
1

Chapter 13

Inheritance

An Introduction to Inheritance

• Inheritance: extend classes by adding methods and
fields

• Example: Savings account = bank account with
interest

class SavingsAccount extends BankAccount
{

new methods
new instance fields

}

class SubclassName extends SuperclassName
{

methods
instance fields

}

An Introduction to Inheritance

• SavingsAccount automatically inherits all
methods and instance fields of BankAccount

• Extended class = superclass (BankAccount),
extending class = subclass (Savings)

Continued…

SavingsAccount collegeFund = new SavingsAccount(10);

// Savings account with 10% interest

collegeFund.deposit(500);

// OK to use BankAccount method with SavingsAccount object

An Inheritance Diagram

• Inheriting from class � implementing
interface: subclass inherits behavior
and state

• One advantage of inheritance is code
reuse

• Every class extends the Object class
either directly or indirectly

• In subclass, specify added instance
fields, added methods, and changed
or overridden methods

Figure 1:
An Inheritance Diagram

File BankAccount.java
public class BankAccount
{

public BankAccount() //Constructor
{

balance = 0;
}

public BankAccount(double initialBalance) //Parameter
{ //Constructor

balance = initialBalance;
}

public void deposit(double amount) // Method
{

balance = balance + amount;
}

public void withdraw(double amount) // Method
{

balance = balance - amount;
}

Continued…

BankAccount

File BankAccount.java
public double getBalance() // Method

{
return balance;

}

public void transfer(double amount, BankAccount other) //Method
{

withdraw(amount);
other.deposit(amount);

}

private double balance; // private instance field
}

2

A Simpler Hierarchy:
Hierarchy of Bank Accounts

• Consider a bank that offers its customers the
following account types:

1. Checking account: no interest; small number of free
transactions per month, additional transactions are charged a
small fee

2. Savings account: earns interest that compounds monthly

• All bank accounts support the getBalance method

• All bank accounts support the deposit and withdraw
methods, but the implementations differ

• Checking account needs a method deductFees; savings
account needs a method addInterest

Inheriting Methods
• Override method:

� Supply a different implementation of a method that exists in the
superclass

� Must have same signature (same name and same parameter
types)

� If method is applied to an object of the subclass type, the
overriding method is executed

• Inherit method:
� Don't supply a new implementation of a method that exists in

superclass
� Superclass method can be applied to the subclass objects

Continued…

Inheriting Methods

• Add method:
� Supply a new method that doesn't exist in the

superclass
� New method can be applied only to subclass objects

BankAccount()
BankAccount(double initialBalance)
public void deposit(double amount)
public void withdraw(double amount)
public double getBalance()
public void transfer(double amount,
BankAccount other)

private double balance;

BankAccount SavingsAccount

SavingsAccount(double rate)
public void deposit(double amount)
public void withdraw(double amount)
public double getBalance()
public void transfer(double amount,
BankAccount other)
public void addInterest()

private double balance;
private double interestrate;

CheckingAccount
CheckingAccount(double initialBalance)
public void deposit(double amount)
public void withdraw(double amount)
public double getBalance()
public void transfer(double amount, BankAccount
other)
public void deductFees()

private double balance;
private int transactionCount;
private static final int FREE_TRANSACTIONS = 3;
private static final double TRANSACTION_FEE = 2.0;

overriding

inherited

inherited

Savings Account
public class SavingsAccount extends BankAccount
{

public SavingsAccount(double rate) //Constructor
{

interestRate = rate;
}

public void addInterest() // Added Method
{

double interest = getBalance() * interestRate / 100;
deposit(interest);

}

private double interestRate; // Added instance field

}

File CheckingAccount.java
public class CheckingAccount extends BankAccount
{

public CheckingAccount(double initialBalance) //Constructor
{

super(initialBalance);
transactionCount = 0;

}

public void deposit(double amount) //Overriden Method
{

transactionCount++;
super.deposit(amount);

}

public void withdraw(double amount) //Overriden Method
{

transactionCount++;
super.withdraw(amount);

} Continued…

3

File CheckingAccount.java

public void deductFees() //Added Method
{

if (transactionCount > FREE_TRANSACTIONS)
{
double fees = TRANSACTION_FEE *

(transactionCount - FREE_TRANSACTIONS);
super.withdraw(fees);

}
transactionCount = 0;

}
// Added instance fields

private int transactionCount;
private static final int FREE_TRANSACTIONS = 3;
private static final double TRANSACTION_FEE = 2.0;

}

Inheritance

public class SavingsAccount extends BankAccount
{

public SavingsAccount(double rate)
{

interestRate = rate;
}
public void addInterest()
{

double interest = getBalance() * interestRate / 100;
deposit(interest);

}

private double interestRate;
}

subclass superclass

automatically inherits all methods and
instance fields of BankAccount

superclass methods

balance field of the
superclass is private)

inherited

An Introduction to Inheritance

• Encapsulation: addInterest calls getBalance rather
than updating the balance field of the superclass (field
is private)

• Note that addInterest calls getBalance without
specifying an implicit parameter (the calls apply to the
same object)

double interest = getBalance() * interestRate/100;

deposit(interest);

//Could write

double interest = super.getBalance() * interestRate/100;

super.deposit(interest);

• super indicates a call to the superclass method

Inheriting Instance Fields

• Can't override fields

• Inherit field: All fields from the superclass
are automatically inherited

• Add field: Supply a new field that doesn't
exist in the superclass

Continued…

Inheriting Instance Fields

• What if you define a new field with the same
name as a superclass field?
� Each object would have two instance fields of the

same name
� Fields can hold different values
� Legal but extremely undesirable

Implementing the
CheckingAccount Class

• You can apply four methods to
CheckingAccount objects:
� getBalance() (inherited from BankAccount)
� deposit(double amount) (overrides BankAccount

method)
� withdraw(double amount) (overrides BankAccount

method)
� deductFees() (new to CheckingAccount)

4

Inherited Fields Are Private

• Equivalent to
this.deposit(amount)
//infinite recursion

public void deposit(double amount)
{

transactionCount++;
// now add amount to balance
. . .

