An Introduction to Inheritance

Chapter 13

. }pl}gritance: extend classes by adding methods and
ields

H class SubclassName extends SuperclassName
Inheritance (

methods
instance fields

« Example: Savings account = bank account with
interest

class SavingsAccount extends BankAccount
{

new methods

new instance fields

An Introduction to Inheritance An Inheritance Diagram

* SavingsAccount automatically inherits all Inheriting from class # implementing

methods and instance fields of BankAccount ia"r}gf;?gg subclass inherits behavior Object

SavingsAccount collegeFund = new SavingsAccount (10); One advantage of inheritance is code
// Savings account with 10% interest reuse

collegeFund.deposit (500) ; Every class extends the Object class
// OK to use BankAccount method with SavingsAccount object either directly or indirectly BankAGEoUnT

In subclass, specify added instance

Extended class = superclass (BankAccount), gf'g‘fér??dd‘f:n"r‘ne;:‘ﬁfjs’ and changed 1
extending class = subclass (Savings)

Figure 1: SavingsAccount
Continued... An Inheritance Diagram

File BankAccount . java

public class BamiAeeewt | File BankAccount . java
{
public BankAccount () //Constructor

public double getBalance() // Method
{

{
balance = 0; return balance;
} }
public BankAccount (double initialBalance) //Parameter public void transfer (double amount, BankAccount other) //Method

{ //Constructor {

. withdraw (amount) ;
) balance = initialBalance; other.deposit (amount) ;

}

public void deposit (double amount) // Method private double balance; // instance field
{
balance = balance + amount;

}

public void withdraw(double amount) // Method
{

balance = balance — amount; Continued...
}




A Simpler Hierarchy:
Hierarchy of Bank Accounts

+ Consider a bank that offers its customers the
following account types: = Supply a different implementation of a method that exists in the

1. Checking account: no interest; small number of free superclass
transactions per month, additional transactions are charged a = Must have same signature (same name and same parameter
small fee types)
Savings account: earns interest that compounds monthly = If method is applied to an object of the subclass type, the
overriding method is executed

Inheriting Methods

* Override method:

All bank accounts support the getBalance method ¢ Inherit method:

All bank accounts support the deposit and withdraw = Don't supply a new implementation of a method that exists in
methods, but the implementations differ superclass

Checking account needs a method deductFees; savings = Superclass method can be applied to the subclass objects
account needs a method addInterest

Continued...

BankAccount SavingsAccount

Inheriting Methods e S

public void deposit (double amount) public void withdraw(double amount)
public void withdraw(double amount /g [public double getBalance ()
Jpublic double getBalance () public void transfer (double amount

* Add method: e e i)
= Supply a new method that doesn't exist in the Loren @amio procaery
superclass
= New method can be applied only to subclass objects

CheckingAccount
CheckingAccount (double initialBalance)
public void deposit (double amount)
public void withdr:

void transfer (double amount) BankAcco

public void deductFees ()

Private double balance;

priva amsaCTToRCount ;
private static final int FREE TRANSACTIONS =
private static final double TRANSACTION FEE

Savings Account File CheckingAccount. java

public class CheckingAccount extends BankAccount

public class SavingsAccount extends BankAccount
{ {

public SavingsAccount (double rate) //Constructor public CheckingAccount (double initialBalance) //Constructorx

{ (initialBalance) ;
interestRate = rate; transactionCount = 0;
} }
public void deposit (double amount) //Overriden Method

. . {
public void addInterest() // Added Method transactionCount++;

{ .deposit (amount) ;
double interest = getBalance() * interestRate / 100; }
deposit (interest) ;
} public void withdraw(double amount) //Overriden Method
{
private double interestRate; // Added instance field transactionCount++;

.withdraw (amount) ;
Continued...




automatically inherits all methods and

. . . I n heritan ce instance gelds of BankAccount
File CheckingAccount. java /

subclass superclass
/
public class SavingsAccount extends BankAccount

public void deductFees() //Added Method {

{ public SavingsAccount (double rate)

if (transactionCount > FREE TRANSACTIONS) {

{ interestRate = rate; i
balance field of the
= *
double fees TRANSAC?ION,FEE } superclass is private)
(?ransact;onCount — FREE_TRANSACTIONS) ; public void addInterest ()
super.withdraw (fees); {

} double interest = getBalance() * interestRate / 100;
transactionCount = 0; de: i i q
posit (interest)
} } ~—— ™
// Added instance fields
private int transactionCount;
private static final int FREE TRANSACTIONS = 3;

private static final double TRANSACTION FEE = 2.0; SavingsAccount

private double interestRate;

BankAccount portion

balance = 10000 inherited

interestRate = 10

An Introduction to Inheritance Inheriting Instance Fields

+ Encapsulation: addInterest calls getBalance rather . Can't override fields
than updating the balance field of the superclass (field

is private) * Inherit field: All fields from the superclass

Note that addInterest calls getBalance without are automatically inherited
specifying an implicit parameter (the calls apply to the . . ,
same object) + Add field: Supply a new field that doesn't

double interest = getBalance() * interestRate/100; exist in the superc|ass

deposit (interest);
//Could write
double interest = super.getBalance() * interestRate/100;

super.deposit (interest);

super indicates a call to the superclass method

Continued...

