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Three principal strategies for the compression of phase-shifting digital holograms (interferogram
domain-, hologram domain-, and reconstruction domain-based strategies) are reviewed and their effects
in the reconstruction domain are investigated. Images of the reconstructions are provided to visually
compare the performances of the methods. In addition to single reconstructions the compression effects
on different depth reconstructions and reconstructions corresponding to different viewing angles are
investigated so that a range of the 3D aspects of the holograms may be considered. Although comparable
at low compression rates, it is found that depth and perspective information is degraded in different ways
with the different techniques at high compression rates. A hologram of an object with sufficient details
at different depths is used so that both parallax and depth effects can be illustrated. © 2007 Optical
Society of America
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1. Introduction

Phase-shifting interferometry (PSI) [1] digital holog-
raphy is a 3D imaging technique where the complex
light distribution at the plane of the recording camera
can be calculated from several interference patterns
corresponding to different reference light phases.
Compared with other digital holography techniques
this method has the advantage of increased recon-
struction quality as the unwanted zero-order and
twin image terms are eliminated [2]. This enables the
use of an in-line recording setup reducing the record-
ing sensor resolution requirements.

As several interferograms have to be recorded, the
use of the method is practically limited to static
scenes as the light distribution from the object should
remain constant over the recording. Another disad-
vantage of the method is that the resulting wavefront
consists of complex floating point numbers occupying
a large amount of storage space. Recently introduced

color PSI holography [3] requires that one wavefront
for each of the primary colors (blue, green, and red) is
used thus increasing the complexity. Practical appli-
cations of PSI holography, on the other hand, require
that data volumes are minimized either for more ef-
ficient storage or for faster transmission. As a result,
PSI holographic data compression is of the significant
importance.

The speckle nature of the PSI holograms of macro-
scopic reflective objects places constraints on the pos-
sible compression efficiency [4,5]. Several techniques
for PSI holographic data compression have been stud-
ied. Initially uniform scalar quantization of the PSI
hologram values followed by lossless coding of the
quantized data was suggested [5–7]. The method has
also been applied following wavelet decomposition of
the wavefront [8] and extended to use k-means in-
stead of uniform quantization showing increased
compression efficiency [9]. Each of these methods op-
erates on the complex wavefront at the plane of the
camera. Compression on the interference patterns
has also been suggested [10–13] offering promising
results while using common image compression tech-
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niques. Finally, compression of PSI holographic data
at the reconstruction plane [13,14] using Fresnelets
[13,15] has been investigated as offering increased
compression performance.

In this paper we study the visual effects of the
coding methods on the reconstructed images. Apart
from a single reconstruction at a given distance we
investigate the compression effects on reconstruc-
tions from the same hologram at different distances
as well as on reconstructions corresponding to differ-
ent observation angles. To this end we apply the
methods under investigation on a hologram with ad-
equate details on different depths so that both the
depth and parallax effects can be clearly seen. The
compression effects are investigated at both low and
higher compression rates.

The paper is organized as follows. In Section 2 the
PSI recording procedure is introduced, followed by a
discussion in Section 3 on the compression approaches
that have been considered. Section 4 introduces the
experimental setup that has been used to capture the
holographic data, discusses the experiment that has
been done, and finally illustrates and analyzes the
results that have been obtained. Section 5 concludes
the paper.

2. Phase-Shift Interferometry Digital Holography

A simplified recording setup for capturing PSI holo-
grams is shown in Fig. 1. The object to be recorded is
positioned at a distance d0 from the camera. A laser
source of wavelength � is used to illuminate the ob-
ject. The light beam is split by a beam splitter into
two parts. One of them is used to illuminate the
objects to be recorded. The light reflected from the
object reaches the CCD sensor through the second
beam splitter. Its distribution at the plane of the
camera can be expressed as

U�x, y� � A0�x, y�exp�i�0�x, y��, (1)

where A0�x, y� and �0�x, y� are the amplitude and the
phase of the wave respectively. The second part
passes through a half-wave and a quarter-wave re-
tardation plates. By appropriately adjusting the fast
and slow axes of these plates steps of � � 0, ��2, �,
and 3��2 can be added to the phase of the reference
beam. Through the second beam splitter the phase-
modulated reference beam reaches the camera where
it interferes with the object beam to form the inter-

ferogram I�x, y; ��. Four interferograms correspond-
ing to the four phase steps are recorded. These
interferograms can be expressed as

I�x, y; �� � �U0�x, y� � UR�x, y; ���2, (2)

where UR�x, y; �� is the phase-modulated reference
wave. Using the PSI algorithm [1] the wavefront
U(x, y) at the plane of the camera can be calculated
from the recorded interference patterns as

U�x, y� �
1

4AR
��I�x, y; 0� � I�x, y; ���

� i�I�x, y; ��2� � I�x, y; 3��2���, (3)

where AR is the amplitude of the reference wave. In
the case of a plane normally incident reference wave
it can be assumed that AR � 1. The complex wave-
front calculated by Eq. (3) is also called a PSI holo-
gram or Fresnel field. Notice that each of the
interference patterns is an in-line hologram, and as a
result to avoid confusion we refer to the complex-
valued (wavefronts) holograms as PSI holograms and
to the real-valued holograms (interference patterns)
as interference patterns.

