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Why Verify Neural Networks?

Figure 1: Stickers placed on a stop sign cause a neural network to
misclassify it as Speed Limit 45 mph.1

1K. Eykholt et al. (2018). ‘Robust Physical-World Attacks on Deep Learning Visual
Classification’. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. DOI: 10.1109/CVPR.2018.00175.
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How to Verify Neural Networks?
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Paper titles containing “formal verification” and “neural network” over time

Community Efforts
VNN-COMP International Verification of Neural Networks

Competition (https://sites.google.com/view/vnn2025)
VNN-LIB International Standard for the Verification of Neural

Networks (https://www.vnnlib.org)
2G. Katz et al. (2017). ‘Reluplex: An Efficient SMT Solver for Verifying Deep Neural
Networks’. In: Computer Aided Verification. DOI: 10.1007/978-3-319-63387-9_5. 3 / 12
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Training to Satisfy Constraints

Verification
Property
∀𝒙 ∈ 𝒳.𝜑

Neural Network
𝑓𝜃 ∶ 𝒳 → 𝒴 Formal Verifier

verify

retrain

Figure 2: The continuous verification cycle.

Training Process:
(1) translate 𝜑 into real-valued loss [[𝜑]], and (2) find a counter-
example in 𝒳 that violates 𝜑.

(3) maximise 𝔼
(𝒙,𝒚)∼𝒟

[min
𝒙′∈𝒳

[[𝜑]](𝒙′, 𝒚; 𝑓𝜃)].

[[−]] is a mapping (called differentiable logic) from a logical specific-
ation into real-valued loss. 4 / 12



Example

• Constraint: ∀𝒙 ∈ 𝒳. (5 ≤ 𝑓(𝒙) ∧ 𝑓(𝒙) ≤ 10)
• Translate: (e.g. using DL23: [[𝑎 ≤ 𝑏]]DL2 = max(0, 𝑎 − 𝑏) and

[[𝑎 ∧ 𝑏]]DL2 = 𝑎 + 𝑏)

[[5 ≤ 𝑓(𝒙) ∧ 𝑓(𝒙) ≤ 10]]DL2

[[5 ≤ 𝑓(𝒙)]] + [[𝑓(𝒙) ≤ 10]]DL2

max(0, 5 − 𝑓(𝒙)) +max(0, 𝑓(𝒙) − 10)

• Find a counterexample:

𝑥∗ = max
𝒙′∈𝒳

[[5 ≤ 𝑓(𝒙) ∧ 𝑓(𝒙) ≤ 10]]DL2

• Use counterexample in training.

3M. Fischer et al. (2019). ‘DL2: Training and Querying Neural Networks with Logic’.
In: Proceedings of the 36th International Conference on Machine Learning.
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Previous Work: Comparing Differentiable Logics4

Logic Domain [[𝑇 ]] [[𝐹 ]] [[¬𝑥]] [[𝑥 ∧ 𝑦]] [[𝑥 ∨ 𝑦]]
DL2 [0,∞) 0 ∞ undefined 𝑥 + 𝑦 𝑥𝑦
Gödel [0, 1] 1 0 1 − 𝑥 min(𝑥, 𝑦) max(𝑥, 𝑦)

Research Question
How do existing differentiable logics (DLs) compare in terms of:
• gradients (learning behaviour)?
• logical consistency?
• establishing formal guarantees?

Findings
Training with any DL yields significantly improved empirical con-
straint satisfaction, but fails to provide (strong) formal guarantees.
4T. Flinkow, B. A. Pearlmutter et al. (2025). ‘Comparing Differentiable Logics for
Learning with Logical Constraints’. In: Science of Computer Programming. DOI:
10.1016/j.scico.2025.103280.
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Previous Work: Alsomitra Drone Controller5

(a) An Alsomitra macrocarpa seed.

desired trajectory

𝑦error

(b) The desired linear trajectory.

Constraint: If the drone is above and close to the line, pitching
down quickly and moving fast, the network should make it pitch up.

Logic RMSE CAcc (%) CSec (%)
Baseline 3.61 × 10−4 0.00 0.00
DL2 1.23 × 10−3 100.00 95.31
Fuzzy logic 1.16 × 10−3 100.00 92.19

5C. Kessler et al. (2026). ‘Neural Network Verification for Gliding Drone Control: A
Case Study’. In: AI Verification. DOI: 10.1007/978-3-031-99991-8_9.
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Recent Work (in Progress): Strong(er) Formal Guarantees

Issues
• DL2 [[−]]DL2 ∶ Φ → [0,∞) loss is 0 if the constraint is satisfied.
• Consider the simple constraint 𝑓(𝒙) ≤ 5.
• [[𝑎 ≤ 𝑏]]DL2 = max(0, 𝑎 − 𝑏) means gradients vanish once 𝑎 ≤ 𝑏.
• Not finding a counterexample does not mean there is none!

Ideas for a new differentiable logic
• Express not just violation, but also satisfaction of constraints

[[−]]Ours ∶ Φ → (−∞,∞).
• Smooth connectives [[∧𝑠]]Ours and [[∨𝑠]]Ours that approximate

min and max as 𝑠 → ∞
• Non-vanishing derivatives everywhere. (i.e. make it easier to

find counterexamples)
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Recent Work (in Progress): Strong(er) Formal Guarantees

Constraint: Predictions must be physically possible: the network
should not predict two faces that are on opposite sides of the die.

Logic PAcc
(%)

CAcc
(%)

CSec
(%)

VSat (%)a

𝜖 = 4/255 𝜖 = 16/255
Baseline 85.8 100.0 2.9 25.9 0.0
DL2 86.0 97.1 41.2 83.8(1) 0.0(1)

STL 79.9 100.0 100.0 98.5 1.8(11)

Ours 77.5 100.0 100.0 100.0 92.7(5)

a Superscript (𝑘) indicates the inputs that timed out and remain unknown.
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Specifications?

Local robustness:

∀𝒙. ‖𝒙 − 𝒙0‖ ≤ 𝜖⏟⏟⏟⏟⏟
for all inputs similar
to known input 𝒙0

⟹ 𝑓(𝒙) ≈ 𝑓(𝒙0)⏟⏟⏟⏟⏟
the network behaviour

should be similar

Problems
• Natural Language Processing:

discrete space, no meaningful
sentences in 𝜖-ball

• Cyber-physical Systems:
low-dimensional input space with
semantics (e.g. velocity, distance)

𝜖

𝒙0
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Component ↔ System Specifications

Constraint: ‘For an intruder that is near and approaching from the
left, the network should advise “strong right”’.

𝑣own

𝑣int

𝜌

Ownship

Intruder
𝜓 𝜃

“near and approaching from the left”:

250 ft ≤ 𝜌 ≤ 400 ft, 0.2 rad ≤ 𝜃 ≤ 0.4 rad, …

Problem: Verified safe in isolation, unsafe in closed-loop setting!6
6S. Bak et al. (2022). ‘Neural Network Compression of ACAS Xu Early Prototype Is
Unsafe’. In: NASA Formal Methods. DOI: 10.1007/978-3-031-06773-0_15.
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Summary & Conclusion

1. General Motivation
Correct-by-construction ML mod-
els by specification-driven train-
ing with differentiable logic.

2. Current Work
A differentiable logic with
stronger formal guarantees.

3. Future Work
More expressive specifications.

Thomas Flinkow
Department of Computer Science
Maynooth University
Email: thomas.flinkow@mu.ie
https://www.cs.nuim.ie/~tflinkow/

Thank you! Any questions?
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