

Differentiable Logic for Correct-by-Construction Neural Networks

Thomas Flinkow

*Department of Computer Science
Maynooth University*

Dagstuhl Seminar 26031: *Software Contracts Meet System Contracts*
13th January 2026

Outline

Overview of the Area

Previous Work

Work in Progress

Outlook

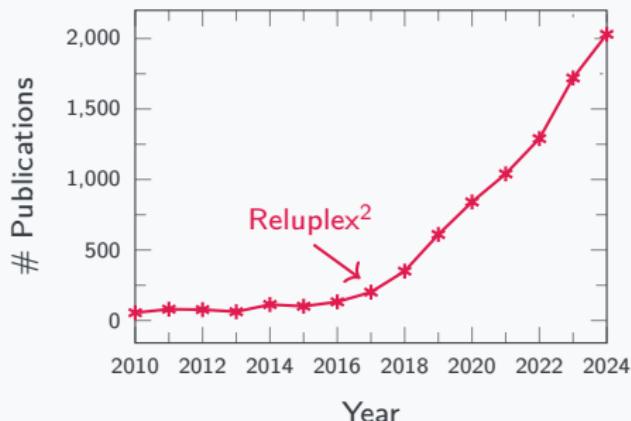
Why Verify Neural Networks?

Figure 1: Stickers placed on a stop sign cause a neural network to misclassify it as *Speed Limit 45 mph*.¹

¹K. Eykholt et al. (2018). 'Robust Physical-World Attacks on Deep Learning Visual Classification'. In: *2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition*. DOI: [10.1109/CVPR.2018.00175](https://doi.org/10.1109/CVPR.2018.00175).

How to Verify Neural Networks?

Paper titles containing “formal verification” and “neural network” over time



Community Efforts

VNN-COMP International Verification of Neural Networks Competition (<https://sites.google.com/view/vnn2025>)

VNN-LIB International Standard for the Verification of Neural Networks (<https://www.vnnlib.org>)

²G. Katz et al. (2017). ‘Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks’. In: *Computer Aided Verification*. DOI: [10.1007/978-3-319-63387-9_5](https://doi.org/10.1007/978-3-319-63387-9_5).

Training to Satisfy Constraints

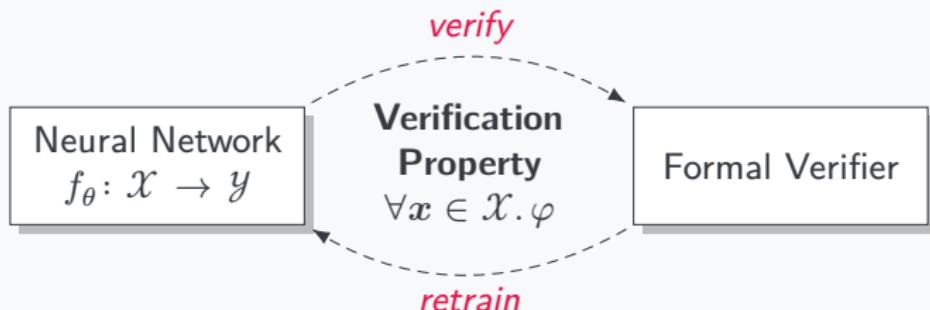


Figure 2: The continuous verification cycle.

Training Process:

- (1) translate φ into real-valued loss $\llbracket \varphi \rrbracket$, and (2) find a counter-example in \mathcal{X} that violates φ .

$$(3) \text{ maximise}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}} \left[\min_{\mathbf{x}' \in \mathcal{X}} \llbracket \varphi \rrbracket(\mathbf{x}', \mathbf{y}; f_\theta) \right].$$

$\llbracket __ \rrbracket$ is a mapping (called *differentiable logic*) from a logical specification into real-valued loss.