The PSI hologram has been calculated at the plane
of the camera. To reconstruct the wavefront at the
plane of the object the PSI hologram has to be prop-
agated to a distance d0. This can be done using the
Fresnel–Kirchhoff integral [16] defined as

Ud�x�, y�� �
1

�2�
�	

�	�
�	

�	

U�x, y�exp	i�

�2 ��x � x��2

� �y � y��2�
dxdy

� �U � G���x�, y��, (4)

where

G��x, y� �
1

�2 exp�i�

�2 �x2 � y2��, (5)

� � 
d, d is the propagation distance, � denotes
convolution, and the constant phase exponential fac-
tors have been neglected for simplicity.

In Fig. 2 the images of the corresponding data on
the three stages of the procedure are shown. Figure
2(a) shows an interference pattern. Fig. 2(b) shows
the magnitude of the PSI hologram at the camera
plane, and Figs. 2(c) and 2(d) show the magnitude
of the propagated wavefront at distances 263 and
277 mm, respectively.

3. Compression Approaches

A. Interference Patterns Compression

Successful compression of PSI holographic data by
coding the interference patterns has been reported
[10–13]. With this method each of the recorded in-Fig. 1. Simplified PSI hologram recording setup.
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terference patterns I�x, y; �� is individually com-
pressed before the PSI algorithm described by Eq. (3).
These interferograms are real-valued grayscale im-
ages so the usual image coding techniques can be
used for their compression. Standard baseline JPEG
[17] and JPEG2000 [18] as well as set partitioning
in hierarchical trees (SPIHT) [19] coding have been
used. These compression methods were designed for
natural, real-world images and not for interference
patterns. Nevertheless, it has been shown [11–13],
and it is experimentally demonstrated in this paper,
that the fringe information of the interference pat-
terns can be effectively retained by these forms of
compression and hence usual image compression
techniques can still be used for the compression of
holographic data.

To obtain the complex wavefront at the camera
plane the coded interferograms have to be decoded
and combined using Eq. (3). The propagation of the
resulting wavefront to the desired distance using Eq.
(4) yields reconstructions from the compressed data.
Herein we investigate only baseline JPEG2000 com-
pression of the interferograms as the most represen-
tative method.

B. Camera Plane Compression

The initial compression approaches of PSI holo-
graphic data were based on camera plane compres-
sion [5–7]. With these approaches the PSI hologram
U(x, y), which is calculated using Eq. (3), is coded.
Several different methods have been applied includ-
ing uniform scalar quantization followed by lossless
coding of the quantized data [5–7], wavelet decom-
position of U(x, y) and quantization of the wavelet
coefficients [8], k-means quantization and lossless
coding [9], companding [20], and others.

In this paper we will investigate only uniform sca-
lar quantization at the camera plane and not other
more advanced techniques such as k-mean quantiza-
tion [9], which offer higher compression efficiency for
an increased computational cost [13] or companding
[20], which reduces the computational cost. The effect
of these methods on the reconstructed images is ex-
pected to be equivalent to the effect of the uniform
scalar quantization as they also operate on the quan-
tization principle.

In the case of uniform scalar quantization at the
camera plane the bit depth of the real and the imag-

inary parts of the complex wavefront values are re-
duced to m-bits per sample using

Û�x, y� � round�U�x, y� � �2m�1 � 1��Umax�, (6)

where Umax � max�max�|Im�U�x, y��|�, max�|Re�U
�x, y��|�). Following this, the quantized data are
coded with a lossless algorithms such as [21] to fur-
ther increase the compression rate. To obtain a re-
construction from the compressed data, lossless
decoding is performed, and the decoded data are mul-
tiplied by Umax to bring them back to their original
range. Propagating the dequantized complex wave-
front using Eq. (4) yields the reconstruction from the
decoded data.

