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Why Verify Neural Networks?

Figure 1: Stickers placed on a stop sign cause a neural network to
misclassify it as Speed Limit 45 mph*

1K. Eykholt et al. (2018). ‘Robust Physical-World Attacks on Deep Learning Visual
Classification’. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition. pol: 10.1109/CVPR.2018.00175.
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https://doi.org/10.1109/CVPR.2018.00175

How to Verify Neural Networks?

Paper titles containing “formal verification” and “neural network” over time
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Community Efforts
VNN-COMP International Verification of Neural Networks
Competition (https://sites.google.com/view/vnn2025)
VNN-LIB International Standard for the Verification of Neural
Networks (https://www.vnnlib.org)

2G. Katz et al. (2017). ‘Reluplex: An Efficient SMT Solver for Verifying Deep Neural

Networks’. In: Computer Aided Verification. Dol: 10.1007/978-3-319-63387-9_5. 3/12


https://sites.google.com/view/vnn2025
https://www.vnnlib.org
https://doi.org/10.1007/978-3-319-63387-9_5

Training to Satisfy Constraints
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Figure 2: The continuous verification cycle.

Training Process:

(1) translate ¢ into real-valued loss [¢], and (2) find a counter-
example in I that violates .

3 .. E . m/7 : )
(3) maximise s HI;I}EHJIC [l (=, y; fo)

[—] is a mapping (called differentiable logic) from a logical specific-
ation into real-valued loss.
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= Constraint: Ve € 1. (5 < f(x) A f(x) < 10)
» Translate: (e.g. using DL23: [a < b]p , = max(0,a — b) and
IIa/\ b]]DL2 = a+b)

[5 < f(x) A f(z) < 10]p,
[5 < f(=)] + [f(%) < 10]p.»
max (0,5 — f(x)) + max(0, f(x) — 10)

= Find a counterexample:
Tt = max [5 < f(z) A f(z) < 10]p,
x’'€e

= Use counterexample in training.

3M. Fischer et al. (2019). ‘DL2: Training and Querying Neural Networks with Logic'.
In: Proceedings of the 36th International Conference on Machine Learning.
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Previous Work: Comparing Differentiable Logics*

Logic Domain [T] [F] [—z] [z Ay] [z V]
DL2 [0, 00) 0 oo undefined x+y Ty
Godel [0,1] 1 0 1—=z min(z,y) max(z,y)

Research Question
How do existing differentiable logics (DLs) compare in terms of:

= gradients (learning behaviour)?
= logical consistency?

= establishing formal guarantees?

Findings
Training with any DL yields significantly improved empirical con-
straint satisfaction, but fails to provide (strong) formal guarantees.

4T. Flinkow, B. A. Pearlmutter et al. (2025). ‘Comparing Differentiable Logics for
Learning with Logical Constraints’. In: Science of Computer Programming. DOI:
10.1016/j.scico.2025.103280.
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https://doi.org/10.1016/j.scico.2025.103280

Previous Work: Alsomitra Drone Controller®
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(a) An Alsomitra macrocarpa seed. (b) The desired linear trajectory.

Constraint: If the drone is above and close to the line, pitching
down quickly and moving fast, the network should make it pitch up.

Logic RMSE CAcc (%) CSec (%)
Baseline 3.61 x 10~* 0.00 0.00
DL2 123 x 1073 100.00 95.31
Fuzzy logic 1.16 x 1073 100.00 92.19

5C. Kessler et al. (2026). ‘Neural Network Verification for Gliding Drone Control: A
Case Study’. In: Al Verification. pol: 10.1007/978-3-031-99991-8_9.
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https://doi.org/10.1007/978-3-031-99991-8_9

Recent Work (in Progress): Strong(er) Formal Guarantees

Issues
= DL2 [—]pLa: @ — [0,00) loss is O if the constraint is satisfied.

= Consider the simple constraint f(x) < 5.
= [a < b]p, = max(0,a — b) means gradients vanish once a < b.

= Not finding a counterexample does not mean there is none!

Ideas for a new differentiable logic

= Express not just violation, but also satisfaction of constraints
H:_]]Ours: ¢ — (_007 OO)

= Smooth connectives [A®*]o,s and [V*]ou. that approximate
min and max as § — 00

= Non-vanishing derivatives everywhere. (i.e. make it easier to
find counterexamples)
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Recent Work (in Progress): Strong(er) Formal Guarantees

Constraint: Predictions must be physically possible: the network
should not predict two faces that are on opposite sides of the die.

Logic PAcc CAcc CSec VSat (%)*

(%) (%) (%)  c=4p55 €=16/s5
Baseline  85.8 100.0 2.9 25.9 0.0
DL2 86.0 97.1 412 83.8(1) 0.0M)
STL 79.9 100.0 100.0 98.5 1.8(11)
Ours 77.5 100.0 100.0 100.0 92.7(%)

2 Superscript (¥) indicates the inputs that timed out and remain unknown.
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Specifications?

Local robustness:

V. |z —xpl| <e =  f(z)~ f(x,)

N —— e’ N —— e’
for all inputs similar the network behaviour g
to known input x should be similar
B -
= 3
Problems :

= Natural Language Processing: §
discrete space, no meaningful :
sentences in e-ball
= Cyber-physical Systems:
low-dimensional input space with
semantics (e.g. velocity, distance)
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Component <> System Specifications

Constraint: ‘For an intruder that is near and approaching from the

left, the network should advise “strong right

Ownship

“near and approaching from the left":

250ft < p < 400ft, 0.2rad <6 < 0.4rad,

Problem: Verified safe in isolation, unsafe in closed-loop setting!®

6S. Bak et al. (2022). ‘Neural Network Compression of ACAS Xu Early Prototype Is
Unsafe'. In: NASA Formal Methods. pol: 10.1007/978-3-031-06773-0_15.

11/12


https://doi.org/10.1007/978-3-031-06773-0_15

Summary & Conclusion

1. General Motivation
Correct-by-construction ML mod-

els by specification-driven train-
ing with differentiable logic.

2. Current Work
A differentiable logic with
stronger formal guarantees.

3. Future Work
More expressive specifications.
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Thank you! Any questions?
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