M to compute correctly on all inputs. This is formalised as follows. Consider the following
functionP : Z x {1, 2,3, ...} — Z defined as

: 2
P(f G, y), ) =1f(x, )] exp(l |angle 7 (r. ) - + 05| 7”) .

The valueu is the cardinality of the set of discrete phase values that each complex value in
P(f, ) can take. Then, theHASERES complexity of a CSMM is defined as the minimum
psuch that if each imagg s (x, y) in M is replaced byP (f,5(x, y), 1) thenM computes
correctly on all inputs. If no such exists them/ has infinitePHASERES complexity. It can
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be seen that if the result @f’s computation is determined solely by phase values within
its images that are rational (respectively, irrational) modulpa by a finite (respectively,
infinite) set of rational phase values modulo henM would require finite (respectively,
infinite) PHASERES. In optical image processing terrRBASERES corresponds to the phase
quantisation of a signal.

TheDyRANGE complexity of a CSMM is defined as the maximum of all the amplitude
values stored in all oM’s images duringM’s computation. In optical processing terms
DYRANGE corresponds to the dynamic range of a signal.

The seventh of our complexity measures®EQ The FREQ complexity of a CSMM
is the minimum optical frequency necessary #érto compute correctly. The concept of
minimum optical frequency is now explained. In optical implementations ofithadv
operations (such as our suggestions in Se@i@ one of the factors that determine the
dimensions of the Fourier spectrum pfe 7 is the frequency of the coherent illumination
employed. Increasing the frequency of the illumination results in a smaller Fourier spectrum
(components are spatially closer to the zero frequency point). In our definitionsuad
v, we employ the constarftto rescale the Fourier spectrum ffsuch that it fits into the
dimensions of an imagégo, 1) x [0, 1). In general, however, a Fourier spectrum of animage
will be infinite in extent. Therefore, according to the relationship between optical frequency
and Fourier spectrum dimensigi$s21], such a constaritonly exists when the wavelength
of the illumination is zero, corresponding to illumination with infinite frequency. With a
finite optical frequency, thé andv operations will remove all Fourier components with a
spatial frequency higher than the cut-off imposedib¥ his is called low-pass filtering in
signal processing terminology, and is equivalent to a blurring of the original signal. Given
particular rasterisation and quantisation functions for the imagés, iand a particula#,
the blurring effect might not influence the computation. Formally, then, we defirrzt@
complexity of a CSMV to be the minimum optical frequency that can be employed such that
M computes correctly on all inputs. If approximations of a FT are sufficientfpor if M
does not executior v, thenM requires finiteeREQ If the original (unbounded) definitions
of » andv must hold thenM requires infiniteFREQ Note also that using the traditional
optical methods outlined in Sectié2, any lower bound o$PATIALRES complexity will
impose a lower bound oFREQ complexity. In the context of traditional optical methods,
this imposition is referred to as the diffraction limit. (The optical wavelength should be
a constant times smaller than the smallest spatial feature that needs to be resolvable in
an image.) In order not to rule out the applicability of novel sub-wavelength resolution
techniques that go beyond the diffraction limit for our CSM algorithms we give EREQ
complexity as an upper bound (gJ.

Finally, one might also consider energy a natural complexity measure. In fact, energy
is a function of all of the measures in Taldlewith the exception oPHASERES. Such an
interpretation is consistent with the quantum theory of light. This is explained in the case
of a single image initially. Letf (x, y) be an image with spatial resolutidty, amplitude
resolutionR 4, dynamic rangeR p, and encoded with illumination of frequeneyAn up-
per bound on the energy required to represent (and to meagurey), denotedE ¢, is
defined as

Ef = hvdRsRAZRDZ, (8)
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where h= 6.626... x 10734 Js is the fundamental physical constant called Planck’s con-
stant, and/ (detector sensitivity) is the minimum number of photons required to trigger

a response in a detector element. (For example, for an isolated rod element in the human
retina,d is 10 or so, and for the detector element in a photomultiplier tilsan be 1.)

An upper bound on the energy required for a C3WMs computation can be determined

by considering the worst cost scenario that at every timestep the ighagéh maximum
amplitude is written to every grid element, giving a total eneffigy of

Ey =EfTG,

where thel' andG are M’s TIME andSPACEcomplexities, respectively.
2.4. Representing data as images

Unless otherwise stated [Et= {0, 1}. Asis usual le* = | J7°, X', let> " = J2, X'
and, unless otherwise stated, let a language X . There are many ways to represent ele-
ments of finite, countable, and uncountable sets as images. We give a number of techniques
that will be used later in the paper. The symbol 1 is represented by an image having value
one at its centre and value zero everywhere else. An image that has value zero everywhere
represents the symbol 0.

Definition 5 (Binary symbol image The symbolyy € X is represented by the binary
symbol imagef,,

1 ifx,y=05y=1,
0 otherwise

fylx,y) = {

We extend this representation scheme to binary words using ‘stack’ and ‘list’images.

Definition 6 (Binary stack image The wordw = wiw,---w; € 2V is represented by
the binary stack imagé,,,

1 ifx:l—zl(%z,yzo.S,wizl,
0 otherwise

Sw(x, y) = {

wherew; € 2, 1<i<k. Image f, is said to have length and the pair f,,, k) uniquely
representsu.

Definition 7 (Binary listimag®. The wordw = wywz---wy € X is represented by the
binary list imagef,,,

1 ifx=2%2y=05uw=1
0 otherwise

fw(xa )’) = {

wherew; € 2, 1<i<k. Imagef, is said to have length and the pait( f,,, k) uniquely
representsu.

