
N. Guelfi et al. (Eds.): FIDJI 2002, LNCS 2604, pp. 122–131, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Distributed Java Platform with Programmable MIMD
Capabilities

T. Keane1, R. Allen1, T.J. Naughton1, J. McInerney2, and J. Waldron3

1 Department of Computer Science, National University of Ireland, Maynooth, Ireland
2 Department of Biology, National University of Ireland, Maynooth, Ireland

3 Department of Computer Science, Trinity College, Dublin 2, Ireland
Corresponding author: tom.naughton@may.ie

Abstract. A distributed Java platform has been designed and built for the
simplified implementation of distributed Java applications. Its programmable
nature means that code as well as data is distributed over a network. The
platform is largely based on the Java Distributed Computation Library of
Fritsche, Power, and Waldron. The generality of our system is demonstrated
through the emulation of a MIMD (multiple instruction, multiple data)
architecture. This is achieved by augmenting the server with a virtual pipeline
processor. We explain the design of the system, its deployment over a
university network, and its evaluation through a sample application.

1 Introduction

A class of distributed computation systems is based on the client-server model. This
class is characterised by (i) clients that instigate all communication and have no
knowledge of each other (no peer-to-peer communication), (ii) a server that has little
information on, or control of, its clients, and (iii) computations that are insensitive to
fluctuations in the number of clients or client failure. Well-known and successful
systems in this class include the Great Internet Mersenne Prime Search (GIMPS) [1]
and SETI@Home [2]. These systems are usually designed with a single application in
mind, and are not generalisable or programmable. A Java distributed computation
library (JDCL) [3] was designed to provide a simple general-purpose platform for
developers who wish to quickly implement a distributed computation in the context of
a SIMD (single instruction, multiple data) architecture. Its aims were to allow
developers to abstract completely from networking details and to allow distributed
computations to be reprogrammed without requiring any client-side administration.
Its attractions included network and platform independence, simplicity of design, and
ease of use for developers.

Our contribution has been to continue development of the system, bringing it
to a level in terms of functionality and robustness that permits demonstration of a
large-scale application. The JDCL was in an early stage of development and required
a number of enhancements and modifications to bring it up to such a level. In addition
to refining the functionality and efficiency of existing features of the JDCL [3] our
system contains enhancements that are in line with the aspirations of its original
developers. They include facilitating ease of distribution [the client consists of an
initialisation file and a single jar (Java archive) file], and coping with client failure.

Distributed Java Platform with Programmable MIMD Capabilities 123

The server is capable of both detecting client failure and redistributing the
computational load.

Other enhancements (not aspirations of the original JDCL developers)
include adding security to the clients, and expanding the range of applications that the
JDCL can support. A security manager has been developed that limits the downloaded
task’s interaction with the client software and donor machine. The other major
enhancement is the system's emulation of a MIMD (multiple instruction, multiple
data) architecture. This is explained in Sect. 2. The design of the system is explained
in Sect. 3. Section 4 gives a brief overview of how the system is programmed and in
Sect. 5 the system is evaluated with an application from the field of bioinformatics.

Java proved to be an ideal language for the development of this system. It
was possible to design a straightforward interface to the system: users are required to
extend only two classes to completely reconfigure a distributed computation.
Furthermore, identical clients (and identical downloaded tasks) could be run on a
variety of platforms. Existing programmable distributed environments or libraries
range from MPI [4] and PVM [5] to JavaSpaces [6] and the Java OO Neural Engine
(Joone) [7].

2 Computational Theory for MIMD Emulation

A major enhancement of our system is its emulation of a MIMD architecture. In order
to do this, the server simulates a pipeline processor capable of repackaging and
redistributing partial results during a computation. In this section, we give the
computational theory of MIMD emulation through client server processing.