Example

- **Constraint:** $\forall x \in \mathcal{X}. (5 \leq f(x) \wedge f(x) \leq 10)$
- **Translate:** (e.g. using DL2³: $\llbracket a \leq b \rrbracket_{\text{DL2}} = \max(0, a - b)$ and $\llbracket a \wedge b \rrbracket_{\text{DL2}} = a + b$)

$$\llbracket 5 \leq f(x) \wedge f(x) \leq 10 \rrbracket_{\text{DL2}}$$

$$\llbracket 5 \leq f(x) \rrbracket + \llbracket f(x) \leq 10 \rrbracket_{\text{DL2}}$$

$$\max(0, 5 - f(x)) + \max(0, f(x) - 10)$$

- **Find a counterexample:**

$$x^* = \max_{x' \in \mathcal{X}} \llbracket 5 \leq f(x) \wedge f(x) \leq 10 \rrbracket_{\text{DL2}}$$

- **Use counterexample in training.**

³M. Fischer et al. (2019). 'DL2: Training and Querying Neural Networks with Logic'. In: *Proceedings of the 36th International Conference on Machine Learning*.

Previous Work: Comparing Differentiable Logics⁴

Logic	Domain	$\llbracket T \rrbracket$	$\llbracket F \rrbracket$	$\llbracket \neg x \rrbracket$	$\llbracket x \wedge y \rrbracket$	$\llbracket x \vee y \rrbracket$
DL2	$[0, \infty)$	0	∞	undefined	$x + y$	xy
Gödel	$[0, 1]$	1	0	$1 - x$	$\min(x, y)$	$\max(x, y)$

Research Question

How do existing differentiable logics (DLs) compare in terms of:

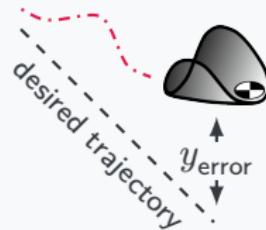
- gradients (learning behaviour)?
- logical consistency?
- establishing formal guarantees?

Findings

Training with *any* DL yields significantly improved *empirical* constraint satisfaction, but fails to provide (strong) formal guarantees.

⁴T. Flinkow, B. A. Pearlmutter et al. (2025). 'Comparing Differentiable Logics for Learning with Logical Constraints'. In: *Science of Computer Programming*. DOI: [10.1016/j.scico.2025.103280](https://doi.org/10.1016/j.scico.2025.103280).

Previous Work: Alsomitra Drone Controller⁵



(a) An *Alsomitra macrocarpa* seed. (b) The desired linear trajectory.

Constraint: If the drone is above and close to the line, pitching down quickly and moving fast, the network should make it pitch up.

Logic	RMSE	CAcc (%)	CSec (%)
Baseline	3.61×10^{-4}	0.00	0.00
DL2	1.23×10^{-3}	100.00	95.31
Fuzzy logic	1.16×10^{-3}	100.00	92.19

⁵C. Kessler et al. (2026). 'Neural Network Verification for Gliding Drone Control: A Case Study'. In: *AI Verification*. DOI: [10.1007/978-3-031-99991-8_9](https://doi.org/10.1007/978-3-031-99991-8_9).

Issues

- DL2 $\llbracket - \rrbracket_{\text{DL2}} : \Phi \rightarrow [0, \infty)$ loss is 0 if the constraint is satisfied.
- Consider the simple constraint $f(x) \leq 5$.
- $\llbracket a \leq b \rrbracket_{\text{DL2}} = \max(0, a - b)$ means gradients vanish once $a \leq b$.
- **Not finding a counterexample does not mean there is none!**

Ideas for a new differentiable logic

- Express not just *violation*, but also *satisfaction* of constraints $\llbracket - \rrbracket_{\text{Ours}} : \Phi \rightarrow (-\infty, \infty)$.
- Smooth connectives $\llbracket \wedge^s \rrbracket_{\text{Ours}}$ and $\llbracket \vee^s \rrbracket_{\text{Ours}}$ that approximate min and max as $s \rightarrow \infty$
- Non-vanishing derivatives everywhere. (i.e. make it *easier* to find counterexamples)

Recent Work (in Progress): Strong(er) Formal Guarantees

Constraint: *Predictions must be physically possible: the network should not predict two faces that are on opposite sides of the die.*