If 2 = {1} we replace the word “binary” with the word “unary” in Definitiols7. In
Definitions6 and7 each unary/binary symbol i is represented by a corresponding value



238 D. Woods, T.J. Naughton / Theoretical Computer Science 334 (2005) 227 —-258

of 0 or 1 in f,,. Notice that in the unary/binary stack images leftmost symbohw1, is
represented by the rightmost value in the sequence of values representing,,, this
means thaitvy, is represented by the topmost stack element. We represent a single real value
r by an image with a single peak of value

Definition 8 (Real number image The real number € R is represented by the real
number imagef;,

rif x,y =0.5,
frx,y) = { 0 otherwise
To represent & x C matrix of real values we defineC peaks that represent the matrix
values and use both dimensions of a stack-like image. This matrix image representation is
illustrated in Fig.3(f).

Definition 9 (R x C matrix imag8. The R x C matrix A, with real-valued components
a;j, 1<i<R,1<j<C,isrepresented by the x C matrix imagefa,

1+2k _ 142
2j+k — Qi+l >

aijj ifx=1-

fale.y) = {O otherwise

where

L[ ifj<c (1 ifi<R
= 10 ifi=R.

The representations given in DefinitioBs9 are conveniently manipulated in the CSM
using a programming technique called ‘rescaling’. Binary symbol images can be combined
using stepwise rescaling (creating a binary stack image) or with a single rescale operation
(creating a binary list image). A stack representation of the word 11 could be generated as
follows. Take the imagégg (having value 0 everywhere), representing an empty stack, and a
unary symbol imagé; that we will ‘push’onto the stack. A push is accomplished by placing
the images side-by-side with to the left and rescaling both into a single image location.
The image at this location is a (binary or unary) stack image representing the word 1. This
conceptis illustrated in Fig(a); a unary symbol image is placed at addeeasd an empty
stack image is placed at addréssThe commangdTap pushes the symbol onto the empty
stack, and by default the result is stored in addee3ske another unary symbol image
place it to the left of the stack image, and rescale both into the stack image location once
again. The unary stack image contains two peaks at particular locations that testify that it
is a representation of the word 11, as illustrated in B{fg). To remove a 1 from the stack
image, a ‘pop’ operation is applied. Rescale the stack image over any two image locations
positioned side-by-side. The image to the left will contain the symbol that had been at the
top of the stack imagef{) and the image to the right will contain the remainder of the
stack image, as illustrated in Fig(c). The stack image can be repeatedly rescaled over two
images popping a single image each time. Popping an empty staci(épresults in the
binary symbol image representing 0 and the stack remaining empty.
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. 1d[ab .
—
(a) a b a
L] L] ﬁ L] L]
—_—
() a b a
. ﬂ .
(c) a a b
st [ab]
—_—
(d) a a b
7l . . . oo
—_—
(e) 3 1 5 a
() IxC R!< 1 . Rx'C

Fig. 3. Representing data by images through the positioning of peaks. The nonzero peaks are coloured black and
the white areas denote value 0. (a) Pushing a unary symbol image onto an empty stack image. (b) Pushing a unary
symbol image onto a stack image representing the word 1 to create the representation of 11. (c) Popping a stack
representing the word 1, resulting in a popped unary symbol imagg énd an empty stack (in). (d) Popping

an empty stack. (e) Rescaling three adjacent unary symbol images into a single unary list irapggpfiesenting

111. (f) 1x C, R x 1, andR x C matrix images wher®& = C = 5.

We can interpret a unary stack image as a nonnegative integer. Push and pop can then
be interpreted as increment and decrement operations, respectively. As a convenient pseu-
docode, we use statements sucb.pash(1) andc.pop() toincrementand decrement
the unary word represented by the stack image at addr&ssary representations of non-
negative integers would be represented in a similar manner. A unary stack representation of
the integer 2 could be regarded as a binary stack representation of the integer 3. Our con-
vention is to represent words with the rightmost symbol at the top of the stack. Therefore,
if the secondr; in the preceding example had been instgathe resulting push operation
would have created a stack image representing the word 10 (or alternatively, the binary rep-
resentation of the integer 2). Pushing (or poppihgjnary or unary symbol images to (or
from) a binary or unary stack image requi@gk) TIME, constantRrID, @ (2") SPATIALRES,

1 AMPLRES, 1 PHASERES, 1 DYRANGE and Q2¢) FREQ For CSM algorithms that use stack
representationsPATIALRES (and therefor&ReQ) are of critical concern.
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In the list image representation of a unary or binary word, each of the rescaled binary
symbol images are equally spaced (unlike the stack image representation). The binary
list image representation of a wowd € X, |w| = k, involves placingc symbol images
(representing thesymbols ofw) side-by-side ik contiguous image locations and rescaling
theminto a single image ind operation. For example in Fig(e) a unary list representation
of the unary word 111 is accomplished by the comm@and[57777]. Rescalingk binary
or unary symbol images to form a binary or unary listimage, or rescaling a binary or unary
list image to formk binary or unary symbol images both require constamt, constant
GRID, O (k) SPATIALRES, 1 AMPLRES, 1 PHASERES, 1 DYRANGE and Qk) FREQ

TheR x C matriximage representation can be manipulated using image rescaling notonly
in the horizontal direction (as push and pop given above), but also in the vertical direction.
In the matrix representation an initial empty image (to push to) is not required. Pushing
(or popping); real number images to (or from) jax 1 or 1 x j matrix image requires
©(j) TIME, constanGRID, ©(2/~1) SPATIALRES, infinite AMPLRES, constanPHASERES, 1
DYRANGE and Q2/~1) FREQ Pushing (or popping) of j x 1 matrix images ok of 1 x j
matrix images to (or from) g x k or k x j matrix image require® (k) TIME, constant
GRID, O (2/1k~2) spaTIALRES, infinite AMPLRES, 1 PHASERES, 1 DYRANGE and Q2/tk~2)

FREQ

2.5. CSM deciding language membership

Definition 10 (CSM deciding language membershilcSM M; decides the membership
problem forL < X% if M; has initial configurationcsta, esta) and final configuration
{chit, enit), and the following hold:

e sequencestg contains the two input elementsg,,, 1, 11,) and( fqjul, 12:, 12,)

e epit contains the output eleme(fs, 01;,01,) ifwelL

e ¢pir contains the output elemeqfy, 01;, 01,) ifwé¢lL

o (Csta esta)l ) (chit, enit), forallw e >t

Here f,, is the binary stack image representationuofe X%, fyu is the unary stack
image representation of the unary wofd!limagesfp and f are the binary symbol image
representations of the symbols 0 and 1, respectively.

