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Abstract

Semantics in the context of Genetic Program (GP) can be understood as the

behaviour of a program given a set of inputs and has been well documented in

improving performance of GP for a range of complex problems. There have been a

variety of different methods which have incorporated semantics into GP but a focal

point for this research is the work by Galván et al. (2020) which uses a individual

from a sparse region of the search space and calculates the semantic distance between

this reference point and every other individual in the population. This distance

is then used a an additional objective to optimize in a Multi-Objective Genetic

Program (MOGP). This dissertation will serve to analyse this semantic distance as

well a produce an update to this distance calculation.

Another key aspect of this dissertation is to incorporate semantics into a multi-

objective evolutionary algorithm that previously has not utilized semantics before.

During the last number of years the primary focus of research in semantic diversity

in Multi-Objective problems has centred around frameworks which use Pareto dom-

inance fitness-assignment where the objectives are considered separately. MOEA/D

differs from these methods in that an aggregated scalar function is used to measure

fitness, where the problem at hand is decomposed into a number of sub-problems.

It is hoped that incorporating semantics into MOEA/D will open up a new avenue

of research.
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2 Introduction

Genetic Programming is a sub-field of evolutionary algorithms that use genetic opera-

tions which are analogous to behavioural biology to evolve programs to solve a problem.

[2] Genetic operations include crossover which combines sub-trees of parent programs

and mutation which alters a small part of a program trees structure to produce new

offspring. A fitness criteria is used to determine whether these changes are beneficial or

not and determines if offspring should be retained into the next generation. The range of

problem domains for GP are wide and GP has been found to be beneficial for problems

with multiple local optima and for problems with a varying degree of complexity.

The goal of multi-objective optimization (MOO) is to find the optimal solution to a

problem via the simultaneous consideration of multiple objectives. Often these objectives

will work against each other when undergoing optimization, in other words if we were

to consider a two class system, seeking to maximize the objective of one class may

result in a minimization of another and vica versa. Therefore we need to incorporate a

methodology which would promote maximization for all objectives.

A key area of study in single and multi-objective GP is diversity and can have

a profound effect on an algorithms ability evolve. Diversity can be understood as a

measure of how similar programs are within a given population and programs which

are found to be too similar have a tendency to produce inferior offspring during genetic

operations.

2.1 Project Objectives

The main cause of the loss of diversity occurs as a result of the population converging to

local optima which in turn reduces the GP ability to find better solutions. Essentially

the number of high ranking programs (programs that will contribute favourably under

genetic operations) are reduced within the population and resultant genetic operations

fail to produce offspring that diverge from the local optima.

Originally diversity measures were handled primarily by the architecture of the pro-

grams under consideration where structural changes were made to control the size, shape,

primitive and terminal set in order to promote diversity. These measures are known as

structural diversity. Semantic diversity deals with the behavioural aspects of a GP in

that it’s analyses how similar the outputs for different program are given a set of inputs.

The goal and outcomes of this dissertation are therefore as such;
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• To conduct an analysis on Semantic Distance when used as on Objective. The

analysis showed that the semantic distance was not an objective in conflict.

• To improve semantic diversity in previously reported methods [1] by using an up-

dated semantic distance calculation. The new calculation was found to be problem

dependant on whether it made significant improvements over the original calcula-

tion but gave more insight into how semantic distance was preferenced by NSGA-II

when used as an objective. The new calculation was found to preform significantly

better over canonical methods.

• A new method is proposed which incorporates semantics into a multi-objective evo-

lutionary algorithm with decomposition (MOEA/D). Results showed that incor-

porating semantics improved performance when compared to canonical MOEA/D.

2.2 Outline of Thesis

Section 3.2 deals with the basics of Genetic Programming focusing particular on aspects

and methods used during experiments Section 3.3 first deals with Pareto dominance and

Crowding distance before going into more detail on the canonical methods; NSGA-II,

SPEA2 and MOEA/D. Section 3.4 first gives a formal definition of semantics before

detailing specific strategies that have previously been used by other researchers. Section

3.5 details the fitness classification of our data. An importance metric for comparing

performance, the hypervolume is also discussed. Section 3.6 covers the data used in the

experimentation.

Section 4.1 describes some of the motivation behind updating semantic distance in

previously discussed methods. Section 4.2 to Section 4.4 deals with implementation and

set up of experiments.

Section 5.1 derives analysis from the semantic distance when used as an objective.

Section 5.2 then compare 3 different methods that use semantics as an objective. On the

back of this work further analysis is done comparing these three methods in Section 5.3.

Finally the results of MOEA/D-TCH SSC are discussed in Section 5.4 before making

concluding remarks and suggestions for future work.
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3 Background Literature

3.1 Relevant Literature

Genetic programming (GP) was popularized in the early 1990’s by Koza (1992). Since

then GP has developed as field with many branching methodologies. A comprehensive

book A field guide to genetic programming Poli et al. (2008) has been used as primary

source for covering the basics of GP in this dissertation. Two popular methods in tackling

Multi-objective problems are discussed in this paper; the fast and elitist non-dominated

sorting algorithm (NSGA-II) by Deb K. et al. (2002) and strength Pareto evolutionary

algorithm (SPEA2) by Zitzler et al. (2001). Another method, multi-objective evolution-

ary algorithm with decomposition (MOEA/D) was proposed by Zhang et al. (2007).

The same authors (2008) noted that for certain problems with complex Pareto fronts,

MOEA/D outperformed NSGA-II.

