
1 Introduction

Land-use and land-cover changes (LULCC) have
many complex interrelations with different socio-
economic and environmental processes. This
interplay occurs from the local to the global
scales thus affecting individuals and the local
environment as well as society and the Earth
system as a whole. Researchers and decision-
makers need reliable, up-to-date and spatially
extensive LULCC information at different scales
in order to better understand these interrelations
and thus conceive effective policies for
environment protection and the sustainable
management of natural resources.
For a few decades now, due to their many
advantages, remote sensing data and methods,
coupled with field observations and other
geographic data, have been used for monitoring
LULCC. More recently, the open data policy
adopted by many national space agencies has
opened access to petabytes of remote sensing
data of different spatial, spectral and temporal
resolutions. This offers new possibilities for

improving scientific and governmental LULCC
monitoring activities, for example, deforestation
detection, wildfires mapping, crop monitoring.
However, exploring this massive amount of
data requires the understanding of an
appropriate software architecture in order to
ensure the interoperability and reproducibility of
their analysis. Such investigations cannot be
compared to small-scale ones that usually take
place in different processing and development
environments. By enabling their common
configuration parameters, this software
architecture leads to an unbiased and thus more
consistent data analysis, which, in its turn, leads
ultimately to more efficient decision making.
A few architectures for big EO data handling
have emerged with recent advances in
distributed systems, cloud computing and
geospatial services (Lewis et al., 2017; Camara et
al., 2016; Wang et al., 2018). These advances
have enabled the optimization of queries, the
access to different remote sensing data, the
down and upscaling of analyses in real-time as
well as the possibility that more people
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collaboratively work on the same analysis.
Applications supported by big EO data
architectures frequently require exhaustive
experimentations, high skilled people and more
extensive sampling. These requirements could be
partially fulfilled with the support of
crowdsourced geographic information. Human
visual image interpretation and the collection of
in situ data are simple and reliable ways of
providing up-to-date and detailed LULCC
information (Fritz et al., 2009) as well as
validating existing ones (See et al., 2015), thus
inserting society's perception in the pipeline of
LULCC analysis (Jokar et al., 2013; Comber et al.,
2015; Moorthy et al., 2017). In other words,
citizens could be part of the analysis process by
cleaning, creating, enriching, improving, labeling,
organizing, sampling, tuning and validating
LULCC datasets inside big EO data architectures.
However, the question on how could the
knowledge of the crowd be concretely explored
for improving LULCC monitoring with big EO data
analysis remains to this date largely open. The
main challenge is to support and promote an
active scientific citizenship within big EO data
architectures for LULCC monitoring.
To achieve this goal, it is crucial to understand
the variety of opportunities and potentials (as
well as the limitations) of crowdsourced
geographic information initiatives (Assis, et al.,
2018). Only then, the following tasks can be
approached: 1) to engineer the data and
business rules that could benefit big EO data
analytics; 2) to enable time-effective, low-cost
and user-friendly LULCC participatory monitoring
and validation; and, 3) to evaluate the volunteers
contributions and compare them to those from
in-house experts within complex architectures for
LULCC monitoring.
In this short paper, we briefly discuss the few
existing architectures for big EO image data
handling and the initiatives for leveraging LULCC
monitoring with citizen science. Furthermore, we
elaborate on the potential sinergies of combining
big EO data analytics and citizen science for
improving LULCC monitoring. Lastly, we mention
possibly promising future research avenues.

2 Big Earth Observation Data
Architecture

Due to the growing volume of data produced by
new satellites, LULCC applications have triggered
the need for a set of requirements designed to
enable the developement of complex analyses.
These architecture requirements include, but are
not limited to, distributed storage and processing
components, high performance computing,
usability to other domain specialists, consistent