In this definition addresseﬁlé, 11,), (12, 12,)) € 1 and addressolé, o1,) € O, where/
and O are as given in Definitio. We use the stack image representation of words. The
unary input word 1! is necessary foM; to determine the length of input word. (For
example the binary stack image representations of the words 00 and 000 are identical.)

2.6. Transformation from continuous image to finite address

Our model uses symbols from a finite set in its addressing scheme and employs an ad-
dress resolution technique to effect decisions (see Se2t®nTherefore, during branch-
ing and looping, variables encoded by elements of the uncountable set of continuous im-
ages must be transformed to the finite set of addresses. In one of the possible addressing
schemes available to us, we use symbols from th¢Gsdt. We chooseB = {w : w €
{0, 1}mam.n) ), has a single Jlas our underlying set of address words. Each ofrthe
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column and: row addresses will be a binary word from the finite BeAn ordered pair of
such binary words identifies a particular image in the grid. Each elemehtwfl have a
unique image encodingy/ is the set of encoded images, witkf| = max(m, n). In order to
facilitate an optical implementation of our model we cannot assume to know the particular
encoding strategy for the séf (such as the simple binary stack or list representations
of Section2.4). We choose a correlation based address resolution technique. The address
resolution technique chosen (the transformation fbioe B) must be general enough to
resolve addresses that use any reasonable encoding (see Sd&tlon

Given an imagey € Z we wish to determine which address word Bnis encoded
by . In general, comparing a continuous imagwith the elements of\" to determine
membership is not guaranteed to terminate. However, for gt our addressing scheme
will be presented with, and given a reasonable encoding\fome can be sure of the
following restrictions o\ (i) y € N, (ii) |NV] is finite, and (iii)) A/ contains distinct
images (no duplicates). Given these restrictions, we need only search for the single closest
match betweery and the elements of/. We choose a transformation based on cross-
correlation (effected through a sequence of FT and image multiplication steps) combined
with a thresholding operation.

The functionr : Z x T — N is defined as

t(y,8) = 1(®(e, 1)), 9

wherey encodes the unknown addressing image to be transfoeneed list image formed
by rescaling all the elements #f (in some known order) into a single image using one
ld operation,® denotes the cross-correlation function, and a thresholding operation.
The cross-correlation functid®,21] produces an imagé.orr = ®(e, y) where each point
(u, v) in feorr is defined

1 1
Seorr(u, v) :/O /0 8(X7Y)X*(X+M»Y+U)dx dy, (10)

wherey™ denotes the complex conjugatefvhere(x, y) specifies coordinates iandy,
and where(+u, +v) denotes an arbitrary relative shift betweeand y expressed in the
coordinate frame of¢orr. IN Eq. 10, let y have value 0 outside @0, 1) x [0, 1). Letimage
feorr be defined only ovef0, 1) x [0, 1). In the CSM, fcorr(u, v) would be produced in
imagea by the code fragmentTe[ RV s bB[E[ 7+ [h[v]-h[v], Where a multiplication in
the Fourier domain is used to effect cross-correlag0,21] According to Eqg. 10), and
given a reasonable encoding f&f (implying the three restrictions outlined aboveer
will contain exactly one well resolved maximum amplitude value. This point of maximum
amplitude will be a nonzero value at a position identical to the relative positioning of the list
element ire that most closely matchesAll other points inf¢or Will contain an amplitude
less than this value.

We define the thresholding operation of E@). for each pointu, v) in feorr @S

1 i | feorr(u, v)| = max(| feorr(ut, v)1),
teorr(w, v)) = { 0 if | feorr(u, v)| < max(| feorr(u, v)1).
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This produces an image with a single nonzero value at coordinates(2i + 1)/[2 x

max(m, n)], v = 0.5 for some positive integerin the rangg0, max(m, n) — 1]. From

the definition of a binary list image (Definitior), we can see that these unique identi-
fiers are exactly the images that represent the binary words corresponding to the integers
{20, 21,22 . 2lmaxm.m)—1ly Thereforey is a function from continuous images to the set

of image representations of the finite tefined earlier.

2.6.1. Reasonable encodings\éf

A note is required on what constitutes a reasonable encodingy/fauch that will
correctly transform to an image representation of the appropriate elemeBt fhere are
two considerations which one needs to bear in mind when designing an encodikig for
Firstly, Eq. (L0) is not a normalised cross-correlation. Therefdvehas to be chosen such
that the autocorrelation of each elemenf\6has to return a strictly larger maximum value
than the cross-correlation with each of the other elementg.of

Secondly, one may wish to choogg(the image with zero everywhere) as an element of
N. We can see from Eq10) that this will result in a cross-correlation ¢or = fo when
we try to matchs = fo with ¢. If one choosesfy as an element oW, this special case
can be resolved (without the need for an explicit comparison ygjtwith the following
rule. Given that\' is a reasonable encoding, if no single well-resolved maximum amplitude
value is generated from, we assume that = fp. (In all cases other than when=fo,
feorr Will contain a well-resolved point of maximum amplitude, as explained above.)

2.7. Conditional branching from unconditional branching

Our model does not have a conditional branching operation as a primitive; it was felt
that giving the model the capability for equality testing of continuous images would rule
out any possible implementation. However, we can effect indirect addressing through a
combination of program self-modification and direct addressing. We can then implement
conditional branching by combining indirect addressing and unconditional branching. This
is based on a technique by Rojd¥] that relies on the fact thdtV] is finite. Without
loss of generality, we could restrict ourselves to two possible symbols 0 and 1. Then, the
conditional branching instruction “ifk€1) then jump to addresk, else jump toY” is
written as the unconditional branching instruction “jump to addigs¥Ve are required
only to ensure that the code corresponding to addre¥sasd Y is stored at addresses 1
and 0, respectively. In a 2D memory (with an extra addressing coordinate in the horizontal
direction) many such branching instructions are possible in a single machine.