The main advantage in compressing the PSI holo-
gram at the camera plane using quantization is that
the coding is performed pixel-by-pixel and hence the
introduced error affects a single pixel at a time con-
trary to transform-based techniques where usually
blocks of samples are affected. In this way the errors
introduced to the speckle pattern are minimal. How-
ever, the PSI hologram is expected to have high spec-
tral density as according to Eq. (3) it is a linear
combination of interferograms, which contain fine
fringe details. This can be seen in Fig. 2(b) where the
values of the PSI hologram at the plane of the camera
appear to be randomly distributed and have high
dynamic range. This reduces the effectiveness of the
lossless coding and the compression performance of
these approaches [13]. Another disadvantage of the
method is that it suffers from compression inflexibil-
ity in the sense that the compression rate and the
introduced error cannot be controlled as the effective-
ness of the lossless coder cannot be predetermined.

C. Compression at the Reconstruction Plane

The propagated wavefronts in Figs. 2(c) and 2(d) ap-
pear more structured than the PSI hologram itself.
This indicates that compression at the reconstruction
domain may be advantageous [13–15]. The apparent
structure at the reconstruction plane is expected to
increase the effectiveness of the lossless coder and
hence an overall higher compression performance is
expected. Two methods, which are performed on the
reconstruction plane, have been presented. The first
uses the method that has been applied at the camera

Fig. 2. PSI data at different stages: (a) Captured interference pattern, (b) magnitude of the PSI hologram, (c) reconstruction at 263 mm,
and (d) at 277 mm.
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plane directly at the reconstruction plane [14] and
the second uses Fresnelet decomposition [15].

Fresnelets are waveletlike bases specially designed
for digital holography applications [22]. They are a
combination of b-spline wavelets and the Fresnel
transform. One-dimensional b-splines of degree n are
defined as the �n � 1�-fold convolution of a rectangu-
lar pulse [23]

�n�x� � �0 � . . . � �0

Ç

n�1 times

�x�, (7)

where

�0�x� �

1, �1�2  x  1�2
1�2, �x� � 1�2
0, otherwise.

(8)

B-splines can be used to generate a multiresolution
analysis of L2��� [24]. More specifically it has been
shown that a two-scale relation of the form

�n�x
2�� �

k
h�k��n�x � k�, (9)

where h�k� is the binomial filter h�k� �
1

2n�n�1
k �

holds. Also semiorthogonal b-spline wavelets of the
form

��j,k
n � 2��j�2��n�2�jx � k��j,k�Z, (10)

where

�n�x
2�� �

k
g�k��n�x � k�, (11)

with g�k� being the quadrature mirror filter of h�k�
form Riesz bases of L2���.

F-splines are Fresnel-transformed b-spline bases.
By using the properties of the Fresnel transform (lin-
earity, shift invariance, and scaling) [22] the family
of functions ���j,k

ñ�� � G� * �j,k
n�j,k�Z can be derived.

F-splines can be obtained by convolving G��x� with
the b-spline �n�x� as

�̃�
n�x� � ��n � G���x�. (12)

The f-splines can then be used as appropriate bases
to decompose the wavefront to different scales. More
specifically the two-scale relation corresponding to
Eq. (9) becomes

�̃��2
n�x

2�� �
k

h�k��̃�
n�x � k�. (13)

Also, the generating functions corresponding to the
b-splines wavelets of Eq. (11) have the form

�̃��2
n�x

2�� �
k

g�k��̃�
n�x � k�. (14)

It can be noticed that the generating function
changes from scale to scale. As a result, Fresnelets
are not valid scaling functions since they do not fulfill
the two-scale relation condition. However the embed-
dedness of the decomposition is preserved as it has
been shown [22].

B-splines can be extended to 2D as

�n�x, y� � �n�x� · �n�y�, (15)

where � corresponds to the tensor product. Similarly
f-splines can be extended to 2D and hence 1D Fresne-
let transform can be expanded to 2D. The Fresnelet
coefficients of the wavefront U(x, y) at scale j � 1 can
be obtained as

LL�x
2,

y
2�� U * ��̃��2

n�x
2,

y
2� · �̃��2

n�x
2,

y
2��

HL�x
2,

y
2�� U * ��̃��2

n�x
2,

y
2� · �̃��2

n�x
2,

y
2��

LH�x
2,

y
2�� U * ��̃��2

n�x
2,

y
2� · �̃��2

n�x
2,

y
2��

HH�x
2,

y
2�� U * ��̃��2

n�x
2,

y
2� · �̃��2

n�x
2,

y
2��. (16)

To decompose the signal to higher scales the LL part
of scale j � 1 has to be further decomposed. Figure 3
shows the magnitude of the Fresnelet coefficients at
scale j � 5. The actual calculations of the convolution
can be carried out by evaluating them in the Fourier
domain [22]. More details on the implementation of
the Fresnelet decomposition can be found in [15].