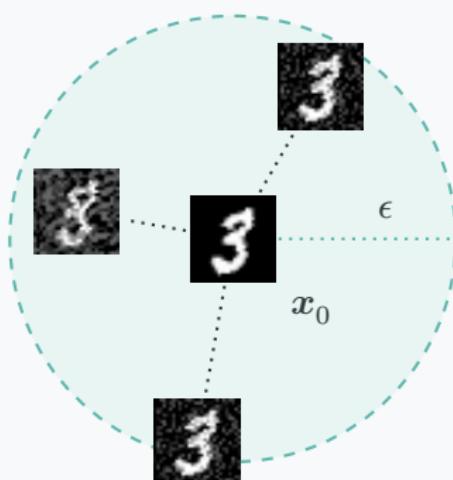
Logic	PAcc (%)	CAcc (%)	CSec (%)	VSat (%) ^a	
				$\epsilon = 4/255$	$\epsilon = 16/255$
Baseline	85.8	100.0	2.9	25.9	0.0
DL2	86.0	97.1	41.2	83.8 ⁽¹⁾	0.0 ⁽¹⁾
STL	79.9	100.0	100.0	98.5	1.8 ⁽¹¹⁾
Ours	77.5	100.0	100.0	100.0	92.7⁽⁵⁾

^a Superscript (k) indicates the inputs that timed out and remain unknown.

Specifications?

Local robustness:

$\forall x. \underbrace{\|x - x_0\| \leq \epsilon}_{\text{for all inputs similar to known input } x_0} \Rightarrow \underbrace{f(x) \approx f(x_0)}_{\text{the network behaviour should be similar}}$

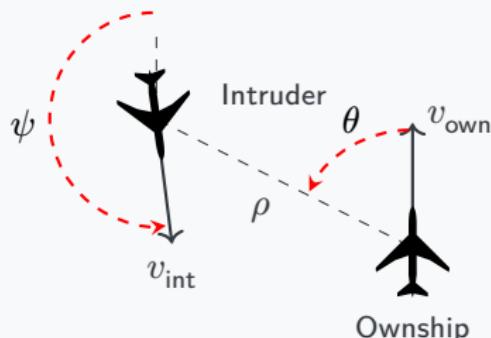


Problems

- Natural Language Processing:
discrete space, no meaningful sentences in ϵ -ball
- Cyber-physical Systems:
low-dimensional input space with semantics (e.g. velocity, distance)

Component \leftrightarrow System Specifications

Constraint: 'For an intruder that is *near* and *approaching from the left*, the network should advise "strong right".'



"near and approaching from the left":

$$250 \text{ ft} \leq \rho \leq 400 \text{ ft}, \quad 0.2 \text{ rad} \leq \theta \leq 0.4 \text{ rad}, \quad \dots$$

Problem: Verified safe in isolation, unsafe in closed-loop setting!⁶

⁶S. Bak et al. (2022). 'Neural Network Compression of ACAS Xu Early Prototype Is Unsafe'. In: *NASA Formal Methods*. DOI: [10.1007/978-3-031-06773-0_15](https://doi.org/10.1007/978-3-031-06773-0_15).

Summary & Conclusion

1. General Motivation

Correct-by-construction ML models by specification-driven training with differentiable logic.

2. Current Work

A differentiable logic with stronger formal guarantees.

3. Future Work

More expressive specifications.

Thomas Flinkow

Department of Computer Science
Maynooth University

Email: thomas.flinkow@mu.ie
<https://www.cs.nuim.ie/~tflinkow/>

Thank you! Any questions?

1. T. Flinkow, B. A. Pearlmutter et al. (2025). 'Comparing Differentiable Logics for Learning with Logical Constraints'. In: *Science of Computer Programming* 244, p. 103280. ISSN: 0167-6423. DOI: [10.1016/j.scico.2025.103280](https://doi.org/10.1016/j.scico.2025.103280)
2. T. Flinkow, M. Casadio et al. (2025). *A General Framework for Property-Driven Machine Learning*. DOI: [10.48550/arXiv.2505.00466](https://arxiv.org/abs/2505.00466). arXiv: [2505.00466 \[cs\]](https://arxiv.org/abs/2505.00466)