2.8. A general iteration construct

Our bounded iteration construct is based on the conditional branching instruction
outlined in Sectior2.7. Consider a loop of the following general form, written in some
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a a/ d e

99

w|st|a |ld|e|st|de|ld|a |br|0]|d

Fig. 4. CSM description of a while loop. Execution begins at locatiyr2).

unspecified language,

SX
while (e > 0)
SY
e =—e-1
end while
Sz

where variable contains a nonnegative integer specifying the number of remaining itera-
tions, andSX SY, andSZ are arbitrary lists of statements. Without loss of generality, we
assume that statemer8% do not write toe and do not branch to outside of the loopelis
represented by a unary stack image (where the number of represented 1s equals the value
of e), this code could be rewritten as

SX

while (e.pop() = /1)
SY

end while

Sz

and compiled to a CSM as shown in Fi.In this CSM, e specifies the number of re-
maining iterations in unary and is represented by a unary stack image. A second address
d, unused by the statements in the body of the loop, holds the value poppee@ &incth
must be positioned immediately to the left @fAddressa’ is used to store and restore
the contents of addressbefore and after, respectively, decrementing the loop counter
e. The fragmenfbr o] 7] is shorthand for a piece of indirect addressing code, and means
“branch to the address at the intersection of column 0 and the row specified by the image at
addresgsl”.

The while routine in Fig4 hasTIME complexity 6+ i (s 4+ 6), constanGRID complexity
andsPATIALRES complexity max2', Rs). Herei e N is the number of times the body of
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the while loop is executed, € N is the number of operations in the body of the while

loop, and finallyRs € N is the minimumsPATIALRES required during execution of the

body of the while loop. The value for eachafiPL RES, PHASERESandDY RANGE is at least
constant, and possibly greater, depending on the operations performed and images accessed
in the body of the while routine. Finally, tteREQcomplexity is Gmax(2’, Ry)).

3. Computability results

In this section we prove the CSM can simulate ARNNs, which are neural networks that
compute over the set of real numbers. As an immediate corollary our model can decide the
membership problem for any languafjec X7, if we allow aribtrary real values as inputs.

3.1. Boolean circuits and ARNNs

Informally, a Boolean circuit, or simply a circuit, is a finite directed acyclic graph where
each node is an element of one of the following three detsy, —} (calledgates with
respective in-degrees of 2,2, )4, ..., x,} (x; € {0, 1}, inputs in-degree 0){0, 1} (con-
stants in-degree 0). A circuit family is a set of circuits = {¢, : n € N}. A language
L C X* is decided by the circuit familg’;, if the characteristic function of the language
LN {0, 1}" is computed by, for eachn € N. It is possible to encode a circuit as a finite
symbol sequence, and a circuit family by an infinite symbol sequence. When the circuits are
of exponential size (with respect to input word length and where circuit size is the number
gates in a circuit), for each C X* there exists a circuit family to decide the membership
problem for L. For a more thorough introduction to (nonuniform) circuits we refer the
reader td1].

ARNNSs are finite size feedback first-order neural networks with real wedBt49]

The state of each neuron at time- 1 is given by an update equation of the form

N

j=

M
x,~(t+1):o( aijx./(t)—i-z b,‘juj(l)-i-ci), i=1...,N, (1)
1 iz

whereN is the number of neurons/ is the number of inputs;; (r) € R are the states of the
neurons at time, u ; (¢) € X% are the inputs at timg anda;;, b;j, c; € R are the weights.
An ARNN update equation is a function of discrete time- 1, 2, 3, .... The network’s
weights, states, and inputs are often written in matrix notatioh, a@andc, x (r), andu(z),
respectively. The function is defined as

0 ifx<0,
ox)={x ifo<x<1,
1 ifx>1
AsubsetP oftheN neuronsp = {xi,, ..., X, b P S {xa, ..., xn}, are called the output

neurons. The output from an ARNN computation is defined as the $iaf€s, . . ., xx, (1)}
of thesep neurons overtime=1,2,3,....
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3.2. Formal net deciding language membership

ARNN input/output (I/O) mappings can be defined in many wag. In this paper, we
give a CSM that simulates the general form ARNN which has the update equation given
by Eq.11. We also present a CSM that simulates a specific type of ARNN called a formal
net[19]. Formal nets are ARNNSs that decide the language membership problem and have
the following I/O encodings. A formal net has two binary input lines, called the input data
line (D) and the input validation linel{), respectively. IfD is activeat a given time then
D(t) € X, otherwiseD(t) = 0. V(t) = 1 whenD is active, andV () = 0 thereafter
(when D is deactivated it never again becomes active). An input to a formal net at time
t has the formu(r) = (D(t), V(1)) € 22. The input wordw = wy...w; € X7 where
w; € X, 1<i <k, isrepresented hy,, (1) = (D (1), Vi, (1)), t € N, where

Jw, =1, k, )1 ifr=1,...k,
Du(®) = { 0 otherwise Vu() = { 0 otherwise
A formal net has two output neuroid, Oy € {x1, ..., xy}, called the output data line and

output validation line, respectively. Given a formal ('étvith an input wordw and initial
statex; (1) = 0, 1<i <N, w is classifiedn time 7 if the output sequences have the form

04 =01y, 0 o0, =010,

wherey,, € 2 ande = |N|. If y,, = 1 thenw is accepted, ify,, = 0 thenw is rejected.
We now give a definition of deciding language membership by ARNN (ffp€]). Let
T: N — N be a total function.

Definition 11 (Formal net deciding language membershiffhe membership problem for
the languagd. € Xt is decided in timeT by the formal netF provided that each word
w e X7 is classified in time < T(|Jw|) andy,, = 1if w € L andy,, =0if w ¢ L.

