
Differentiable Logics for Machine Learning
with Logical Constraints in Practice

Thomas Flinkow
Department of Computer Science
Maynooth University

ITU Copenhagen
13th August 2024

Contents

Introduction & Motivation

Background

Experimental Setup & Results

Future Work

1 / 19

Introduction & Motivation

Comparing Differentiable Logics for Learning with Logical Constraints⋆

Thomas Flinkowa,∗, Barak A. Pearlmuttera,b, Rosemary Monahana,b

aDepartment of Computer Science, Maynooth University, Maynooth, Co. Kildare, Ireland
bHamilton Institute, Maynooth University, Maynooth, Co. Kildare, Ireland

Abstract

Extensive research on formal verification of machine learning systems indicates that learning from data alone
often fails to capture underlying background knowledge such as specifications implicitly available in the
data. Various neural network verifiers have been developed to ensure that a machine-learnt model satisfies
correctness and safety properties, however, they typically assume a trained network with fixed weights. A
promising approach for creating machine learning models that inherently satisfy constraints after training is
to encode background knowledge as explicit logical constraints that guide the learning process via so-called
differentiable logics. In this paper, we experimentally compare and evaluate various logics from the literature,
presenting our findings and highlighting open problems for future work.

Keywords: machine learning, neuro-symbolic, differentiable logic, verification

1. Introduction

Advancements in machine learning (ML) in the past few years indicate great potential for applying ML
to various domains. Autonomous systems are one such application domain, but using ML components in
such a safety-critical domain presents unique new challenges for formal verification. These include

• ML failing to learn background knowledge from data alone [2],

• neural networks being susceptible to adversarial inputs [3, 4],

• and a lack of specifications, generally and especially when continuous learning is permitted [5–7].

Addressing these challenges is even more important and more difficult when the ML-enabled autonomous
system is permitted to continue to learn after deployment, either to adapt to changing environments or to
correct and improve itself when errors are detected [8].

1.1. Formal verification of neural networks

A multitude of neural network verifiers have been presented in the past few years. We refer the reader to
the Neural Network Verification Competition (VNN-COMP) reports [9–12] for an overview of state-of-the-art
neural network verifiers, and to Huang et al. [13], Liu et al. [14], Urban and Miné [15], Albarghouthi [16], Meng
et al. [17] for in-depth surveys on neural network verification.

Reluplex, one of the first verifiers for neural networks, was provided by Katz et al. [18]. State-of-the-art
tools are its successor Marabou [19], along with NNV [20], MN-BaB [21], and α, β-CROWN [22–27] (the
winner of the 2021–2023 VNN-COMP competitions [9–11]). However, as noted by Kwiatkowska [28] they
typically assume trained networks with fixed weights and do not target the learning process itself.

⋆This paper is an extended version of our paper [1] published in FMAS 2023, containing a revised experimental setup leading
to a fairer, more meaningful comparison. Section 1.3 explains our extensions and contributions in more detail.

∗Corresponding author
Email address: thomas.flinkow@mu.ie (Thomas Flinkow)

Preprint submitted to Science of Computer Programming July 8, 2024

ar
X

iv
:2

40
7.

03
84

7v
1

 [
cs

.L
O

]
 4

 J
ul

 2
02

4

1 / 19

Motivation

Issue:
Neural networks fail to learn (safety) properties from data alone!

Example: Reluplex (Katz et al., 2017)
‘If an intruder is near and approaching from the left, network should
advise strong right’.

vown

vint

ρ

Ownship

Intruder
ψ

θ

2 / 19

Training with Logical Constraints

Task: train a neural network N to satisfy constraint ϕ.
Train: given data, labels, and loss function, iteratively update

network weights.
Verify: afterwards, α, β-CROWN, Marabou, NNV, ERAN, . . .

Neural Network Verifier

training data logical constraints

verify constraints

re-train

Note
Training with constraints does not guarantee their satisfaction!

3 / 19

• Is training with logical constraints useful in practice?

