Enhancing Crowdsourced Classification on Human Settlements Utilizing Logistic Regression Aggregation and Intrinsic Context Factors

Benjamin Herfort

GIScience Research Group

Heidelberg University

Heidelberg institute for geoinformation technology

The MapSwipe App

VGI ALIVE @ AGILE - 12.06.2018

MapSwipe Data Model: Project, Groups, Tasks, Results

3

To what degree can **automated classifiers** considering **intrinsic context factors** (user agreement, user characteristics and spatial characteristics) **enhance data quality** of aggregated **crowdsourced classifications?**

Dataset

- Tasks: 941,589
- Results: 3,275,380
- Users: 1,534

Reference:

 Building Footprints from OpenStreetMap (area has been validated through Clinton Health Initiative)

Agreement

Equation 1: Scott's Pi

$$P_{i} = \frac{1}{n * (n - 1)} * \sum_{J=1}^{n} n_{ij}^{2} - n_{ij}$$
Equation 2 Building
Classification Index

$$BI = \frac{n_{building}}{n}$$
Equation 3 No Building

$$NBI = \frac{n_{no} building}{n}$$

6

User Characteristics

User Activity number of contributions

number of completed groups

number of different projects

number of mapping sessions

User Performance accuracy

(no building, building, bad image) sensitivity

(no building, building, bad image) precision

(no building, building, bad image) f1 score.

Spatial Characteristics

Legend

✓ building classification
 building index
 < 5.4
 5.5 - 10.8
 10.9 - 16.1
 16.2 - 21.5
 21.6 - 26.9
 27.0 - 32.3
 32.4 - 37.7
 > 37.8
 0 0.25 0.5 0.75 1 km

Logistic Regression

	Coeff.	StdEr	Sign.	Odds
Building Index	78.735	0.027	<0.005	2626.8337
Average Accuracy (No Building Results)	-84.139	0.076	<0.005	0.0002
Average Building Precision (Building Results)	62.469	0.051	<0.005	516.406
Average Bad Image Precision (Bad Image Results)	-14.723	0.059	<0.005	0.2294
No Building Class Density	-0.0148	0.001	<0.005	0.9853
Building Class Density	0.0919	0.001	<0.005	1.0962
Bad Image Class Density	-0.2360	0.005	<0.005	0.7897

Classification Performance

	Soft Majority Agreement	Logit Classifier
Overall Accuracy	0.9693	0.9906
Building Sensitivity	0.7838	0.9325
Building Precision	0.9115	0.9770
Building F1 Score	0.8428	0.9543

MapSwipeAnalytics

mapswipe.heigit.org

Thank You. herfort@uni-heidelberg.de

VGI ALIVE @ AGILE - 12.06.2018