In [19], Siegelmann and Sontag prove that for each language X" there exists a
formal netF; to decide the membership problem oy hence proving the ARNN model
to be computationally more powerful than the Turing machine ma#glcontains one
real weight. This weight encodes the (nonuniform) circuit fandily that decided.. Let
Sc, : N — N be the size of,.. For a given inputworay € X+, F, retrieves the encoding
of circuit ¢, from its real weight and simulates this encoded circuit on inptd decide
membership inL, in time T(Jw|) = O(|w|[ScL(|w|)]2). Given polynomial time, formal
nets decide the nonuniform language cl&poly. Given exponential time, formal nets
decide the membership problem for all languages.

3.3. Statement of main result

Theorem 1. There exists a CSM such that for each ARNM, M computes4’s I/O
map using our ARNN 1/O representation

Proof. The proof is provided by the ARNN simulation program for the CSM given in
Fig. 5. The simulation is written in a convenient shorthand notation. The expansions into



sta w  YAX ¥BU ty a bt O I 0 1
15 br| O 14
(1) 4] [ I |st|ta|st | I |1d| ¢ st | @ | d
(ii) 13| 1d | = |whl|N=T| st | ¢t3 | 1d T Id | atz |end| d
(i) 12| st | b | Wd| A | - | 4
(iv) 11| st | to | Id | O |whl|N=T| st | t1 Id | to | st | bta| 1d | + |end | J

10 (st | b |1d| te| + | st |ZAx]| J

(v) 9| ld | w |whl|~N=T| st |t3 | Id]| @ | Id | ats |end| d
(vi) 8| st | b |ld| B | - d
(vil) 7| st | to | 1d | O |whl|™—T| st t Id | to | st | bto | 1d | t + |end | d
6| st b Id | to | + | st |SBU|
(viii) 5| 1d |sax| st | b | Id |sBU| + | st b |1d| e |+ | d
(ix) 40 p | 0|1 |st|ts|1d] 0] st |t d
(x) 3| whl|~N=t| Id | t3 | st |at3 | 1d | t1a | st t; |end| Id | t3 | st | ab Id |tia | st | d
2 |whl|N=1T| Id | t4 st | tya | 1d | ab st b |end| Id | t st | tia | 1ld | ab | st T d
(xi) 1lst| b || P . st |t 1d O | 1d |tia]| st | O J
(xif) O|br| 0 |14
o 1 2 3 4 5 6 7 8 9 10 11... T N1 w1 A B ¢ P

note: address t3 is located at grid coordinates (11, 14)

Fig. 5. CSMM that simulates any ARNM. The simulator is written in a convenient shorthand notation, (seéFag.the expansions into sequences
of atomic operations). The simulation program is explained in Se@tidn
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sequences of atomic operations are given in &ighe ARNN 1/O representation is given
is Section3.4. The simulation program is explained in Secti@5s-3.7. A computational
complexity analysis of the simulation program is given in Secligh O

3.4. ARNN representation

As a convenient notation we l& be the image representation of We now give the
I/O representation used in Theorem The inputs toM fall into three categories: in-
puts that represend, inputs that represend’s input, and some constant inputs. Recall
that our representation of matrices by images was defined in Defiitaord illustrated
in Fig. 3(f).

The ARNN weight matriceg!, B, andc are represented by x N, N x M, andN x 1
matrix imagesA, B, andc, respectively. The state vectaris represented by a & N
matrix imagex. The set of output state® are represented by the image(described be-
low). The valuesV — 1 andM — 1 need to be given as input to the simulator in order to
bound the loops. They are represented by unary stack images andM — 1, represent-
ing the unary words @ —D and 1-D | respectively. These seven input images define the
ARNN A. The constant imageg(x, y) = 0 and f(x, y) = 1, denoted and1, respec-
tively, are also given as input. Imagésand 1 are used to parameteripe(see Lemma&
below).

For an ARNN timestep, the ARNN input vector(¢) is represented by axt M matrix
imageu. In an initial configuration of our simulation program we assume an input stack
imagel represents all input vectongr) forallr = 1, 2, 3, .... Atan ARNN timestep, the
top element of stack imagkis a 1x M matrix image representlng the input vectar).

Thep output neurons are represented bys-aXl matrix imageP. We useP to extract our
representation of thg output states from th& neuron states representedibyl he image
X containsN (possibly nonzero) values at specific coordinates defined in Defiréitiprof
these values represent th&RNN output states and have coordinates y1), ..., (xp, yp)
inX. Inthe imageP, each of the coordinatéss, y1), ..., (xp, yp) has value 1 and all other
coordinates inP have value 0. We multipl§ by P. This image multiplication results in
an output image that has our representation of tpeARNN outputs at the coordinates
(x1, y1), - .., (xp, ¥p). Imageo has value 0 at all other coordinates. The simulator then
pushes to an output stack imag@. This output extraction process is carried out at the
end of each simulated state update.

3.5. ARNN simulation overview

From the neuron state update equation Bd),(eachx;(¢) is a component of the state
vectorx (7). Fromx(r) we define theV x N matrix X (r) where each row oKX (¢) is the
vectorx (t). ThereforeX (1) has components;;(¢), and for eacly € {1,... N} itis the
case thaty;; = x;y7j, Vi,i’ € {1,...N}. Fromu(t) we define theN x M matrix U (t)
where each row ot/ (1) is the vecton(¢). ThereforelU (1) has components;; (¢), and for
eachj € {1,... M} itis the case that;; = u;;, Vi,i’ € {1,... N}. UsingX (r) andU (1)
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t1 — 10| 10 | 15 | 15

T — 13113 1010

t3 — 11 11 |14 |14

at3 — 11| 11 |14 | 15
b — 121 12 | 15 | 15
16116 | 0 | O
ab — 11 | 12 | 15| 15

:N
!

bt — 12 ) 13 |15 | 15

to — 131 13 | 15| 15

B | — 17|17 l0]0O0

C — 18 | 18 01]0
P — 19119 | 0|0
O — 15 15 |15 | 15

(b)

whl | N-1 | ... | end
whl | M—1 | ... | end

(©)

Fig. 6. Time-saving shorthand notation used in the simulator ingzi@) shows shorthand addresses, (b) branch
to beginning of rowd — 1, whered is the current row, and (c) expands to initialisation instructions and the while
loop code given in Fig4.
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we rewrite Eq. {1) as

N M
x,‘(t+1)=O'(Z a;jjxij(t) + > b,’jui./(t)-FCi), i=1...,N. (12)
j=1 j=1
In the simulation we generat¥ x N andN x M matrix imagesX andU representing
X (t) andU (1), respectively. We then simulate the affine combination in E8). sing our
model's+ and- operators. We use the CSM'’s amplitude filtering operatido simulate
the ARNN¢ function.