• Which logic translation is best?

3 / 19

Background

Training with Differentiable Logics

Given data x0 and label y , and constraint ϕ,
obtain optimal network weights θ+ by

θ+ = arg min
θ

αLCE(x0, y) + βLC(x0, y , ϕ).

Insight from DL2 (Fischer et al., 2019)
Learning to satisfy ∀x . x ⊨ ϕ by finding x∗ such that x∗ ⊭ ϕ.

1. Approximate counterexample outside of training set using PGD:

x∗ = arg max
x∈∥x−x0∥∞≤ϵ

LC(x0, x, y , ϕ)

2. Use this counterexample in training:

θ+ = arg min
θ

αLCE(x0, y) + βLC(x0, x∗, y , ϕ).

4 / 19

DL2 (Fischer et al., 2019)

• mapping [[·]]DL2 : Φ → [0,∞),
• [[ϕ]]DL2 = 0 iff ϕ is satisfied,
• [[ϕ]]DL2 is differentiable almost everywhere.

Recursive definition of loss translation:

[[x ≤ y]]DL2 := max{x − y , 0}
[[ϕ ∧ ψ]]DL2 := [[ϕ]]DL2 + [[ψ]]DL2

[[ϕ ∨ ψ]]DL2 := [[ϕ]]DL2 · [[ψ]]DL2.

5 / 19

Fuzzy Logics (Ślusarz et al., 2023; van Krieken et al., 2022)

• logical system for reasoning with vagueness
• mapping [[·]]L : Φ → [0, 1], where [[⊤]]L = 1 and [[⊥]]L = 0,
• operators happen to be differentiable almost everywhere

Logic T-norm S-norm Implication

Gödel
min{x , y} max{x , y}

{
1, if x < y ,
y , else.

Kleene-Dienes

S(N(x), y) Lukasiewicz max{0, x + y − 1} min{1, x + y}

Reichenbach
xy x + y − xy

Goguen
{

1, if x < y ,
y x , else.

6 / 19

How do these logics differ?

6 / 19

Derivatives – Modus Ponens and Modus Tollens

0
1 0

10

1

x
y

[[x → y]]G =
{

1, if x ≤ y
y , else

0
1 0

10

1

x
y

[[x → y]]RC = 1 − x + xy

Example: ‘If it rains, the ground will be wet.’
Let [[rain]] = 0.1 and [[ground wet]] = 0.

• With ∇[[x → y]]G =
[

0
1
]
, we have no choice but to gaslight.

Findings
Only the Reichenbach implication closely follows MP and MT.

7 / 19

Shadow-Lifting (Varnai & Dimarogonas, 2020)

Definition
∂[[x1 ∧ x2]]L

∂xi

∣∣∣∣
x1=x2=ρ

> 0 for all i ∈ {1, 2}.

Highly desirable for learning: allows for gradual improvement.

Example
The formula 0.1 ∧ 0.9 should be more true than 0.1 ∧ 0.2, but the
Gödel t-norm min{x , y} yields the same truth value in both cases.

Findings
DL2 and the Reichenbach logic are the only shadow-lifting logics.

8 / 19

Consistency (Grespan et al., 2021)

Definition
Given a fuzzy logic tautology τ , its consistency is defined as∫

· · ·
∫

[0,1]
[[τ(x1, . . . , xn)]]L dxn · · · dx1.

Findings
For the set of axioms chosen, Gödel logic was the least, and the sigm.
Reichenbach and Lukasiewicz logics were the most consistent.

9 / 19

Experimental Setup & Results

Integration into PyTorch1

def train(..):
for _, (inputs, labels) in enumerate(train_loader):

outputs = NN(inputs)
ce_loss = F.cross_entropy(outputs, labels)

adv = pgd.attack(NN, inputs, labels, constraint)
dl_loss = constraint.eval(NN, inputs, adv, labels)

loss = alpha * ce_loss + beta * dl_loss

optimizer.zero_grad()
loss.backward()
optimizer.step()

1https://github.com/tflinkow/comparing-differentiable-logics
10 / 19

https://github.com/tflinkow/comparing-differentiable-logics

Balancing Loss

θ+ = arg min
θ

αLCE(x0, y) + βLC(x0, x∗, y , ϕ).