This dissertation focuses on the use of semantics in MOGP. A primary reference

is the work of Galv́an et al. (2020) which uses semantic distance as an objective to

optimize. Other work on semantics that is of particular interest is Uy et al. (2011) who

used semantics in an expensive crossover technique to aid diversity. The topics discussed

thus far have only been briefly touched upon and will discussed in greater detail in the

following sections.

3.2 Genetic Programming

3.2.1 Basics

Genetic Programming (GP) takes a population of initially randomized programs which

are evolved over a set number of generations via genetic operations known as crossover

and mutation in order to solve a pre-defined problem. The most common representation

of a GP is as a tree based structure consisting of leafs and nodes. This tree structure of

leafs and nodes is defined by what are known as functions and terminals. The function

set is the list of arithmetic operators used by the GP and are assigned at the non-terminal

nodes, < “ t`,´, ˚,%u. The terminal set can be defined by constants and variables at

the leafs of the GP tree. The set of all permissible functions and terminals is known

as the primitive set. Without detailing any specific framework we can now give a very

basic overview of a typical GP algorithm;
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Algorithm 1 Basic GP

1: Initialize a population of randomized programs using a predefined primitive set.

2: while stopping criteria not met do

3: Evaluate fitness of each program.

4: Select programs to use for genetic operations

5: Create new offspring population via genetic operations.

6: end while

7: return Best program

When initializing the population of programs there are three popular methods in

determining it’s structure Full, Grow and Ramped half-and-half. If we define the depth

of a tree as the depth of it’s deepest leaf, then the Full method initialises the programs

so that their leaves they are all the same depth. This method requires all terminals

to be filled before terminating. The grow method on the other hand terminates once

terminals filled for a sub tree which has reached the max depth. The Ramped half-and-

half method is a compromise between these two methods where half the population is

created using the Full method and the other half with Grow.

3.2.2 Tournament Selection

Tournament selection is used to determine which individuals we wish to perform genetic

operations on. A set number of individuals from the population are picked at random

and compared against each other to find a parent program (This process is repeated

twice for crossover as two parents are required). In order to insure the selection process

is not overtly biased, tournament selection only determines if a program preforms better

but not by how much. This prevents loss of diversity as a particular good program will

not over dominate in subsequent generations.

3.2.3 Crossover

Conceptually crossover is analogous to biological sexual reproduction where the genetic

material of an offspring is a composite of it’s parents genetic material. Crossover deals

with the creation of child programs based on two parent programs. Copies are made

of the parent programs for the crossover operation as the parent programs may still

be retained for further crossover operations. A node for each copied parent program

is independently selected and is referred to as the cross-over point. A child program is
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created by first discarding the sub-tree of one parent at the cross-over point and retaining

the root tree before the cross-over point of the other and combining the remaining the

tree structures at the cross-over point. This is demonstrated below;

Figure 1: Diagram showing how crossover operation creates an offspring program

An extension of this method is to create a second child program where instead of

discarding the unused tree structures a new tree structure is formed. As a result for every

two parent programs we will have two offspring programs. This method of crossover is

known as single point crossover.

9



Figure 2: Diagram showing how crossover operation creates two offspring programs

through single point crossover

The crossover operation can sometimes lead to predominantly leaf nodes being chosen

as cross-over points which results in a low level of genetic material being passed on into

future populations. To counteract this one can insure as a prerequisite that 90% of the

cross-over points are functional nodes and the remaining 10% as leaf nodes.

3.2.4 Mutation

One of the most common forms of mutation is subtree mutation. Subtree mutation

creates a new offspring to be retained into the next generation by randomly selecting

a mutation point and replacing the sub-tree connected to this point with another ran-

domized subtree.

3.2.5 Other considerations

Bloat can be defined as program growth with no significant increase in fitness [3], this

occurs after successive crossover operations and tends to increase in occurrence as the

algorithm progresses through newer generations. Programs that exhibit bloat tend to

generalize solutions poorly as they move away from succinct mathematical representation

(i.e parsimonious) and can result in over fitting, though this can be problem dependant

as some problems may require more complexity. Another drawback of bloat is that larger

programs can be more computationally expensive thus requiring more resources for the

evaluation of their fitness.
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Another importance consideration is that of closure. Closure can be separated into

two aspects type consistency and evaluation safety. Type Consistency checks that in-

sure the correct number of inputs for operations are chosen, e.g for multiplication we

require two variables/constants, for instance x1 ˚ x2 has two inputs (not 1 or more than

2). Evaluation Safety insures that operations are executable, for instance the protected

division operator % which checks if the denominator is equal to zero and if it is sets the

output to zero.

3.3 Canonical Methods

NSGA-II and SPEA2 are methods that attempt to approximate what is known as the

Pareto-optimal set. Before discussing the specifics of these approaches we will define

what the Pareto-optimal set is by first discussing Pareto Dominance relation. Addition-

ally we will briefly discuss another important metric known as the Crowding Distance.

3.3.1 Pareto dominance

In general terms a multi-objective problem seeks to find a solution that either maximizes

or minimizes a number of objectives. In the case of maximization this can be represented

mathematically as;

maxpf1pxq, f2pxq, ..., fkpxqq s.t. x P X, (1)

Where fipxq represents the ith objective function and k ě 2. Typically there will not

exist a unique solution that will maximize all objective functions. A candidate solution is

Pareto dominant if its fitness is better or equal for all objectives and is strictly preferred

by at least one in the search space. This can be formally represented mathematically

by;

Si ą Sj Ø @mrpSiqm ě pSjqms ^ DkrpSiqk ą pSjqKs (2)

Where pSiqm is the ith solution for objective k and Si ą Sj denotes that solution i

is non-dominated by solution j. A candidate solution is considered Pareto optimal if is
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not dominated by any other candidate solution. In other words, if none of the objectives

for a candidate solution can be improved without degrading at least one of the other

objectives it can be considered Pareto optimal. For multi-objective problems there

may exist a number of non-dominated solutions. The set of non-dominated candidate

solutions for an MO problem is referred to as the first Pareto frontier when represented

in objective space. In practise it is not always possible to do an exhaustive search for the

true Pareto optimal set and as such this is something we seek to approximate instead.