and reliable analysis results, maintainability,
testability, and interoperability. They revolve
around interdisciplinary groups, heterogeneous
data specification, and the core operations for
the analysis (Pressman, 2005).
Currently, Google Earth Engine (GEE) is
considered one of the most efficient user-friendly
platform for high-performance analysis in a
planetary-scale (Gorelick et al., 2017). GEE allows
users to manipulate scripts and share their
results without the technical capacities required
for dealing with the complexity involved in this
type of processing. It provides a set of
intrinsically parallel functions on large geospatial
datasets, based on the MapReduce paradigm
(Dean and Ghemawat, 2010). However, GEE
requires additional efforts to adapt computational
tasks that don't fit into the MapReduce paradigm
or to use data that is not already available.
Alternatives to GEE include the MapReduce main
open source implementation, Hadoop, and its
spatial variations, namely, Hadoop-GIS (Aji et al.,
2013) and SpatialHadoop (Eldawy and Mokbel,
2015). Although both platforms achieve high
performance in batch processing jobs by
supporting a set of spatial index structures,
queries, data types and operations, they have
the drawbacks of either being a black box or of
producing an overwhelming amount of reads and
writes on disk.
There are also solutions such as GeoMesa (a
suite of big data tools built on top of Hadoop and
column-family databases) that enables indexing,
managing and analyzing both vector and raster
data (Hughes et al., 2015). It integrates with
Spark, but it does not deal with big spatial data in
streaming mode as GeoSpark does (Yu, Wu and
Sarwat, 2015). Although Geospark provides in-
memory processing that outperforms most of the
MapReduce-based platforms, preparing data as
streams for processing burdens the users in
comparison to other solutions. This is because
users need to download the imagery via a pre-
order request and the access is limited to a small
number of files per request. Then, it is necessary
to wait for the order to become available for
download. Finally, the imagery should be
organized and provided in a way that they can be
analyzed as a ordered sequence of files (Assis, et
al., 2016).
Another emergent solution aiming to facilitate
the organization of the data are the
multidimensional array databases. Exemplary
databases such as Rasdaman (Baumann et al.,
1998) and SciDB (Stonebraker, et al., 2013)
highlight the efficiency of relying on the
mathematical concept of 3-D array to manage EO
satellite images. In this case, the images are
arranged chronologically with the coordinates <x,
y, t> of a pixel corresponding respectively to its
latitude, longitude and time (Camara, et al., 2016;
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Planthaber, Stonebraker and Frew, 2012). This
3D array concept allows innovative spatio-
temporal analyses. Data Cubes also represent
multidimensional arrays in the geospatial context
(Lewis et al., 2017). It aims to prepare large,
heterogeneous, and complex remote sensing
data directly for the analyses. The term ''analysis
ready data'' was created based on the motivation
to provide data with a minimum set of
requirements to start the analysis (Giuliani et al.,
2017).

3 Participatory Land-Use and Land-
Cover Monitoring

Big EO data combined with the appropriate
software architecture and the effective analysis
methods are still not enough to achieve the
desired improvement in LULCC monitoring.
Subtle class differences (e.g. pastures and
savannas), high class variability as well as
classes typical of some regions are factors that
frequently require more extensive and minucius
sampling as well as local knowledge that remote
sensing experts sometimes lack.
Manually collected data by non-specialists but
local experts can provide valuable and reliable
information for LULCC monitoring. Furthermore,
this would reduce the burden on the staff of
experts regarding sampling and the validation of
LULCC products (Lillesand, Kiefer and Chipman,
2014). Such a channel for the mutual exchange
of LULCC knowledge between citizens and
scientists can benefit both parts by generating
detailed and up-to-date LULCC information
(Newman et al., 2012; Bonney et al., 2016). The
development of such a channel requires taking
into account the issues of data quality and
consistency as well as the issues involved in
environmental monitoring (Irwin, 1995). Open
Street Map (OSM) is the most prominent example
of a platform for the participatory production of
geographic information. It enables local experts
and engaged volunteers to contribute with
geographic information that is frequently not
available elsewhere and would be otherwise
difficult to obtain. These volunteers understand
that the task relates not only to feed the
application, but also to improve both the
application efficacy and their learning curve
about the topic with experience.
More specifically regarding LULCC information,
OSM LULC, LACO-Wiki, LandSense, Geopedia,
AgroSense and Collect Earth are standard Web-
GIS applications for managing LULCC information
based on volunteers. Land-Cover Geo-Wiki
proposes a collaborative manner to extend,
validate and update LULCC information (Fritz et
al., 2009; Fritz et al., 2011). They include citizen

engagement requirements (Fritz, et al., 2012)
and quality assurance methods (Comber et al.,
2013; Foody et al, 2013).
Unfortunately, this and other similar platforms
have limited data availability. This relates to the
want-to vs. have-to dialetic. An user might be
aware of what to do but not motivated for doing
so. As a consequence, data availability varies a
lot from place to place even in consolidated
platforms such as OSM. Younger volunteers
might feel stimulated by game-design elements
and principles such as rewards, prestige and
competition. Gamification concepts combined
with high-tech volunteer-oriented deployments
(e.g., Foldit, Mozak) can encourage more
participants due to their intrinsic driven
motivation. Furthermore, specific knowledge
marathons are another way of stimulating a
group of people for hours, days or even weeks to
explore data, discuss new ideas and develop new
designs. Social media, workshops and events
offer an alternative way to share our own
awareness about the fact, therefore, they play an
important role for these approaches.