Problem
It is crucial to find close to optimal values for α and β to allow each
logic to perform at its best and to yield a fair comparison.

Adaptive Loss Balancing with GradNorm (Chen et al., 2018)
• Key point: α(t) and β(t)
• Better results than expensive grid search!

11 / 19

Local Robustness Constraint

+ 0.007 × =

‘panda’
57.7 % confidence

adversarial
noise

‘gibbon’
99.3 % confidence

Figure 2: Adversarial attack (Goodfellow et al., 2015).

Definition
A neural network is locally robust in input x0, if

∀x. ∥x − x0∥∞ ≤ ε︸ ︷︷ ︸
all elements in the input space close to x0

implies ∥N (x) − N (x0)∥∞ ≤ δ︸ ︷︷ ︸
the classification is roughly the same

12 / 19

Local Robustness Constraint – Results

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Epoch

A
cc

ur
ac

y
Prediction (P)

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Epoch

Constraint (C)

Baseline DL2 Fuzzy Logic

Logic P C

Baseline 94.68 28.45

DL2 94.32 56.46

Fuzzy Logic 95.50 68.76

Figure 3: The Robustness(ϵ = 0.4, δ = 0.01) constraint on GTSRB.

Observation

The fuzzy logic translation [[x ≤ y]]L = 1 − max{x − y , 0}
|x | + |y |

seems to
perform better than the DL2 one [[x ≤ y]]DL2 = max{x − y , 0}.

13 / 19

Group Constraint

(a) unique signs
(b) danger signs

(c) derestriction signs (d) speed limit signs

(e) other prohibitory signs (f) mandatory signs

Definition

∀x ∈ ||x − x0|| ≤ ϵ︸ ︷︷ ︸
handled by PGD

→
∧

G∈GpG ≤ δ ∨ pG ≥ 1 − δ.

14 / 19

Group Constraint – Results

0 10 20 30 40 50

0

0.2

0.4

0.6

Epoch

A
cc

ur
ac

y

Prediction (P)

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Epoch

Constraint (C)

Baseline DL2 Gödel
Łukasiewicz Reichenbach Yager

Logic P C

Baseline 56.73 22.15

DL2 31.92 84.12

Gödel 34.76 99.39

Łukasiewicz 34.13 74.54

Reichenbach 28.00 79.76

Yager 33.44 90.06

Figure 5: The Groups(ϵ = 0.6, δ = 0.02) constraint on GTSRB.

Observation
The shadow-lifting conjunctions (Reichenbach and DL2) do not per-
form as well as the Gödel one (which always has strong derivatives).

15 / 19

Class Similarity Constraint

Introduce background knowledge into the network on CIFAR-10, i.e.

• A cat is more similar to a dog than to a frog.

Definition

∀x ∈ ||x − x0|| ≤ ϵ︸ ︷︷ ︸
handled by PGD

→
∧

⟨a,b,c⟩∈T
(N (x)a ≥ 1/10 → N (x)b ≥ N (x)c) .

16 / 19

Class Similarity Constraint – Results

0 10 20 30 40 50

0.2

0.4

0.6

Epoch

A
cc

ur
ac

y
Prediction (P)

0 10 20 30 40 50

0.8

1

Epoch

Constraint (C)

Baseline DL2 Gödel
Goguen Kleene-Dienes Łukasiewicz
Reichenbach sig. Reichenbach Yager

Logic P C

Baseline 59.50 72.15

DL2 30.13 88.82

Gödel 50.93 93.51

Goguen 50.34 93.13

Kleene-Dienes 44.20 90.40

Łukasiewicz 54.34 97.38

Reichenbach 44.58 78.58

sig. Reichenbach 54.66 87.45

Yager 41.33 76.04

Figure 6: The ClassSimilarity(ϵ = 0.6) constraint on CIFAR-10.