Figure 3: Diagram showing dominated and non-dominated solutions. Non-dominated

solution lie along the Pareto front.

Pareto dominance relation is an integral part of MOEAs and has allowed practitioners

and researchers to form important metrics in the selection process of these algorithms.

Two such metrics are dominance rank and dominance count. Dominance rank is used as

a fitness measure and calculates how may other solutions a candidate solution is domi-

nated by. The lower the dominance rank the better with the lowest dominance rank of
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0, i.e a solution that is not dominated by any other solution. Dominance rank can be

expressed mathematically as seen in equation 3

Spiq “ |tj|j P Pop^ Sj ą Siu| (3)

Where |.| represents the cardinality of the set. This criteria is utilized in NSGA-II.

Dominance count calculates how many individuals a candidate solution dominates [1].

The higher the dominance count the better. Dominance rank and Dominance count are

both used in SPEA-2.

Spjq “ |tj|j P Pop^ Si ą Sju| (4)

Leading on from the previous equation we can get a measure of fitness by summing

the fitness of all individuals such that [4];

Rpiq “
ÿ

jPPt` sPt, jąi

Spjq (5)

3.3.2 Crowding distance

Solutions are ranked relative to each other according to a metric known as the crowding

distance. The crowding distance is used to compare any pair of solutions in search space

and is used in NSGA-II and SPEA2 as Pareto Dominance alone only acts as a partial

order of the solutions. The crowding distance calculation is comprised of three parts;

• Initialize the distance d to zero.

• Set the boundary solutions to inf. These solutions are always selected due to this

constraint.

• Calculate the average distance differences for an individual against it’s two nearest

neighbours using the Manhattan distance.

d “ d`
|f
pcq
r`1 ´ f

pcq
r´1|

|f
pcq
max ´ f

pcq
min|

(6)
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Where c denotes the class in question. Solutions with the highest crowding distance

are considered better solutions, in other words the algorithm preferences localities along

the Pareto front which are more sparsely populated with solutions than those which

are more dense. In this manner the crowding distance resolves which solutions to retain

when programs produce very similar fitness values. Figure 4 represents how the crowding

distance is calculated in objective space.

Figure 4: Showing cuboid of crowding distance

3.3.3 NSGA-II

Elitist non-dominated sorting algorithm II is a popular MOGP algorithm consisting of

3 main components; fast non-dominated sort which assigns a Pareto ranking to our

solutions, crowding distance assignment and the crowding comparison operator. Elitism

simply refers to the algorithms ability to retain the best performing individuals into the

next generation.
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Algorithm 2 Psuedocode for NSGA-II

1: Rt “ Pt YQt

2: F “ fast-non-dominated-sortpRtq

3: Pt`1 “ H

4: i “ 1

5: while |Pt`1| ` |Fi| ď N do

6: crowding-distance-assignmentpFq
7: Pt`1 “ Pt`1 Y Fi

8: i “ i` 1

9: end while

10: SortpFi , ănq

11: Pt`1 “ Pt`1 Y Fir1 : pN ´ |Pt`1|qs

12: Qt`1 “ make-new-poppPt`1q

13: t “ t` 1

The algorithm can be broken into a number of steps;

• The parent and offspring population are combined into a single population Rt of

size 2N.

• The combined population is sorted using the fast-non-dominated-sort function cre-

ating output of non-dominated sets F .

• The next parent population Pt`1 is initialized as a null set and i is set to 1. When

Fi is smaller than the population size N all members are assigned to the population

Pt`1 with the remaining population being filled by successive non-dominated fronts

based on their ranking. In other words, while the criteria |Pt`1| ` |Fi| ď N has

not been met, Pt`1 will be filled with population members based on their Pareto

rank with F1 being chosen first, F2 chosen next on so on until no more sets can

be used to fully fill the population.

• Typically the last Pareto set Fl will not fully fill the population and so is sorted

based on crowding distance from equation 6 and the remaining population members

are filled using Fir1 : pN ´ |Pt`1|qs.

• Now that we have our new parent population Pt`1 we can create our offspring

population Qt`1 using mutation and crossover and move onto the next generation

t + 1.

15



A summary schematic of the NSGA-II procedure can be seen in figure 5. In this ex-

ample candidate solutions for fronts F4 and F5 are rejected immediately after the non-

dominated sort. A further crowding distance sort is done on F3 to select which solutions

to retain into Pt`1 and which to reject.

Figure 5: Diagram NSGA-II algorithm.
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3.3.4 SPEA2

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) proposed by Zitzler et al (2001)

[6] is another method which seeks to approximate the Pareto-optimal set. SPEA2 uses

an external archive population. When the number of non-dominated solutions is less

than the archive size, the best dominated solutions from the parent population are used

to fill the archive. Individuals may dominate the same archive members and as such have

the same fitness values. To resolve this potential issue SPEA2 uses both dominance rank

and dominance count. If the number of solutions is greater then a truncation measure is

taken that iteratively removes individuals that have the shortest distance to their nearest

neighbour. The steps and pseudocode (shown in Algorithm 3) for SPEA2 are as follows;

Step 1: Initialize population P0 and set archive population P̄0 “ H

Step 2: Loop over each generation and find the fitness for each individual in populations

Pt and P̄t

Step 3: Copy all of the non-dominated individuals in Pt and P̄t into P̄t`1.