Owing to the fact that the Fresnel transform is part
of the Fresnelet decomposition they correspond to a
wavelet decomposition of the reconstruction domain.
Following this, any multiresolution-based method
can be used for compression. In our experiments we

Fig. 3. Magnitude of the Fresnelet coefficients at scale j � 5.
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have considered SPIHT coding of the Fresnelet coef-
ficients.

The SPIHT algorithm [19] groups Fresnelet coeffi-
cients in subband trees and codes them in order of
significance. Bits are stored in the bit stream so that an
increasingly refined copy of the original image is ob-
tained by time. Information is also stored in the bit
stream so that the order of significance can be deter-
mined by the decoder. Hence the bit stream produced
by the SPIHT algorithm is fully embedded. This means
that it can be truncated to any required length, and the
remaining part can still yield a reconstruction, which
will be optimal in terms of quality for the given bit-
stream length. In this way the compression rate can be
set to any arbitrary value. Other advantages of the
SPIHT algorithm include its high encoding and decod-
ing speed and simplicity.

Although reconstruction plane compression is per-
formed on a single reconstruction distance this does
not limit the inherent 3D information stored in the
PSI holograms because reconstructions at other dis-
tances or from different viewing angles can still be
obtained [14].

4. Experimental Setup and Results

A. Experimental Setup

To investigate the compression effects of the consid-
ered algorithms we applied them on a real PSI holo-
gram we recorded. A similar recording setup to the
one shown in Fig. 1 was used. The laser source was
radiating a beam at 
 � 632.8 nm. The recorded
scene consisted of a chip positioned upsidedown so
that the two rows of the chip pins were positioned
approximately perpendicular to the optical axis and
at approximate distances d1 � 263 mm and d2 �
277 mm. The recording camera had a resolution of
Nx � Ny � 2048 � 2032 pixels with a pixel pitch of
�x � �y � 9 �m. The analysis was carried out using
MATLAB. Figure 2 shows the obtained holographic
data at different stages of the procedure.

The normalized root mean square (NRMS) metric
is used for the quantitative analysis, and it is defined
as follows:

NRMS � ��
Nx

�
Ny

��Ud�2 ��Ûd�2�2��
Nx

�
Ny

��Ud�2�2�1�2

,

(17)

where Ud and Ûd are the propagated wavefronts at
the object plane from the original and the compressed
data, respectively. The compression rate is calculated
as follows:

r �
s
ŝ, (18)

where the s and ŝ are the size of the uncompressed
and the compressed data files respectively. In our
case s � 2 � Nx � Ny � 8 bytes � 63.5 Mbytes as each
of the real and imaginary part of the uncompressed
complex wavefront consists of Nx � Ny � 2048 �
2032 double precision (8 bytes) samples.

B. Single Depth Reconstruction

For this experiment we implemented three compres-
sion schemes, namely:

(i) JPEG2000 compression of the interferograms,
(ii) Uniform scalar quantization of the PSI holo-

gram at the camera plane,
(iii) SPIHT coding of cubic (n � 3) Fresnelet coef-

ficients for several compression rates.

In Fig. 4 the numerical results obtained from
these methods at different compression rates are
shown. The NRMS error and the compression rate
have been computed using Eqs. (17) and (18). For
experiments at low compression rates we consid-
er approximate rates of 22, 16, and 32 for the
JPEG2000, quantization, and SPIHT coding, re-
spectively. For experiments at higher compression
rates we consider approximate rates of 209, 261,
and 256 for the JPEG2000, quantization, and
SPIHT coding of the Fresnelet coefficients, respec-
tively.

C. Different Depth Reconstruction

For different depth reconstructions we experiment
we have obtained reconstructions from the PSI holo-
gram at the distances 263 and 277 mm. In Fig. 5 the
obtained reconstructions are shown for low compres-
sion data. Figures 5(a) to 5(d) correspond to recon-
structions at d1 while Figs. 5(e)–5(h) correspond to
reconstructions at d2 for the original, JPEG2000,
quantization at the camera plane, and SPIHT coding
of the Fresnelet coefficients. In Fig. 6 the same re-
constructions are shown but from holographic data
that have been compressed at the higher rates. In the
case of Fresnelet-based coding, the data were coded
at distance d1, and to obtain the reconstruction at
distance d2 the procedure described in [14] was used.
This involves obtaining the reconstruction at d1 and
then propagating the wavefront consecutively back to
the camera plane (d � 0) and then back to d2.