Observation
DL2 introduces a significant hit to prediction accuracy. The only
implication following MP and MT closely (Reichenbach) does not
perform extraordinarily well. 17 / 19

Future Work

Expressive Power

Example: ROAD-R Data Set (Giunchiglia et al., 2023)
Videos annotated with background knowledge (propositional logic).

{¬Ped,¬Cyc} ∪ {¬Red,¬Green} ∪ {¬Green,¬Mov} ∪ . . .

Is there a need for more expressive logics? e.g.
• temporal,
• probabilistic

18 / 19

Summary

Problem
Investigate the effectiveness of vari-
ous differentiable logics in practice.

Result
Training with any loss translation
works well.

Future Work
Investigate logics for properties
beyond propositional logic.

Thomas Flinkow

Department of Computer Science
Maynooth University

Email: thomas.flinkow@mu.ie

Thank you! Any questions?

19 / 19

mailto:thomas.flinkow@mu.ie

References

References
Chen, Z., Badrinarayanan, V., Lee, C.-Y., & Rabinovich, A.

(2018).GradNorm: Gradient Normalization for Adaptive Loss
Balancing in Deep Multitask Networks. Proceedings of the 35th
International Conference on Machine Learning, 794–803.

Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang, C., &
Vechev, M. (2019).DL2: Training and Querying Neural Networks
with Logic. Proceedings of the 36th International Conference on
Machine Learning, 1931–1941. Retrieved April 13, 2023, from
https://proceedings.mlr.press/v97/fischer19a.html

Giunchiglia, E., Stoian, M. C., Khan, S., Cuzzolin, F., & Lukasiewicz, T.
(2023).ROAD-R: The autonomous driving dataset with logical
requirements. Machine Learning, 112(9), 3261–3291.
https://doi.org/10.1007/s10994-023-06322-z

https://proceedings.mlr.press/v97/fischer19a.html
https://doi.org/10.1007/s10994-023-06322-z

References (cont.)

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015, March). Explaining and
Harnessing Adversarial Examples.
https://doi.org/10.48550/arXiv.1412.6572

Grespan, M. M., Gupta, A., & Srikumar, V. (2021, July). Evaluating
Relaxations of Logic for Neural Networks: A Comprehensive
Study. https://doi.org/10.48550/arXiv.2107.13646

Katz, G., Barrett, C., Dill, D. L., Julian, K., & Kochenderfer, M. J. (2017).
Reluplex: An Efficient SMT Solver for Verifying Deep Neural
Networks. In R. Majumdar & V. Kunčak (Eds.), Computer Aided
Verification (pp. 97–117). Springer International Publishing.
https://doi.org/10.1007/978-3-319-63387-9_5

Ślusarz, N., Komendantskaya, E., Daggitt, M., Stewart, R., & Stark, K.
(2023).Logic of Differentiable Logics: Towards a Uniform
Semantics of DL. EPiC Series in Computing, 94, 473–493.
https://doi.org/10.29007/c1nt

https://doi.org/10.48550/arXiv.1412.6572
https://doi.org/10.48550/arXiv.2107.13646
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.29007/c1nt

References (cont.)

van Krieken, E., Acar, E., & van Harmelen, F. (2022).Analyzing
Differentiable Fuzzy Logic Operators. Artificial Intelligence, 302,
103602. https://doi.org/10.1016/j.artint.2021.103602

Varnai, P., & Dimarogonas, D. V. (2020).On Robustness Metrics for
Learning STL Tasks. 2020 American Control Conference (ACC),
5394–5399.
https://doi.org/10.23919/ACC45564.2020.9147692

https://doi.org/10.1016/j.artint.2021.103602
https://doi.org/10.23919/ACC45564.2020.9147692

	Introduction & Motivation
	Background
	Experimental Setup & Results
	Future Work
	References