Step 4: If | sPt`1| ě sN truncate the set or if | sPt`1| ď sN fill the set using both dominance

rank and dominance count to determine retention.

Step 5: Crossover and mutation are performed on to P̄t`1 create Pt`1 the population

to be retained into the next generation.
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Algorithm 3 Psuedocode for SPEA-2

1: sP0 “ H

2: t “ 0

3: stop-criteria “ 0

4: while stop-criteria ‰ 1 do

5: sPt`1 “ fitness-dominancepPt , sPtq

6: if | sPt`1| ą sN then

7: while | sPt`1| ‰ sN do

8: sPt`1 “ truncatep sPt`1q

9: end while

10: else if | sPt`1| ă sN then

11: while | sPt`1| ‰ sN do

12: sPt`1 “ fillp sPt`1q

13: end while

14: else

15: pass

16: end if

17: if t ě T then

18: At`1 “ sPt`1

19: stop-criteria “ 1

20: else

21: sPt`1 “ mating-selectionp sPt`1q

22: Pt`1 “ variationp sPt`1q

23: end if

24: t “ t` 1

25: end while

3.3.5 MOEA/D

So far we have discussed two domination-based fitness assignment strategies; NSGA-II

and SPEA2. Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D)

differs in that it decomposes the MOP into a subset of scalar optimization problems [7].

It is important to note that with MOEA/D we still wish to approximate the Pareto-

optimal front but instead of using dominance to determine the fitness of our solutions we

use a scalar value aggregated from multiple objectives method [8]. In the original paper

18



by Zhang et al. (2007) proposed three scalarization methods; weighted sum, Tcheby-

cheff and Penalty-based Boundary Intersection (PBI). As the weighted sum method was

reported to poorly approximate concave fronts in their entirety and as the PBI method

incorporates it’s own diversity preserving measure, this dissertation will focus primarily

on the Tchebycheff approach.

minpgpx|λqq “ max
1ďjďm

tλ9|fjpxq ´ zju (7)

λ is a weight vector that is assigned to each sub problem and represents a search

direction in objective space. Zj is the ideal point and represents the ideal solution for a

given problem.

Step 1: Initialization

Step 1.1) Initialize external population EP “ H.

Step 1.2) Calculate the Euclidean distance between any two weight vectors and find

the T closest weight vectors to each respective weight vector. For each i = 1, 2... N, set

Bpiq “ i1, i2, ..., iT where Bpiq can be understood as a neighbourhood reference table of

indices and where λi1 , λi2 , ..., λiT are the T closest weight vectors to λi.

Step 1.3) Randomly create the initial population x1, x2...xN and set the fitness value

FV i “ F pxiq.

Step 2: Update For i = 1, 2, ... , N; do the following steps

Step 2.1) Select two indices k and l randomly from the neighbour hood reference ta-

ble B(i) and generate new offspring y from parents xk and xl by apply genetic operations.

Step 2.2) An optional problem-specific repair and improvement heuristic on y to pro-

duce y1, otherwise let y = y1.

Step 2.3) Update z such that for each j = 1, 2, ... , m if zj ¡ fjpy
1q, then set zj “ fjpy

1q.

In the case where objective is to minimize F(x) then this inequality should be reversed.
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Step 2.4) Update the neighbouring solutions for the ith case such that for jBpiq, if

gpy1|λj , zq ď gpxj |λj , zq then let xj “ y1 and the fitness value FV j “ F py1q.

3.4 Semantics

In general terms semantics can be understood as a measure of how similar two programs

are in a population relative to their behaviour. Two individuals may have different tree

structures but behave very similarly, i.e return fitness values for each objective which are

the same. [12] For example if we were to consider a simple symbolic regression problem

where two candidate programs were of the form; fpxq “ 3 ˚ x and fpxq “ x ˚ x ˚ x

then the resultant fitness for these programs would invariably be the same and these

programs would be considered semantically equivalent.

Pawlak et. al. gave a formal definition for program semantics in this context. [11].

Let p P P be a program from a given programming language P . The program p will

produce a specific output ppinq where input in P I. The set of inputs I can be understood

as being mapped to the set of outputs O which can be defined as p : I Ñ 0.

Def 1. Semantic mapping is a function s : P Ñ S mapping any program p from P

to the semantic space S where we can show the semantic equivalence of two programs;

spp1q “ spp2q ðñ @ in P I : p1pinq “ p2pinq (8)

This definition presents three important and intuitive for semantics:

1. Every program has only one semantic attributed to it.

2. Two or more programs can have the same semantics.

3. Programs which produce different outputs have different semantics.

In practice the set of inputs from which our fitness cases are derived are limited and

as such def 1, is more of a generalization. For a truer representation of semantics we

need to define semantics under the assumption of a finite set of fitness cases, where a

fitness case is a pair comprised of a program input and it’s respective program output I

X 0.

Def 2. The semantics s(p) of a program p is the vector of values from the output

set O obtained by running p on all inputs from input set I:
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sppq “ rppin1q, ppin2q, ..., ppinlqs (9)

Where l “ |I| is the size of the input set. Now that we have a formal definition in of

semantics we can discuss the formal application of it in GP.