Consider an input X, and a computation on that input C(X) that returns some
result r. We could say that)(XCr = . In client-server computing, the server

partitions the input data into n segments

∑
−

=

=
1

0

n

i
ixX . (1)

such that each transformation iii rxCx =→)(is performed by one of a set of

clients. The server reconstructs the original result by combining these partial results

�
1

0

)()(
−

=

==
n

i
ixCXCr . (2)

where � denotes an appropriate combination operation. This is the starting

assumption of work related to SPMD (single program, multiple data) computation
through functional programming [8]. In pipeline processing, a computation is
decomposed into m smaller transformations that each acts on the result of the previous

transformation, ()()()() ,)(0121 �� XccccXCr mm −−== where X is the input. A

recursive definition of this concept could be written as follows,

124 T. Keane et al.





>
=

=
− . 0 if)(

; 0 if)(

1

0

jrc

jXc
r

jj
j (3)

where 1−= mrr can be regarded as the seed to the recursion and defines the final

result. The first clause in Eq. (3) is the terminating condition (passing the input to the
first transformation) and the second clause describes how the result of any one
transformation depends on the preceding transformation. We use the following
compact notation to represent the recursive definition of Eq. (3),

.)()(
1

0
∏

−

=

==
m

j
j XcXCr (4)

where � denotes the operation to appropriately pass the results of one transformation
to another. Equation (4) describes passing the complete input X to transformation c0,
the result being passed to c1, and so on. Staying within the pipeline processing
paradigm, we could further partition the input into n segments, as described in
Eq. (1), and pass each segment in turn through the complete sequence of m
transformations. Appropriately combining the partial results at the end of the final
transformation, as in Eq. (2), would allow us to write Eq. (4) as

.)()(
1

0

1

0
�

−

=

−

=






== ∏

n

i

m

j
ij xcXCr (5)

The advantages of the representation in Eq. (5) include the ability to arbitrarily
change the granularity of the data throughput (some transformations may have
restrictions on the size or format of their arguments) and to permit parallelisation of
the computation. Pipeline computations could possibly be regarded as MISD
(multiple instruction, single data).

It is possible to combine both the client-server (SIMD) and pipeline (MISD)
models. This is important if we want to allow clients to effect arbitrary transforms
rather than each one performing the same cj. In this case, the server divides the
computation as well as the data. It distributes to the clients a description of a
transformation cj as well as a data segment xi. Since the partitioning shown in Eq. (1)
is possible, there will not be any interdependencies between different parts of the data
stream. Equations (4) and (2) could therefore be combined as

.)()(
1

0

1

0
∏

−

=

−

=

==
m

j

n

i
ij xcXCr � (6)

which describes transforming all of the data segments with cj before applying cj+1, and
so on. Since Eqs. (5) and (6) describe the same computation, this shows that the order
in which each cj(xi) is effected is unimportant, as long as one finds the appropriate
(� ,�) pair. An out-of-order implementation of Eq. (6) is a MIMD computation.
Consequently, an MIMD emulator is the by-product of a loosely coupled client-server
simulation of a highly structured pipeline processor. This computational theory tells
us nothing about how to find an appropriate (� ,�) pair, or how efficient the resulting
MIMD emulation might be. Sanders [9] has proposed an efficient algorithm to
emulate MIMD computations on a synchronous SIMD system. Our asynchronous

Distributed Java Platform with Programmable MIMD Capabilities 125

system should admit emulation algorithms that are even more efficient because it
completely avoids what Sanders calls SIMD overhead [9] (where the globally issued
instruction is not required locally). Our system is still susceptible to load imbalance
overhead but this problem-dependent issue is inherent to all parallel computing,
including MIMD parallelism. Figure 1 shows an abstract model of the system.

Fig. 1. System layers of abstraction

3 Design of the System

The design mirrors that of Sanders [9] with a number of enhancements inspired by
our computational model. The user partitions the MIMD algorithm into multiple
independent sequential stages, if possible. Each stage corresponds to a node in a
theoretical ‘pipeline.’ The code corresponding to all stages (the Task) is sent to clients
as a compiled Java class. Execution of each of the (one or more) stages then proceeds
as a SIMD computation as in [9]. All stages of the pipeline could be ‘processing’ at
the same time if the particular problem allowed. Our system is therefore most
efficient at emulating MIMD computations that can be naturally expressed as a
pipeline of SIMD computations. The overall system can be subdivided up into three
main sections; common modules, server, and client.