Implementing the

Inheriting Instance Fields CheckingAccount Class

+ What if you define a new field with the same
name as a superclass field? * You can apply four methods to
= Each object would have two instance fields of the CheckingAccount objects:
same name " getBalance () (inherited from BankAccount)

= Fields can hold different values = deposit (double amount) (overrides BankAccount

= Legal but extremely undesirable method)
withdraw (double amount) (overrides BankAccount
[uGliglele)]
deductFees () (new to CheckingAccount)




Inherited Fields Are Private

public void deposit (double amount) -balance is a private
{ field of the superclass
transactionCount++;

*Subclass must use public
// now add amount to balance p

interface

Equivalent to
transactionCount++; this.deposit (amount)
deposit (amount) /linfinite recursion

Instead, invoke superclass
transactio; method
super.deposit (amount) super.deposit (amount)

Similar for withdraw ()
method
super.withdraw (amount)

Subclass Construction

+ call to the
public class CheckingAccount extends BankAccount superclass
{ i i L constructor
public CheckingAccount (double initialBalance)
{
// Construct superclass
(initialBalance); Must be the
// Initialize transaction count first statement
transactionCount = 0; in subclass

constructor

« If subclass constructor doesn't call superclass
constructor, default superclass constructor is used
= Default constructor: constructor with no parameters

= If all constructors of the superclass require parameters, then the
compiler reports an error

Converting Between Subclass
and Superclass Types

» Occasionally you need to convert from a
superclass reference to a subclass reference

BankAccount anAccount (BankAccount) anObject

» This cast is dangerous: if you are wrong, an
exception is thrown

Continued...

Common Error: Shadowing
Instance Fields

» A subclass has no access to the private instance fields
of the superclass

= Beginner's error: "solve" this problem by adding another instance
field with same name:

= Below, may update balance of CheckingAccount but not of
BankAccount

CheckingAccount

BankAccount porrinn

balance = 10000

transactionCount = 1
balance = 5000

Converting Between Subclass
and Superclass Types

SavingsAccount collegeFund = new SavingsAccount (10);
BankAccount anAccount = collegeFund;
Object anObject = collegeFund;

collegefund = ——

anAccount .deposit (1000); // OK anhccount = ———— avingsAccount

e

/
anlbject = —V balance = 1000C

anAccount .addInterest (); // No

interestRate = 12

public void transfer(double amount, BankAccount other)
{

withdraw (amount) ;

other.deposit (amount) ; . * Code Reuse

} transfer mpney from any type of
L_________________________________________ Kk C

ccdunt

Converting Between Subclass
and Superclass Types

DataSet coinData = new DataSet();
coinData.add(new Coin(0.25, "quarter"));
coinData.add (new Coin (0.1, "dime"));

Measurable max = coinData.getMaximum(); // Get the largest coin

tring name max.getName(); // ERROR

max isn't a coin, so the compiler throws an exception




Converting Between Subclass
and Superclass Types

+ Solution: use the instanceof operator

. instanceof: tests whether an object
belongs to a particular type

if (anObject instanceof BankAccount)
{
BankAccount anAccount = (BankAccount) anObject;

Polymorphism

BankAccount aBankAccount = new SavingsAccount (1000) ;
// aBankAccount holds a reference to a SavingsAccount

BankAccount anAccount = new CheckingAccount () ;
anAccount .deposit (1000
// Calls "deposit" from CheckingAccount

Compiler needs to
new BankAccount () ; check that only

anObject .deposit (1000); // Wrong! legal methods are
invoked

Polymorphism and Interfaces

+ Interface variable holds reference to object of
a class that implements the interface
Measurable x;

new BankAccount (10000) ;
new Coin (0.1, e") ;

Note that the object to which x refers doesn't
have type Measurable; the type of the object
is some class that implements the
Measurable interface

Syntax 13.4: The InstanceOf
Operator

object instanceof TypeName

if (anObject instanceof BankAccount)
{

BankAccount anAccount = (BankAccount) anObject;

To return true if the object is an instance of TypeName (or one of its
subtypes), and false otherwise

Polymorphism

+ Polymorphism: ability to refer to objects of
multiple types with varying behavior

» Polymorphism at work:

public void transfer (double amount, BankAccount other)

{
withdraw (amount); // Shortcut for this.withdraw (amount)
other.deposit (amount) ;

}

+ Depending on types of amount and other,
different versions of withdraw and deposit
are called

Polymorphism

You can call any of the interface methods:

double m = x.getMeasure();

If x refers to a bank account, calls
BankAccount .getMeasure

If x refers to a coin, calls Coin.getMeasure

Polymorphism (many shapes): Behavior can
vary depending on the actual type of an
object




Polymorphism

« Called late binding: resolved at runtime

« Different from overloading; overloading is
resolved by the compiler (early binding)

Recommended Access Levels

+ Instance and static fields: Always private.

Exceptions:

* public static final constants are useful and safe

= Some objects, such as System. out, need to be
accessible to all programs (public)

= Occasionally, classes in a package must collaborate
very closely (give some fields package access); inner
classes are usually better

Continued...

Access Control

» Java has four levels of controlling access to
fields, methods, and classes:

= public access
» Can be accessed by methods of all classes

= private access
» Can be accessed only by the methods of their own

class

= protected access

+ See Advanced Topic 13.3

Continued...

Recommended Access Levels

* Methods: public or private

» Classes and interfaces: public or package
= Better alternative to package access: inner classes

* In general, inner classes should not be public
(some exceptions exist, e.g., E11ipse2D.Double)

+ Beware of accidental package access
(forgetting public or private)