3.4.1 Semantic Similarity-based Crossover

Uy et. al. [10] developed an expensive crossover mechanism for incorporating improving

semantic diversity known as semantic similarity-based crossover (SSC). SSC was the

first notable example of semantics in single objective GP. SSC attempts to produce

preferable offspring by insuring during the crossover operation that the two sub-trees

are not semantically similar and also that they are not too semantically dissimilar. The

absolute differences for every in P I are calculated between parent and offspring and an

average is calculated for these differences in order to obtain the semantic distance for

the individual under consideration. If this semantics distance falls within the range of

two threshold values (or above or below a single threshold value) then the new offspring

is retained. However it may be difficult for the crossover operation to generate offspring

which meet this criteria and as such crossover is applied for a predefined number of

times until this criteria is meet. If the criteria is not met then crossover is applied in the

normal fashion without considering semantics.

3.4.2 Semantic-based Crowding Distance

In this method the crowding distance as discussed in section 3.3 is replaced by by a

semantic-based crowding distance. A pivot p is selected as the individual in the first

Pareto front which is furthest away from all other individuals v in that front. This

distance is calculated using the crowding distance as discussed previously. Once we have

the pivot we can compute the semantic differences of the pivot against all the other

individuals in the population. We can use upper and lower semantic similarity bounds

to create our semantic distance as shown in equation or a single bound as like in equation

.

dppj , vq “
l

ÿ

i“1

1 if LBSS ď |ppiniq ´ vpiniq| ď UBSS (10)

dppj , vq “
l

ÿ

i“1

1 if |ppiniq ´ vpiniq| ě UBSS (11)
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3.4.3 Semantic Distance as an Objective

The semantic-bases crowding distance can also be used as an objective for MOGP to

optimize. With the majority and minority class serving as the first two objectives to

optimize semantic distance is also treated a third objective.

3.5 Fitness and Performance Measure

3.5.1 Classification Fitness

A common metric used in determining fitness for binary classification problems is to use

classification accuracy; where ACC “ TP`TN
TP`TN`FP`FN . However with imbalanced data

sets using this accuracy measure will tend to bias towards the majority class. As such

it is better to treat the minority and majority as two separate objectives where the goal

is to maximize the number of correctly classified cases. This can be done using the true

positive rate TPR “ TP
TP`TN and true negative TNR “ TN

TN`FP [14]

3.5.2 Hypervolume

Hypervolume (also referred to as the hyperarea) is calculated as the sum of the trape-

zoidal areas underneath the Pareto front and is used as a performance measure. Ac-

cessing the fit based on the hypervolume in case of objectives we wish to maximise is

relatively straightforward to interpret. Typically the closer the point of inflection for

the estimated Pareto front is to the top right hand corner the higher the hypervolume

average will be. It is important to note however not all problems will result in Pareto

fronts with a curve of this nature.
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Figure 6: Diagram showing hypervolume calculation where each point represents the

majority and minority fitness of a candidate solution.

3.6 Data

MNIST is a popular data set of hand written digits where the goal is to classify each

digit correctly. In the following experiments we have taken a subset of the MNIST where

we took a subset of the data with 6000 entries for each digit. Each digit is considered

in isolation, where the digit under consideration was classified as 1 and all other digits

were classified as 0. As a result the data itself is imbalanced with a ratio of 1:9. When

splitting the training and test set this imbalance ratio was maintained for each set.

Feature extraction was performed with by splitting each image into a series of boxes and

returning the mean and standard deviation for each box.

The rest of the data set originate from the UCI Machine Learning repository [15].

The characteristics of these data sets vary greatly, with varying number of features and

imbalance ratios. A brief description of each of these data sets is given below including

the nature of their feature type followed by a table giving a breakdown of their imbalance

ratios and number of features.
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Data Sets Cases Positive Negative Imb. Ratio #. of Features

MNISTi 6000 600 5400 1:9 18

Ion 351 126 225 1:3 34

SPECT 267 55 212 1:4 22

Yeast1 1482 244 1238 1:6 8

Yeast2 1482 163 1319 1:9 8

Abal1 731 42 689 1:17 8

Abal2 4177 32 4145 1:130 8

Table 1: Table showing imbalance ratios and number of features for each data set

Ion Radar measurements of free electron signals in the Ionosphere. Binary response

of either Good or Bad signal.

Spect Data set used to diagnose cardiac Single Proton Emission Computed Tomogra-

phy images. Patients are classified into abnormal or normal cases.

Yeast1 Deals with the cellular localisation site of protein sequence. Protein is classified

as mitochondrial versus other.

Yeast2 Also deals with the cellular localisation site of protein sequence. Protein is

classified as membrane protein ME3 versus other proteins.

Abal1 Data set used to determine the age of abalone shellfish via the number of rings

on the shell after dissection. Classify shellfish with 9 rings versus 18 rings.

Abal2 Data set used to determine the age of abalone shellfish via the number of rings

on the shell after dissection. Minority class is for 19 rings versus all other ring

counts.

All data sets were split 50/50 with half of the entries being attributed to the training

set and the other half for the test set. The same class imbalance ratio is kept between

the training and test set.
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4 Description of Work undertaken

4.1 Pivot Similarity Semantic-based Distance as and Objective

In section 3.4.3 we discussed SDO which calculates the Semantic distance between each

individual and a pivot. To this effect equations 10 and 11 were used to determine if the

semantic difference between a pivot and the individuals fall within a predefined range.

There are two motivating reasons for why the Semantic distance from these equations

ought to be reconsidered. The first reason will be explained with the aid of a simplified

problem. Lets consider a problem where we only consider the semantics of two individual

programs against a pivot.