Lemma 2. The CSM operatiop simulatess(x) in constantriME.

Proof. From the definition op in Eq.6, we set; (x, y) = 0 (denoted) andzy(x, y) =1
(denotedl) to give

0 if [f(x, v <0,
p(f(x,¥),0, 1) =1 1f(x, | FOSIf(x, »I<L,
1 if |f(x,y)]>1

Using our representation of ARNN state values by imagés, 0, 1) simulatess(x). Also,
p is a CSM operation hence simulatingr) requires constarmme. [

3.6. ARNN simulation algorithm

For brevity and ease of understanding we outline our simulation algorithm in a high-level
pseudocode, followed by an explanation of each algorithm step.

(i) 7= 1.pop)

(i) X := pushx onto itself verticallyN — 1 times
(i) AX = A-X

(iv) YAX := 2z, (AX.pop0)

) U := pushu onto itself verticallyv — 1 times
(Vi) BU:= B-U

(vii) YBU := M, (BU.pop()

(viii) affine-comb.= XAX + XBU +¢

(ix) X' := p(affine-comb0, 1)

(X) x:= )T

(xi) 0.push(P - ¥)

(xii) goto step(i)

In step (i) we pop an image from input statkand call the popped image Imageu is
a 1 x M matrix image representing the ARNN’s inputs at some timbn step (ii) we
generate theV x N matrix imageX by vertically pushingV — 1 identical copies ok
onto a copy ofx. In step (iii), X is point by point multiplied by matrix image. This
single multiplication step efficiently simulates (in constame) the matrix multiplication
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aijxjforalli, j € {1,..., N} (as described in Sectidh5). Step (iv) simulates the ARNN

summationz.’zvlaijxj (in linear TIME). Each of theN columns ofAX are popped and

added (using the- operation), one at a time, to the previous popped image.

In step (v) we are treating in a similar way to our treatment af in step (ii). In step
(vi) we effectB - U, efficiently simulating (in constarmiMe) the multiplicationd; ju ; for
alli e {1,..., N}, j e(1,..., M}. Step (vii) simulates the ARNN summatier]ﬁ1 biju;
using the same technique used in step (iv).

In step (viii) we simulate the addition of the three terms in the ARNN affine combination.
In our simulator this addition is effected in two simple image addition steps. In step (ix) we
simulate the ARNN’s; function by amplitude filtering using the CSMsfunction with the
lower and upper threshold imagés 1) (as given by Lemma). The resultingV x 1 matrix
image is transformed into a £ N matrix image (we simply transpose the represented
vector) in step (x). We call the result of this amplitude filtering and transformatjon
represents the ARNN state vectopr + 1). In step (xi) we multiplyx by the output mask
P (as described in Sectio®4). The result, which represents the ARNN output at time
t + 1is then pushed to the output sta@k The final step in our algorithm sends us back to
step (i). Notice that our algorithm never halts as ARNN computations are defined for time
r=1,23,....

3.7. Explanation of Figs and6

The ARNN simulation with our model is shown in Fig.Numerals (i)—(xii) are present to
assist the reader in understanding the program; they correspond to steps (i)—(xii) in the high-
level pseudocode in Secti@6. In our ARNN simulator program addresses are written in
a shorthand notation that are expanded using@-iBefore the simulator begins executing,

a simple preprocessor or compiler could be used to update the shorthand addresses to the
standard long-form notation.

Addresses;, 12, andrs are used as temporary storage locations during a run of the simu-
lator [note: address is located at grid coordinaté$l, 14)]. In the simulator ouk notation
not only denotes the image representation,dfut also acts as an address identifier for the
image representing. Addresse& andu are used to store our representation of the neu-
rons’states and inputs, respectively, during a computation. The temporary storage addresses
YAX andXBU are used to store the results of steps (iv) and (vii), respectively. Addresses
N — 1 andM — 1 store our representation of the dimensions ahdu, respectively (nec-
essary for bounding the while loops). The address identifierB, andc store the image
representation of the corresponding ARNN matrices, Brstiores our mask for extracting
the p output states from th& neuron states, as described in Sec8oh Code fragments
of the formwhI[:] ... Tend] are shorthand for code to initialise and implement the while loop
given in Sectior2.8 The instructions betweerandend are executedtimes. The notation
0 is shorthand for the “image at addré®s

At ARNN timestepr, our representation of the ARNN inputz) is at the top of the
input stack imagel. This input is popped off the stack and placed in addiesshe
computation then proceeds as described by the high-level pseudocode algorithm in
Section3.6. The output memory addres3 stores the sequence of outputs as described
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in Section3.4. Program execution begins at well-known additesand proceeds accord-
ing to the rules for our model’s programming language defined in Defindtaomd explained
in Fig. 2.