3.1 Common Modules

We found that as with many distributed systems, there is a lot of overlap in terms of
functionality between client and server. Each system (client and server) can keep two
distinct logs: system logs and error logs. The system logs record system events as they
happen. In the event of some catastrophic event (e.g. power loss), it may be possible
to use these logs at the server to restart a particular problem at the point where it was
halted. These logs are an optional feature on the client and are mainly used for
debugging purposes.

Communications are performed on our system using Java sockets. We
decided to produce one single module for use on the server and client to perform all
socket communications. Its main functions are to open and close sockets, send and
receive messages, and to terminate communications. The other shared
communications module is the basic unit used for communication in the system called
the Message class. It is be extendable so that a message can contain items such as
data, algorithms, information on client status, and so on.

USER

Pipeline Processor

Client-Server

JDCL

Network

MIMD

SIMD

126 T. Keane et al.

Each data unit that is sent out to be processed by our server has a user
defined time limit associated with it. If the results for that unit have not returned to the
server within the specified time, it is assumed that the unit has failed. This would
normally happen through client failure, e.g. a donor machine being switched off.
Additionally, if the client is not finished processing the unit when the time limit
expires, it will contact the server and request a time extension. For these purposes, the
server and client have been provided with a common timing module.

At the heart of our distributed system is the piece of compiled Java code that
is downloaded from the server to each client – the Task. This Java class contains the
algorithm that is executed over all of the subsequent data units that are received by the
client. The user of the system is required to extend this common class. All tasks
conforming to this interface will be accepted by the system. Any Java exceptions that
occur in the task as it is executing at the client are fed back to the server via the
communications protocol.

3.2 Server

The server can be divided up into three main sections (see Fig. 2). The
ServerEngine is responsible for initialising the server at start-up. It reads in the
user defined initialisation parameters via an external text file. After reading all of the
initialisation options, it creates the log files, loads and checks the user defined classes
(DataHandler and Task) and then creates the ConnectionManager. The
ServerEngine also acts as the interface between the communications modules and
the current running problem on the system. It also manages the lists of data units
(pending and expired) that are currently out being processed by clients.

The ConnectionManager is responsible for listening on the server
socket for new client connections and creating a new ServerMessageHandler
thread to handle each connection. Each time a new client connection is received, a
new Java thread is created that handles the communication on a separate port to the
main port used by the server to listen for new connections.

Task

MessageHandler

Message ConnectionManager

TaskList

LogFile

ServerMessageHandler

Scheduler

SchedulerThread

ServerEngine DataHandler

Bucket

Fig. 2. Server design: the user extends Task (which is sent to the client) and DataHandler

Distributed Java Platform with Programmable MIMD Capabilities 127

3.3 Client

The client software can be divided up into two main sections (see Fig. 3). The
ClientEngine is responsible for initialising the client software. Its first task is to
read in the server details that are contained in the external text file that is included in
the client installation. Once these details have been parsed correctly, the
ClientEngine starts the security manager that remains in operation for the
lifetime of the client. This strictly limits the client’s interactions with the donor
machine’s resources. The final task of the ClientEngine is to start the
communications section of the client.

The ClientMessageHandler is at the centre of the communications
section of the system. It manages the communications protocol, receives and
initialises the downloaded task and manages the execution of each data unit. Each
downloaded algorithm is received by the client as a compiled Java class. By using
Java’s class loading facilities, the algorithm is subsequently dynamically loaded into
the executing client. The ClientMessageHandler uses the shared timing module
to monitor the time being taken to process each data unit. If a data unit is taking
longer than its allotted time to process its data, the client can request a time extension.
The client continues in an infinite loop requesting and processing data units from the
server. When the server sends a new algorithm to the client, this new algorithm is
loaded dynamically and all subsequent data units received are processed using the
new algorithm. There are extensive exception handling mechanisms coded into the
client so that the client should run continuously until explicitly shut down by the
donor of the machine. Full details on the design of the JDCL and its extensions can be
found in [3,9].

ClientSecurityManager

Scheduler

ByteArrayClassLoader Task Message SchedulerThread

ClientMessageHandler

ClientFrame ClientEngine

LogFile

MessageHandler extends

implements

Fig. 3. Client design

4 Programming the System

To program the system with a given problem, there are two java classes that must be
extended using the standard Java inheritance mechanisms. These are the DataHandler

128 T. Keane et al.

class and the Task class. The subclass of DataHandler specifies how to manage the
data for the distributed computation. The subclass of Task is where the distributed
algorithm is programmed. In order to program a MIMD computation, the user makes
use of the Bucket class when designing their DataHandler.