Figure 7: Diagram showing Pivot in a simplified example.
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Let’s now say we have only a few fitness cases we wish to use (In reality we would

have typically have a much larger number of fitness cases), we chose a method that uses

equation 11 with a UBSS value of 0.5 and we got an example output of;

Comparison Value Sum

|ppin1q ´Apin1q| 0.6 1

|ppin2q ´Apin2q| 0.7 1

|ppin3q ´Apin3q| 0.8 1

Comparison Value Sum

|ppin1q ´Bpin1q| 0.6 1

|ppin2q ´Bpin2q| 0.0 0

|ppin3q ´Bpin3q| 0.1 0

This would give us dppj , Aq “ 3 and dppj , Bq “ 1. Now considering that in SDO we

use the semantic distance as an objective.

Should we preference A whose semantics are greater for each input.

Or

Should we preference B whose semantic similarity to the pivot is closest, given that the

pivot is approximated as the most diverse individual from the first front in search space.

The methods we discussed in section 3.4 would preference A. Another motivating factor

for updating the semantic distance calculation is that as an objective the distance was

found not to be in conflict. This is discussed in greater detail in section 5.1.

A proposed update in the distance calculation is given in equation 12, where the

summed values is now taken away from the number of fitness cases. This method is

referred to as Pivot Similarity Semantic-based Distance as and Objective (PSDO).

dppj , vq “ l ´
l

ÿ

i“1

1 (12)
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4.2 Implementation

Most of the coding implementation centred around updating a pre-existing MOGP

framework that contained NSGA-II and SPEA2 with SDO and SSC methods readily

available. In figure 8 a simplified version of the code Architecture has been presented.

The classes highlighted in green represents the main code sections that have been added

to from the pre-existing packages.

As part of our analysis (Sections 5.1 and 5.3) we plotted Semantic Distance versus

majority and Distance Versus Minority. This required updating the code to output the

distance into result files to be plotted. The distance was normalized to 1 by dividing by

the number of fitness cases and was printed to the output .dat files.

For the results of tables 3 and 4 contain three methods that use three objectives. The

first method SDO are results previously obtained by Galván et al. (2020) and have been

reproduced with permission. The other two methods are PSDO and SSCDO. The PSDO

method was incorporated into the pre-existing framework and new classes were created

for running this independently. SSCDO required no additional coding work as this is

essentially a combination of the SDO and SSC method. Extensive experiments were run

for PSDO and SSCDO with over 10,000 independent runs. Each setting required 50

independent runs to insure statistical significance.

MOEA/D was a canonical method added to the code from scratch. Source code

written Java by Wudong, L was a jumping point for integrating MOEA/D. Additionally

this code was linked up with the SSC method for experiments run with the MNIST data.

A list of the major files that were added or modified have been included in appendix A.

Additionally a method was created that used multiple pivots. Essentially the moti-

vation here was to sample from various points in the search space and to compute the

semantics difference against these points and all other individuals. This method was

tested with the MNIST data set and compared along side NSGA-II, NSGA SDO and

NSGA PSDO. The results of these can be found in appendix A and are mixed between

all methods.
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Figure 8: Diagram of code architecture
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4.3 Experiments

Kay is a supercomputer operated by Irish Centre for High-End Computing and allows

researchers access to high-performance computing technologies [17]. All experiments

were conducted using the cluster partition of Kay and the system specifications of which

are as follows;

• Architecture: Cluster of 336 nodes, with a total of 13,440 cores and 63 TiB of

distributed memory.

• Processor: 2x 20-core 2.4 GHz Intel Xeon Gold 6148 (Skylake) for each node.

• Ram: 192 GiB.

• Network Adaptor: 100Gbit Omnipath.

A scheduling policy with a reference to available resources can be seen in the below

table;

Scheduling Policy

Queue type Node Type Max nodes per

job

Max walltime

DevQ Cluster 4 1 hour

ProdQ Cluster 40 72 hours

DevQ was primarily used for testing while all reported experiments were done using

ProdQ. 25GB of storage are available for the Users home directory which is where the

experiment output files were stored [18].

To help manage the workload submitted jobs were run in parallel. Essentially each

node in Kay comprises of 50 CPU’s. There are a number of ways of running in parallel

but one method was to create a unique property file for each run and assign one CPU

to each of these property files. This would insure resources were being efficiently used

and on average results for a particular data set would be produced roughly around the

same time.
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4.4 Running Experiments

Property files are contained at the level ultimateExperimentalGP {. This file specifies

most of the properties we require to run our MO program. Also linked to this file is the

ReadConfiguration.java file located in experimentalGP.utils{ folder. This file needs to

be updated for the Fitness Classification to work [line 250]. A description of the various

properties is given below which have been covered in detail in the previous sections.

• functionSpec Defines our function set operators. For +, -, *, %,

• FILE SIMPLE STATS is used to specify the names of our output files. This is

used with string comprehension to name of .dat outputs.

• DEFPROBLEM Defines which problem we are interested in. Each problem has

unique code associated with it. For example MNIST dataset was given the unique

code 181.

• INITIALISATION Defines tree growth, either Ramped, Full or Grow. Set to

Ramped for all experiments.

• POPSIZE Population size of our individuals. Set to 500 for all experiments.

• GENERATIONS The number of generations we wish to run our GP for. Set to

50 for all experiments.

• TSIZE Tournament size. Set to 7 for all experiments.

• TYPECROSSOVER Defines the type of crossover we wish to use. Selected as

single point crossover for all experiments.

• TYPEMUTATION Defines the type of mutation we wish to use. Selected as

subtree mutation for all experiments.

• INI DEPTH Used to define the initial tree depth upon initialization. Set to 1.

• FIN DEPTH Used to define the final tree depth upon initialization. Set to 5.