3.8. Complexity analysis of simulation algorithm

The following is a worst case analysis of the ARNN simulation algorithm. If the ARNN
being simulated is defined for time= 1, 2, 3, ..., hasM as the length of the input vector
u(t) and hasV neurons, and is the number of stack image elements used to represent the
active input to our simulator, them requirestiME T linearinN, M, andt, and independent
of k,

T(N,M,t, k)= (49N + 11M + 42)t + 1.
M requires constar@rID, and exponentisgdPATIALRES
RS(N, M, t, k) — max(z(k-FM—l)’ 2(2N—2)’ 2(N+M—2)’ 2([+N—1))-

M requires infiniteAMPLRES in order to represent real-valued ARNN weight matrices.
M requires constarfHASERES of 1 and lineamDyRANGE equal to maxl, maxy,,), where
maxy,, is the maximum amplitude value of all the inputimages. FinallyrttEocomplexity

is O(Rs()), whereRg(-) is thesSPATIALRES complexity of M.

3.9. CSM deciding language membership by formal net simulation
Corollary 3. There exists a CSI? that decides the membership problem for each >+.

Proof. The proof relies on two facts. Firstly, for eaghC X+ there exists a formal net
F1 that decides the membership problem fo[19]. Secondly there exists a CSM! that
simulates each ARNN (Theoref). CSM D is given in Fig.7, its I/O format and a brief
complexity analysis are given in the remainder of the current sectigh.

To decide membership af € T in L, D simulates formal neF;, on inputw. D is a
language membership deciding CSM, hef®l/O format is consistent with DefinitiohO
(CSM deciding language membership). In Figrows 2—13 are exactly rows 2—13 from
CSM M in Fig. 5, the remaining extra functionality is necessary to properly format the
I/0. The shorthand notation follows the format given in FgGiven the problem instance
of deciding membership ab € T in L, CSMD has 13 input images and a single output
image. Input imageg,, and fy. are the binary and unary stack image representations of
the wordsw and 1*!, respectively. Image8 and1 are the constant image&x, y) = 0
andf(x, y) = 1, respectively. Formal nék;, is completely defined by the following seven
input imagesA, B,¢, P,x, N — 1, andM — 1. These images have the format described
above in Sectior8.4. When simulating a formal net the input imagks— 1 andx are
constant (as¥ = 2 andx(1) is a vector of zeros). Imagas, and O, are unary stack
images representing the unary wordsahd ?, respectively. Here d and v are the indices
of the output data and output validation neurons, respectively, ilvtliector of neurons.
ImagesO, and O, are used to extract the output ‘decision’ &f . There is one output
image denoted, .




<

sta
19| br | O |18
18| Id | fw | st | b |1d| O | st | ¢t d
17 | whl | fijw| 1d b st | tia | st b 1d to | 1d | t1a | st | to | end | st fw d
16 | Id | fu | st |tia| st | fiw | Id | & st | 13|16 | 14 |14 | 1d | 14 | 17 | 14 | 14 | J
15 st | b | Id |fiw| st |tia| st | fiw | 1d | ¢ | st | 13| 16 | 14 | 14 d

SAX  SEU ti a bt fow  Jo frw 01

14| 1d | 12 | 15 | 14 | 14 | + | st u br 0 | 13
1] st b || P . st | t3 st t1 |whl| O, | st | tja|end]| 1d t1 br | 0 a
fil ld | t3 | whl Og4 | st | tia|end| 1d t1 st | fy, | hlt
fo| br | O | 16
o 1 2 3 4 5 6 7 8 9... O; O, T N1 M1 A B ¢ P

note: address t3 is located at grid coordinates (11, 18)

Fig. 7. CSMD that decides language membership by ARNN simulation. Shorthand notation follows the format giverbirReigs 2—13 are exactly
rows 2—13 from CSMM in Fig. 5.
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The following is a worst case analysis of C3Wsimulating a formal nef; that decides
membership of languagk in time T. On input wordw € X, F; decides ifw is in L in
t timesteps for some< T(Jw|). When deciding a language from the clagoly, in the
worst case the functiom is polynomial in input word length. When deciding an arbitrary
language, in the worst ca3eis exponential in input word lengfi9]. Let N, M, d, andv
be as given above. CSI requires linearMe

T(N, M, T(lwl), |lw|, d, v) = (49N + 7v + 8D T(|Jw|) + 12/w| + 7d + 24,

constanGRID, and exponentiadPATIALRES
Rs(N. M, T(lw]), [w], d, v) = max(2"], 22¥-2)

to decide membership afin L. D requires infiniteaMPLRES, as one ofF;.'s weight matrices
contains a real-valued weight that encodes the (possibly nonuniform) circuit familp
requires constamHASERESOf 1 and lineaby RANGE equal to maxl, maxy,,) where max,,
is the maximum amplitude value of all the input images. Finally,AiReQ complexity is
O(Rs(+)), whereRg(-) is thesPaTIALREScomplexity of D. By way of formal net simulation
the CSM decides the membership problem for any langliage>* with these complexity
bounds.

4. Unordered search

Sorting and searchirf@ 1] provide standard challenges to computer scientists in the field
of algorithms, computation, and complexity. In this paper, we focus on a binary search
algorithm. With our model this algorithm can be applied to unordered lists. Consider an
unordered list of: elements. For a given properfy, the list could be represented by an
n-tuple of bits, where the bit key for each element denotes whether or not that element
satisfiesP. If, for a particularP, only one element in the list satisfi#s the problem of
finding its index becomes one of searching an unordered binary list for a single 1. The
problem is defined formally as follows.

Definition 12 (Needle in haystack problemLet L = {w : w € 0*10*}. Letw € L be
written asw = wows . . . w,—1 Wherew; € {0, 1}. Given such av, the needle in haystack
(NIH) problem asks what is the index of the symbol inThe solution to NIH for a given
w is the index:, expressed in binary, whetg = 1.

This problem was posed by Grover|[it0]. His quantum computer algorithm requires
O(./n) comparison operations on average. Bennett §phave shown the work of Grover
is optimal up to a multiplicative constant, and that in fact any quantum mechanical system
will require Q(,/n) comparisons. Algorithms for conventional models of computation re-
quire ®(n) comparisons in the worst case to solve the problem. We present an algorithm
that requiresd (log, n) comparisons, in the worst case, with a model of computation that
has promising future implementation prospects.