4.1 DataHandler

The main purpose of the extended DataHandler is to manage all of the data relating to
the current problem. The first section of the DataHandler is the init() method. The
purpose of this method is to initialise whatever data structures are necessary for the
overall computation. This can involve things such as setting up readers of files,
initialising arrays, assigning variables values, etc. The next section is the
getNextParameterSet() method. This is where the pre-processed data units are
generated to be sent to the clients. This method is called every time a client requests a
data unit to process. The return type is an Object array and since all Java classes
inherit from the Object class, this method can return any data type supported by Java.
The task running at the client receives this Object array as its data. Therefore, it is
usual for the elements of this Object array to be explicitly typecasted at the client. The
final section of the DataHandler is the resultsHandler() method.

4.2 Task

The subclass of the Task class describes how the data received by the clients is to be
processed. There is only one method that must be extended in the task - the run()
method. The pre-processed data that is sent by the server in each data unit is available
through the parameterList variable. The general format of the run() method is
described below in Fig. 4.

public void run(){
 try{

Object[] array = parameterList;

<actual algorithm here>

returnList = new Object[];
returnList[x] = // results of computation here
endProcessing();

 }catch(Exception e){
exceptionInProcessing(e);

 }
}

Fig. 4. General form of run() method

The whole method is encompassed in one large try-catch statement. The
purpose of this statement is to handle any exceptions the run() method can generate.
All exceptions will be caught and are fed back to the server. The post-processed data
is returned via the returnList Object array. At the bottom of the run() method is the
endProcessing() which tells the client that the task has finished processing the data.

Distributed Java Platform with Programmable MIMD Capabilities 129

4.3 Bucket Class

The main purpose of this class is to effect the theoretical pipeline for MIMD
computations. This allows the developer to set up the server to act like a pipeline
processor (Fig. 5) with several different intermediary stages in the distributed
computation.

Fig. 5. Pipelined pro

The pipeline is simula
required at each stage of the p
using Java Vectors thus maintai
computation, the complete algo
is sent to each client with a flag
the data unit belongs to.

5 Application of System

Strands of DNA can be regar
adenine, guanine, cytosine, and
T, respectively. Our applicatio
substrings within a DNA stran
which contained approximately
we also permitted insertions an
the fact that slightly different
each case, we performed the s
locations of all repeated substr
detailed account of our search
[10].

We ran the three distr
of 90 clients and recorded the sp
we did not have sole use of the
computation but we noted that a
server. The disparity between s
size for the former that was too
laboratory network resources).
believe, simply reflects the unc
laboratory environment. Takin
system has demonstrated an ave
of 90 processors) an efficienc
conducted an experiment in wh
a number of dedicated client
computation time each time, and
that with sole use of the laborat

P0

Input
Data

Output
Data
P1
cesses, where P

ted by using
ipeline. The
ning the type
rithm (includi
 being sent w

ded as string
 thymine are
n involved

d. We chose
 5M nucleotid
d deletions, u
DNA strings
earch on the
ings of length
 algorithm an

ibuted algorit
eedup data s
laboratory. T
t all times at
peedups (i) a
 small (thus

 The differen
ertainty of r

g only the r
rage speedup
y of 59%.

ich the server
s. We varied
 created the s
ory resources
P2
0 through P4 a

the bucket cl
information i
independence
ng the code fo
ith each data

s of base-4
represented b
building up
the DNA of
es. As well a
p to a maxim
can code for
complete DN
 greater than
d the results

hms over the
hown in Tabl
he number of
least 40 proce
nd (ii) was d
not making e
ce between

esource-availa
esults for ins
 of 53 with (a
For a finer
 distributed 1
 the numbe
peedup plot s
, and for our
P3
re the processes

ass to represent the storage
s stored in each bucket by
 of the system. In a MIMD
r all stages of the pipeline)

unit to indicate which stage

symbols. The nucleotides
y the symbols A, G, C, and
a picture of the repeated
the tuberculosis bacterium,
s exact-matched substrings,
um in each case, to reflect
 the same functionality. In
A strand and recorded the
 13 in a database. A more
 obtained is in preparation

 aforementioned laboratory
e 1. For these computations
 processors varied over our
ssors were working for the

ue to choosing a work unit
fficient usage of the intra-

speedups (ii) and (iii), we
bility in a busy university
ertions and deletions, our
ssuming a full complement
view of this speedup, we
00 equal work units among
r of clients, recorded the
hown in Fig. 6. This shows
specialised application, we