• MAXIMUM DEPTH Maximum depth of program trees in population

• CROSSOVER RATE Determines probability of crossover being applied

• MUTATION RATE Determines probability of mutation being applied
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• CONTROL BLOAT Do we wish to control bloat in our experiment. Defined as

boolean true or false.

• RUNS How many times we will run our program. This is required to get accurate

error rates for our experiment.

• LEN CONTROL BLOAT Controls the maximum length we allow individuals

to grow. Set to 800 throughout.

• MO Specify if the problem is multiobjective. Defined as boolean true or false.

• MO TYPE Defines which MOEA strategy to use.

• NUMBER OBJECTIVES The number of objectives under consideration

• DECOMP Defines the decomposition method to use. 0 for Tchebychev and 1 for

PBI (source code for PBI has been implemented but no results have been gathered

for this report)

• LBSS Lower bound semantic similarity.

• UBSS Upper bound semantic similarity.

5 Analysis and Results

5.1 Semantic Distance as an Objective Analysis

A key aspect for this dissertation was to investigate semantics in the methods proposed

by Galván et al. (2020). As part of the research for this dissertation the semantics

distance as an objective has been further analyzed. A series of experiments were run

for Ion, Spect, Yeast1, Yeast1, Abal1 and Abal2 with an UBSS value of 0.5 using just a

single threshold as defined in equation 11. The semantic distance has been normalized

and exported with the results along with majority and minority objectives. The full set

of results can be found in appendix B. Figure 9 shows that the minority and majority

class are in conflict. The last Pareto front is relatively smooth and exhibits the trade off

in fitness for solutions along the x and y axis.
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Figure 9: Plot of Majority vs Minority for Yeast1 data using NSGA-II SDO

Figures 10 and 11 on the other hand show that semantic distance is not in conflict

when compared against Minority and Majority objectives. This is observed clearly in

the plots as there are solutions that ought to be dominated (and hence removed) and

also by virtue of the high density of solutions close (1,1) in each plot. The high density of

solutions close to this ideal point indicates that the condition of a trade off in objectives

has not been met.
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Figure 10: Plot of Distance vs Minority for Yeast1 data using NSGA-II SDO
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Figure 11: Plot of Distance vs Majority for Yeast1 data using NSGA-II SDO
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Figure 12: Plot of Distance vs Minor-

ity for Ion data using NSGA-II SDO
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Figure 13: Plot of Distance vs Major-

ity for Ion data using NSGA-II SDO
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Figure 14: Plot of Distance vs Minor-

ity for Ion data using NSGA-II SDO
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Figure 15: Plot of Distance vs Major-

ity for spect data using NSGA-II SDO

While it is difficult to see a trend in the plot for Yeast1, the rest of the plots show

distinctly that higher semantic distances were preferred in the Last Pareto front for

Ion and Spect. Plots 16 - 21 all appear to have formed two distinct clusters; one with

relatively large semantic distance and the other with relatively small semantic distance.
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Figure 16: Plot of Distance vs Minor-

ity for Ion data using NSGA-II SDO
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Figure 17: Plot of Distance vs Major-

ity for spect data using NSGA-II SDO
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Figure 18: Plot of Distance vs Minor-

ity for Ion data using NSGA-II SDO
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Figure 19: Plot of Distance vs Major-

ity for spect data using NSGA-II SDO
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Figure 20: Plot of Distance vs Minor-

ity for Ion data using NSGA-II SDO
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Figure 21: Plot of Distance vs Major-

ity for spect data using NSGA-II SDO

5.2 Comparison between Various Semantic methods

Under consideration are the canonical forms of NSGA-II and SPEA2, the results of

which have been reproduced in table 5 and 6 and the three methods which use a third

objective; SDO which has been reproduced from [1], PSDO which used the updated

Pivot distance that preferences individuals who are semantically similar to the pivot

and SSCDO which utilizes SSC method of expensive crossover in addition to considering

the semantic distance as an objective (original SDO).

Significance tests for the 3 Objective methods were compared against canonical

NSGA-II and SPEA-II using two sample t tests. The null hypothesis H0 : µa “ µb vs the

alternative H0 : µa ‰ µb where µa is the average hyperfront for the canonical method

and µb is the average hyperfront for one of the 3 objective methods. Each method was

run 50 times to insure results would be statistically significant. A significance level of

α = 0.05 was chosen and any value above 1.96 or below -1.96 was considered to be

statistically significant. The t statistic can then be calculated between the two methods;

t “
µa ´ µb

b

S2
a{n` S

2
b {nq

In tables 3 and 4 results that were found to be significantly better are denoted with a

+ and results that are found to be worse are denoted with a -. The best result for each

data set has been underlined.
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Table 2: Average hyperarea (˘ std. deviation) and last run Pareto Front for NSGA-II

and SPEA2 for 50 independent runs. Results have been reproduced under permission

from Galván et. al [1]

Dataset

NSGA-II SPEA2

Hypervolume Hypervolume

Average PO Front Average PO Front

Ion 0.766 ˘ 0.114 0.938 0.786 ˘ 0.094 0.948

Spect 0.534 ˘ 0.024 0.647 0.544 ˘ 0.032 0.659

Yeast1 0.838 ˘ 0.011 0.876 0.838 ˘ 0.008 0.877

Yeast2 0.950 ˘ 0.009 0.976 0.946 ˘ 0.015 0.978

Abal1 0.847 ˘ 0.058 0.961 0.832 ˘ 0.078 0.960

Abal2 0.576 ˘ 0.122 0.842 0.544 ˘ 0.147 0.834
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Table 3: Average hyperarea (˘ std. deviation) and last run Pareto Front for NSGA-II SDO, NSGA-II PSDO

and NSGA-II SSC methods. NSGA-II SDO Results have been reproduced under permission from Galván et. al