4 Citizen Science applied to Big
Earth Observation Data Analytics

Big EO data architectures have made it possible
that citizens contribute to LULCC monitoring
through user-friendly and intuitive tools. More
than providing valuable information for the
understanding of the issues involved in
environmental monitoring (Irwin, 1995; Miller-
Rushing, Primack and Booney, 2012; See et al.,
2016), citizens might create together with
scientists a sustainable and democratic analysis
process. With the appropriate training,
accessibility and architecture design, they are
able to collaborate with reliable local LULCC
information and thus help the staff of experts in
remote sensing applications which might even
involve complex computational tasks and
statistical analysis (Lillesand, Kiefer and Chipman,
2014; Schultz et al., 2017; Wan et al., 2017).
Crowdsourcers have indeed proven to be able
to perform tasks of different degrees of
complexity, from tagging images (Herfort et al.,
2017) to collaboratively build websites (Paolacci,
Chandler and Iperotis, 2010). Thus, the
assistance of the crowd has been resourted to in
a large variety of applications both in academia
and in outsourced services. The potentially large
amount of data produced by crowdsourcers is of
particular relevance for data-driven analyses of
more dynamic phenomena such as LULCC (Lary
et al., 2016). Besides, the collection of some
types of data by experts might be time and cost
excessive, they sometimes possess a certain bias
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towards the interests of specific campaigns and
communities of experts. In the domain of LULCC,
this is reflected by the existence of different
classification systems (Friedl et al., 2010; Team,
2018; GlobCover, 2018). It can thus be argued
that crowdsourced labeled LULCC data would be
more in accordance with the local perceptions
and therefore more usable to the local
communities. This also enables experts to focus
more on computational, structuring and gate-
keeping tasks (Lease, 2011).
New big EO data architectures should enable,
i.e., contain a mechanism for, the collection of
data by individuals with less related expertise.
They should strive to optimize the arrange of
independent citizens with varying experiences
and skill levels. In this regard, machine learning
methods could be effectively applied. More
specifically, a semi-supervised category of
learning methods called active learning is
particularly relevant. In active learning, the
algorithm receives as input a large amount of
data without labels. It then attempts to learn how
to classify them by interactively requesting
labeled samples from the least amount of (and
most skilled) individuals or so-called "human
annotators" (Schohn and Cohn, 2000). Active
learning offers an adequate trade-off between
computational resources and the most useful
citizen-provided information. Thus, in the context
of big EO data and citizen-assisted LULCC
monitoring programs, regions with limited or lack
of samples could be more accurately classified by
means of this optimized and effective sampling.

5 Final Remarks and Future Work

We have briefly discussed in the previous
sections the recent advances in crowdsourced
geographic information production and big EO
data architectures. Furthermore, we provided
some initial ideas on how to combine these two
worlds. A deeper discussion of these and other
related ideas is the aim of our future work and
should throw light on questions of very distinct
nature: from engaging citizens (e.g., how to
engage and motivate citizens to contribute as a
way to ensure the sustainability of the project?),
to project sustainability (e.g., how can citizens be
assigned to tasks and their contributions
managed in an intelligent manner as a way to
optimize the effectiveness/data input relation?),
to reliability of information (e.g., to which extent
appropriate architecture designs should help
citizens to contribute with reliable LULCC
information?), to the use of an specific
"technique" such as active learning (e.g., to what
extent crowdsourced data may improve the
accuracy of machine learning algorithms within

big EO data architectures?), and passing by
decision-making support (e.g., what are the
possibilities and constraints in terms of remote
sensing and auxiliary data inputs to a crowd-
assisted LULCC monitoring system?).
Researchers and developers focusing on the
above questions and more generally on
combining big EO data architectures and
crowdsourced geographic information for LULCC
monitoring will face many challenges. However,
this is a fresh ground for new ideas and therefore
an exciting topic for a deeper discussion and a
deeper literature review.
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