Fig. 4. NRMS numerical results for the investigated coding
methods.
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D. Different Viewing Angle Reconstructions

To investigate the effect of compression on different
viewing angles we reconstructed regions from the PSI
hologram yielding different viewing angles. More
specifically two regions of size 512 � 2048 pixels were
considered. In one case the left-hand side of the PSI
hologram was considered and in the other one the
right-hand side region. In Fig. 7 reconstructions cor-
responding to the left-hand and right-hand sides of
the PSI hologram for low compression rates are
shown for the different coding methods. Similarly,
Fig. 8 shows the same reconstructions from the data

coded at a high rate. In the case of Fresnelet-based
coding to obtain the different reconstructions the
procedure described in [14] was used. This involves
reconstructing the whole wavefront at d1, and then
this wavefront was brought consecutively to the cam-
era plane �d � 0�, the required portion of it was
selected and then it was propagated back to d1.

E. Discussion

From the experimental results shown in Figs. 5 and
7 it is noticed that for low compression rates all the
methods yield adequate reconstruction quality in all

Fig. 5. Depth effects from low compressed data. (a)–(d) Reconstructions from the original, JPEG2000, quantized, and SPIHT coded data,
respectively, for reconstruction distance 263 mm. (e)–(h) Same for distance 277 mm.

Fig. 6. Depth effects from highly compressed data. (a)–(d) Reconstructions from the original, JPEG2000, quantized, and SPIHT coded
data, respectively, for reconstruction distance 263 mm. (e)–(h) Same for distance 277 mm.

4584 APPLIED OPTICS � Vol. 46, No. 21 � 20 July 2007



cases. For higher compression rates the reconstruc-
tion quality deteriorates, but each of the methods
behaves differently as is shown in Figs. 6 and 8.

More specifically in Figs. 6 and 8 it can be seen that
with high rate JPEG2000 coding of the interfero-
grams the reconstruction suffers mainly from an in-
crease in noise as well as ghosting effects, similar to
those observed in [25]. These ghosting effects appear
only in the case of JPEG2000 compression of the
interferograms and not when other image compres-
sion techniques such as JPEG or SPIHT are applied.

The main effect of quantization applied on the PSI
hologram at the camera plane is an increase of the
observed noise compared with the reconstruction
from the uncompressed data as it is shown in Figs.
6(c) and 6(g). Also it can be noticed in Fig. 8 that
quantization retains more details of the object com-
pared to the other techniques in the case of parallax
experiments.

Finally, in the case of the SPIHT coding of the
Fresnelet coefficients the main observed effect is that
the bright parts of the reconstruction are adequately

Fig. 7. Parallax effects from low compressed data. (a)–(d) Corresponding to the left view reconstructions from the original, JPEG2000,
quantized, and SPIHT coded data. (e)–(h) Same for a view from the right.

Fig. 8. Parallax effects from highly compressed data. (a)–(d) Corresponding to the left view reconstructions from the original, JPEG2000,
quantized, and SPIHT coded data. (e)–(h) Same for a view from the right.

20 July 2007 � Vol. 46, No. 21 � APPLIED OPTICS 4585



retained while the fainter ones are further sup-
pressed as a result of the coding, as can be seen in
Figs. 8(d) and 8(h). For high compression rates, and
without parallax, the SPIHT coding of the Fresnelet
coefficients seems to be more severe than the other
techniques when reconstruction depths other than
the encoding depth are sought as can be seen in Figs.
6(d) and 6(h). However, interestingly, with this blur-
ring, the noise of the reconstructions is retained low
after Fresnelet-based compression indicating that
Fresnelets could be used to reduce speckle, as previ-
ously proposed [6].

5. Conclusions

A study of the visual effects of various PSI holo-
graphic data compression techniques on the recon-
structions has been presented. The methods have been
considered to fall within the following three main
compression categories depending on the stage of the
PSI reconstruction procedure that they are applied
to, namely:

(i) Interference patterns compression,
(ii) Coding of the PSI hologram at the camera

plane, and
(iii) Fresnelet-based compression at the recon-

struction plane.

From each method we have chosen the most repre-
sentative technique and applied it to a real PSI ho-
logram with adequate depth details. In addition to the
usual single depth reconstruction evaluation of the
compression performance we have also considered re-
constructions corresponding to different depths as well
as from different viewing angles. In this way we ob-
served the effects of the considered methods not only
on single reconstructions but on aspects of the whole
3D recording range of the hologram. The study re-
vealed the different ways in which each of the coding
methods affects the reconstructed images at different
compression rates.

This work was supported in part by the Greek
State Scholarships Foundation, Enterprise Ireland,
and Science Foundation Ireland. We thank Yann
Frauel, Albertina Castro, and John McDonald for as-
sistance with the optical setup.
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