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1. Background & Motivation: Property-driven ML

Standard ML: Given data 𝒙, target 𝒚, and loss ℒ,
minimise 𝔼

(𝒙,𝒚)∼𝒟
ℒ(𝒙, 𝒚).

Adversarial training and DL2 [1]: Learn to satisfy constraints 𝜙 of
the form ∀𝒙.𝑃(𝒙) → 𝑄(𝒙) by:

•finding a counterexample 𝒙∗ that does not satisfy 𝑄 in the input
space 𝒮 induced by 𝑃 (outside train set) using PGD:

𝒙∗ = arg max
𝒙′∈𝒮

ℒ𝜙(𝒙, 𝒙′, 𝒚)

•and using this counterexample in training:
minimise 𝔼

(𝒙,𝒚)∼𝒟
[𝜆 ℒ(𝒙, 𝒚)⏟
prediction loss

+(1 − 𝜆) ℒ𝜙(𝒙, 𝒙∗, 𝒚)⏟⏟⏟⏟⏟
logical constraint loss

].

Differentiable Logics: Choice of many logics (e.g. DL2 [1],
STL [2], fuzzy logics [3, 4], …) to translate logical constraints into
logical loss, which differ in their domain and operators.
Research Question: How do they compare in terms of: (1)
learning behaviour, (2) logical consistency, and (3) in practice?

2. Investigating Learning Behaviour (Derivatives)

•Conjunction. Shadow-lifting [2] requires the truth value of a
conjunction to increase when the truth value of a conjunct does:

𝜕[[𝑥1 ∧ 𝑥2]]𝐿
𝜕𝑥𝑖

∣
𝑥1=𝑥2=𝜌

> 0 for all 𝑖 ∈ {1, 2}.

• Implication. Derivatives of implication allow Modus tollens and
Modus ponens reasoning [3]; two important inference rules.
Findings: DL2 and the Reichenbach fuzzy logic have
shadow-lifting conjunctions. Only the Reichenbach implication
closely follows Modus tollens and Modus ponens reasoning.

3. Investigating Logical Consistency

Idea [5]: A tautology 𝜏 should be true for all possible truth values:

⌠
⌡

⋯ ⌠
⌡[0,1]

[[𝜏(𝑥1, … , 𝑥𝑛)]]𝐿 d𝑥𝑛 ⋯ d𝑥1

Tautology Gödel Łukasiewicz Reichenbach
Primitive propositions
(𝑃 ∨ 𝑃) → 𝑃 0.50 0.75 0.75
𝑄 → (𝑃 ∨ 𝑄) 0.83 1 0.92
(𝑃 ∨ 𝑄) → (𝑄 ∨ 𝑃) 0.67 1 0.86
Law of excluded middle
𝑃 ∨ ¬𝑃 0.75 1 0.83
Law of contradiction
¬(𝑃 ∧ ¬𝑃) 0.75 1 0.83
Law of double negation
𝑃 ↔ ¬(¬𝑃) 0.50 1 0.70
Laws of tautology
𝑃 ↔ (𝑃 ∧ 𝑃) 0.50 0.75 0.69
𝑃 ↔ (𝑃 ∨ 𝑃) 0.50 0.75 0.69
De Morgan’s laws
¬(𝑃 ∧ 𝑄) ↔ (¬𝑃 ∨ ¬𝑄) 0.67 1 0.75
¬(𝑃 ∨ 𝑄) ↔ (¬𝑃 ∧ ¬𝑄) 0.33 1 0.75
Average Consistency 0.60 0.93 0.78

Findings: 𝑅-implications (Łukasiewicz and Goguen)—except
Gödel—are generally more consistent than 𝑆, 𝑁-implications
(Reichenbach and Kleene-Dienes).

4. Training Experiments

Constraint: SR(𝒙, 𝜖) ∶ ∀𝒙′ ∈ 𝔹(𝒙; 𝜖). ‖𝑓(𝒙′) − 𝑓(𝒙)‖∞ ≤ 𝛿.
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Constraint: The sum of probabilities of groups of related signs
must be either very high or very low.
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Findings: Property-driven training with any differentiable logic
generally leads to significantly improved constraint satisfaction.

5. Verification Experiment on MNIST

Constraint: SCR(𝒙, 𝜖) ∶ ∀𝒙′ ∈ 𝔹(𝒙; 𝜖). 𝑓(𝒙′)𝑦 ≥ 𝛿.
Using Marabou [6] to determine verified constraint satisfaction on
500 randomly chosen images on networks trained for 𝜖 = 0.4.

Logic Prediction
Accuracy

Constraint
Security

Verified Satisfaction
𝜖 = 0.2 𝜖 = 0.3 𝜖 = 0.4

Baseline 96.50% 79.68% 0.68%
(3/444)

0%
(0/500)

0%
(0/500)

DL2 93.07% 100% 92.98%
(384/413)

55.29%
(183/331)

20.51%
(73/356)

Fuzzy Logic 94.87% 100% 92.70%
(368/397)

52.16%
(157/301)

9.22%
(27/293)

Marabou was run with a per-image timeout of 30s.

Findings: Property-driven training yields some formal guarantees
but fails to establish strong ones.

6. Future Work: Formal Guarantees & Expressiveness

•Expressive specifications for ML & temporal differentiable logics.
•Adopt certified training to establish formal guarantees.
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