}

•balance is a private
field of the superclass
•Subclass must use public
interface

transactionCount++;
deposit(amount) ?

transactionCount++;
super.deposit(amount)

• Instead, invoke superclass
method
super.deposit(amount)

• Similar for withdraw()
method
super.withdraw(amount)

Common Error: Shadowing
Instance Fields
• A subclass has no access to the private instance fields

of the superclass
� Beginner's error: "solve" this problem by adding another instance

field with same name:
� Below, may update balance of CheckingAccount but not of

BankAccount

Continued…

Subclass Construction
• call to the

superclass
constructor

• Must be the
first statement
in subclass
constructor

public class CheckingAccount extends BankAccount
{

public CheckingAccount(double initialBalance)
{

// Construct superclass
super(initialBalance);
// Initialize transaction count
transactionCount = 0;

}
. . .

}

• If subclass constructor doesn't call superclass
constructor, default superclass constructor is used
� Default constructor: constructor with no parameters
� If all constructors of the superclass require parameters, then the

compiler reports an error

Converting Between Subclass
and Superclass Types
SavingsAccount collegeFund = new SavingsAccount(10);
BankAccount anAccount = collegeFund;
Object anObject = collegeFund;

anAccount.deposit(1000); // OK
anAccount.addInterest(); // No

public void transfer(double amount, BankAccount other)
{

withdraw(amount);
other.deposit(amount);

}

• Code Reuse
� transfer money from any type of

BankAccount

Converting Between Subclass
and Superclass Types

• Occasionally you need to convert from a
superclass reference to a subclass reference

• This cast is dangerous: if you are wrong, an
exception is thrown

Continued…

BankAccount anAccount = (BankAccount) anObject;

DataSet coinData = new DataSet();
coinData.add(new Coin(0.25, "quarter"));
coinData.add(new Coin(0.1, "dime"));
. . .
Measurable max = coinData.getMaximum(); // Get the largest coin

Converting Between Subclass
and Superclass Types

String name = max.getName(); // ERROR

Coin maxCoin = (Coin) max;
String name = maxCoin.getName();

max isn't a coin, so the compiler throws an exception

5

Converting Between Subclass
and Superclass Types

• Solution: use the instanceof operator

• instanceof: tests whether an object
belongs to a particular type

if (anObject instanceof BankAccount)
{

BankAccount anAccount = (BankAccount) anObject;
. . .

}

Syntax 13.4: The InstanceOf
Operator

object instanceof TypeName

Example:
if (anObject instanceof BankAccount)

{
BankAccount anAccount = (BankAccount) anObject;
. . .

}

Purpose:
To return true if the object is an instance of TypeName (or one of its
subtypes), and false otherwise

Polymorphism

BankAccount aBankAccount = new SavingsAccount(1000);
// aBankAccount holds a reference to a SavingsAccount

BankAccount anAccount = new CheckingAccount();
anAccount.deposit(1000);

// Calls "deposit" from CheckingAccount

Object anObject = new BankAccount();
anObject.deposit(1000); // Wrong!

• Compiler needs to
check that only
legal methods are
invoked

Polymorphism

• Polymorphism: ability to refer to objects of
multiple types with varying behavior

• Polymorphism at work:

• Depending on types of amount and other,
different versions of withdraw and deposit
are called

public void transfer(double amount, BankAccount other)
{

withdraw(amount); // Shortcut for this.withdraw(amount)
other.deposit(amount);

}

Polymorphism and Interfaces

• Interface variable holds reference to object of
a class that implements the interface
Measurable x;

Note that the object to which x refers doesn't
have type Measurable; the type of the object
is some class that implements the
Measurable interface

x = new BankAccount(10000);
x = new Coin(0.1, "dime");

Polymorphism

• You can call any of the interface methods:

• If x refers to a bank account, calls
BankAccount.getMeasure

• If x refers to a coin, calls Coin.getMeasure

• Polymorphism (many shapes): Behavior can
vary depending on the actual type of an
object

double m = x.getMeasure();

6

Polymorphism

• Called late binding: resolved at runtime

• Different from overloading; overloading is
resolved by the compiler (early binding)

Access Control
• Java has four levels of controlling access to

fields, methods, and classes:
� public access

• Can be accessed by methods of all classes
� private access

• Can be accessed only by the methods of their own
class

� protected access
• See Advanced Topic 13.3

Continued…

Recommended Access Levels

• Instance and static fields: Always private.
Exceptions:
� public static final constants are useful and safe
� Some objects, such as System.out, need to be

accessible to all programs (public)
� Occasionally, classes in a package must collaborate

very closely (give some fields package access); inner
classes are usually better

Continued…

Recommended Access Levels

• Methods: public or private

• Classes and interfaces: public or package
� Better alternative to package access: inner classes

• In general, inner classes should not be public
(some exceptions exist, e.g., Ellipse2D.Double)

• Beware of accidental package access
(forgetting public or private)