Our search algorithm is quite simple. A single bright point is somewhere in an otherwise
dark image. If we block one half of the image we can tell in a single step if the other
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(8,99) procedure search(il, i2)

0,3) e := i2
(4,3) c = fo
0,w) while (e.pop(O) = f1)
0,1) rescale il over both image a and image b
(0,2) FT, square, and FT image a
(8,2) if (a = f1)
(8,1) il := LHS of il
(14,1) c.push(fy)
(8,2) else /*x a = fy */
(8,0) il := RHS of il
(16,0) c.push(f})

end if

end while

0,0) a:=c

(2,0) end procedure

Fig. 8. Pseudocode algorithm to search for a single 1 in a list otherwise populated with 0s. Line numbers give
addresses of the corresponding piece of code in the CSM machine i9. figagesfo and f1 were defined in
Definition 5.

half contains the bright point or not. This forms the basis of a binary search algorithm to
determine the precise location of the bright point.

Before presenting a CSM instance of the algorithm, we give a pseudocode version (see
Fig. 8). This pseudocode algorithm consists of a single loop. It is formatted to conform to
the iteration construct presented in Sect®® The algorithm takes two arguments, one is
a list image and the other is a stack image. (Stack images and list images were defined in
Definitions6 and7.) The first argumentl, is a binary listimage representing We assume
thatn is a power of 2. The second argumegt,is a unary stack image of length log,
and is used to bound the iteration of the algorithm’s loop. The algorithm uses ad@®ss
it constructs, one binary symbol image at a time, a binary stack image of length.lég
halt, the binary stack image at addresgpresents the indexof the 1 inw. This index is
returned through addresswhen the algorithm terminates. To aid the reader, each line of
the pseudocode algorithm in Fig.is prepended with a pair of coordinates that relate the
pseudocode to the beginning of the corresponding code in the CSM version of the algorithm.
The CSM version of the algorithm is given in Fig.

Definition 13 (Comparison in CS) A comparison in a CSM computation is defined as a
conditional branching instruction.

Theorem 4. There exists a CSM that solves NIH@log, n) comparisons for a list of
lengthn, wheren = 28 k e N, k>1.

Proof. The proof is provided by the algorithm in Fi§. Correctnessthe correctness
is most easily seen from the pseudocode algorithm in &&nd the following inductive
argument. (Fig8 contains a mapping from pseudocode statements to the CSM statements
of Fig.9.) The two inputs are a binary listimage representatiom fmageil) and a unary
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stack image of length lggn (imagei2). During the firstiteration of the loop, a single image
Jf1is popped froni2, andil is divided equally into two listimages (a left-hand image and a
right-hand image). The nonzero peak (representing the} will be either in the left-hand
listimage or the right-hand list image. In order to determine which list image contains the
peak in a constant number of steps, the left-hand listimage is transformed such that its centre
will contain a weighted sum of all of the values over the whole list image. Effectively, the
listimage is transformed to an element of the binary imagé¢ getf1} (see Definitiorb).
If the left-hand list image is transformed & (if the centre of this transformed list image
contains a nonzero amplitude) then the left-hand listimage contained the peak. In this case,
the right-hand image is discarded, afiglis pushed onto stack image Otherwise, the
right-hand list image contained the peak, the left-hand list image is discarded; and
pushed onta. After the first iteration of the loop, the most significant bit of the solution to
the problem is represented by the top of stack imggedil has been reduced to half its
length. For the second iteration of the loop, a second imads popped from counté®,
the listimage is divided in two, and the appropriate half discarded. The algorithm continues
in this binary search fashion until the image popped fi@ns fy. Imagec is copied into
a and the algorithm halts. At halt, the index (in binary) of the Lis represented by the
stack image ira of length log n.

Complexity The loop in the algorithm makes exactly log iterations, corresponding
to log, n + 1 evaluations of the loop guard. Inside the loop, there is a single compari-
son. In total, the CSM algorithm makes 2 jog + 1 comparisons to transform the binary
list image representation af (of lengthn) into the binary stack image representation of
indexi. O

Theoremd states computational complexity in terms of number of comparisons, so that
the result can be directly compared with the lower bound analyses from classical algorithm
theory and quantum complexity theory. This simplification hides lirssarALRES and
FREQoverheads, as the following corollary shows.

Corollary 5. There exists a CSM that solves NIHAXlog, ») TIME, constaniGRID, @ (n)
SPATIALRES, constantby RANGE, constantAMPLRES, constantPHASERES, and O(n) FREQ
for a list of lengthn, wheren = 2% k e N, k> 1.

Proof. The proof is provided by the algorithm in Fi§. CorrectnessThe correctness
follows from Theorenm#.

Complexity: Each iteration of the loop requires constamEe. The totalTIME from
problem instance to solution is 23 lpg + 11. From Sectior2.3, all CSMs require con-
stantGRID. The maximum length required of any stack image during the computation is
log, n + 1 (for imagec). This results irsPATIALRES complexity of 2:. The CSM requires
constantMPLRES, PHASERES andDY RANGE, because all input values will be binary. Even
after the FT operation, only the binarised zero frequency component is relevant to the
computation so we do not need to preserve the amplitudes or phases of any of the other
spatial frequency components. Finally, the CSM requires an upper bounthpfFREQ
to accompany the lineaPATIALRES (assuming traditional diffraction limited resolution
techniques). O
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5. Conclusion

We have presented the CSM, an analog model of computation inspired by the field of
optical information processing. We have given some insight into the computational power
of the CSM by proving it can simulate ARNNSs (this simulation includes linear time matrix
multiplication), and by giving @ (log, n) unordered search algorithm that does not make
use of arbitrary real/complex constants. The model does not support arbitrary equality testing
of images, and so in this sense is closer in spirit to models foufgiR,19]than (say) the
Blum, Shub, and Smale mod@,4]. However, allowing arbitrary real/complex constants
gives the model a lot of computational power. For future work it would be interesting to
classify the computational power of discrete variants of the CSM.
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