130 T. Keane et al.

could get very close to the theoretical speedup maximum. The theoretical speedup

maximum was calculated from ()  pwwpS = , where w denotes number of

individual work units and where S, speedup, is parameterised by number of
processors p.

Table 1. Speedup achieved for each of the three repeated substring search strategies

Search strategy Single processor 40-90 processors Speedup
 (i) Exact matching 130 hours 28 hours 4.6
 (ii) Insertions 1790 hours 31 hours 57.7
(iii) Deletions 1670 hours 35 hours 47.7

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

Number of processors

S
pe

ed
up

Theoretical maximum
Speedup achieved

Fig. 6. Evaluation of speedup

6 Conclusion

We have refined the JDCL in terms of efficiency and functionality, including the
successful extension of the system to emulate a MIMD architecture. This has allowed
us to implement a large-scale bioinformatics application. The system is completely
generalisable, and because it is written in Java, the developer interface is simplified to
the extension of two classes. Work is ongoing on the next generation of this system.
Several new features are to be incorporated into the new system including a multi-
problem scheduler, compression, encryption and authentication of all
communications, a remote server interface and the migration of all communications to
Java RMI. Future work includes performing this type of DNA analysis on other
similar size genomes with a view to eventually performing this type of analysis on the
human genome.

We gratefully acknowledge assistance from the Department of Computer
Science, NUI Maynooth, and technicians M. Monaghan, P. Marshall, and J. Cotter.

Distributed Java Platform with Programmable MIMD Capabilities 131

The continuation of this research has recently been funded by the Irish Research
Council for Science, Engineering and Technology: funded by the National
Development Plan.

References

[1] G. Woltman, "Great Internet Mersenne Prime Search," 1996. <http://www.mersenne.org>
[2] SETI@Home - Search for Extraterrestial Intelligence at Home, 1999.

<http:// setiathome.ssl.berkeley.edu>
[3] K. Fritsche, J. Power, J. Waldron, "A Java distributed computation library," Proc. 2nd

International Conference on Parallel and Distributed Computing, Applications and
Technologies (PDCAT2001), pp. 236–243, Taipei, Taiwan, July 2001.

[4] Message Passing Interface Forum, "MPI: A message-passing interface standard,"
International Journal of Supercomputer Applications and High Performance Computing
8(3/4), 159–416, 1994.

[5] V. S. Sunderam, "PVM: a framework for parallel distributed computing,'' Concurrency:
Practice and Experience 2(4), 315–340, 1990.

[6] Sun Microsystems, "JavaSpaces Technology," 2001.
<http://java.sun.com/products/javaspaces>

[7] VA Linux Systems, Inc, "Joone - Java object oriented neural engine," 2001.
<http://joone.sourceforge.net/>

[8] F. Loulergue, G. Hains, C. Foisy, "A calculus of functional BSP programs," Science of
Computer Programming, 37, 253–277, 2000.

[9] P. Sanders, "Emulating MIMD behaviour on SIMD machines," International Conference
on Massively Parallel Processing Applications and Development, pp. 313–321, Delft,
1994. Elsevier. (Extended version in "Efficient emulation of MIMD behavior on SIMD
machines," Technical Report IB 29/95, Universität Karlsruhe, Fakultät für Informatik,
1995.)

[10] R. Allen, T. Keane, T.J. Naughton, J. McInerney, J. Waldron, “Segmental duplication in
Tuberculosis genome,” submitted October 2002.

	Introduction
	Computational Theory for MIMD Emulation
	Design of the System
	Common Modules
	Server
	Client

	Programming the System
	DataHandler
	Task
	Bucket Class

	Application of System
	Conclusion
	References