2020

Hypervolume

Average PO Front

UBSS UBSS

LBSS 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

NSGA-II SDO

Ion

– 0.860 ˘ 0.033+ 0.869 ˘ 0.037+ 0.869 ˘ 0.033+ 0.845 ˘ 0.057+ 0.948 0.958 0.962 0.950

0.001 0.817 ˘ 0.087+ 0.819 ˘ 0.104+ 0.857 ˘ 0.057+ 0.861 ˘ 0.047+ 0.942 0.957 0.954 0.958

0.01 0.825 ˘ 0.084+ 0.843 ˘ 0.073+ 0.861 ˘ 0.045+ 0.861 ˘ 0.038+ 0.946 0.956 0.957 0.944

0.1 0.846 ˘ 0.070+ 0.848 ˘ 0.068+ 0.844 ˘ 0.075+ 0.864 ˘ 0.044+ 0.950 0.956 0.953 0.960

Spect

– 0.591 ˘ 0.027+ 0.593 ˘ 0.025+ 0.594 ˘ 0.023+ 0.600 ˘ 0.019+ 0.684 0.679 0.689 0.694

0.001 0.562 ˘ 0.021+ 0.558 ˘ 0.025+ 0.561 ˘ 0.019+ 0.560 ˘ 0.016+ 0.668 0.653 0.660 0.644

0.01 0.564 ˘ 0.025+ 0.560 ˘ 0.023+ 0.566 ˘ 0.024+ 0.559 ˘ 0.016+ 0.672 0.650 0.669 0.643

0.1 0.563 ˘ 0.022+ 0.563 ˘ 0.024+ 0.567 ˘ 0.018+ 0.561 ˘ 0.024+ 0.664 0.658 0.655 0.658

Yeast1

– 0.850 ˘ 0.006+ 0.849 ˘ 0.008+ 0.849 ˘ 0.006+ 0.849 ˘ 0.006+ 0.881 0.881 0.882 0.881

0.001 0.845 ˘ 0.007+ 0.847 ˘ 0.006+ 0.848 ˘ 0.004+ 0.848 ˘ 0.005+ 0.879 0.882 0.879 0.880

0.01 0.848 ˘ 0.006+ 0.849 ˘ 0.005+ 0.848 ˘ 0.005+ 0.850 ˘ 0.005+ 0.881 0.881 0.879 0.881

0.1 0.847 ˘ 0.005+ 0.848 ˘ 0.005+ 0.848 ˘ 0.005+ 0.850 ˘ 0.005+ 0.878 0.879 0.879 0.883

Yeast2

– 0.961 ˘ 0.007+ 0.961 ˘ 0.007+ 0.960 ˘ 0.008+ 0.962 ˘ 0.007+ 0.978 0.979 0.979 0.979

0.001 0.959 ˘ 0.008+ 0.958 ˘ 0.007+ 0.961 ˘ 0.006+ 0.961 ˘ 0.006+ 0.981 0.978 0.979 0.978

0.01 0.955 ˘ 0.009+ 0.959 ˘ 0.007+ 0.960 ˘ 0.009+ 0.961 ˘ 0.007+ 0.979 0.980 0.979 0.978

0.1 0.958 ˘ 0.009+ 0.960 ˘ 0.007+ 0.961 ˘ 0.007+ 0.962 ˘ 0.006+ 0.978 0.978 0.981 0.979

Abal1

– 0.849 ˘ 0.081 0.862 ˘ 0.087 0.847 ˘ 0.089 0.849 ˘ 0.085 0.964 0.970 0.966 0.967

0.001 0.892 ˘ 0.051+ 0.905 ˘ 0.036+ 0.907 ˘ 0.036+ 0.906 ˘ 0.034+ 0.970 0.968 0.969 0.971

0.01 0.908 ˘ 0.038+ 0.900 ˘ 0.056+ 0.919 ˘ 0.022+ 0.919 ˘ 0.026+ 0.969 0.973 0.970 0.972

0.1 0.910 ˘ 0.037+ 0.911 ˘ 0.046+ 0.912 ˘ 0.049+ 0.916 ˘ 0.031+ 0.970 0.972 0.969 0.970

Abal2

– 0.591 ˘ 0.102 0.623 ˘ 0.138 0.634 ˘ 0.115 0.617 ˘ 0.137 0.862 0.878 0.881 0.873

0.001 0.729 ˘ 0.070+ 0.722 ˘ 0.063+ 0.709 ˘ 0.080+ 0.735 ˘ 0.074+ 0.877 0.870 0.879 0.885

0.01 0.721 ˘ 0.067+ 0.725 ˘ 0.075+ 0.721 ˘ 0.074+ 0.723 ˘ 0.066+ 0.881 0.879 0.884 0.880

0.1 0.724 ˘ 0.076+ 0.739 ˘ 0.065+ 0.736 ˘ 0.063+ 0.756 ˘ 0.065+ 0.888 0.883 0.886 0.890

Better (+) / Worse (-) 22 / 0 22 / 0 22 / 0 22 / 0

Same (=) / NSS 0 / 2 0 / 2 0 / 2 0 / 2

NSGA-II PSDO

Ion

– 0.794 ˘ 0.100 + 0.811 ˘ 0.084 + 0.823 ˘ 0.091 + 0.795 ˘ 0.105 + 0.904 0.932 0.945 0.939

0.001 0.867 ˘ 0.035+ 0.874 ˘ 0.029+ 0.880 ˘ 0.036+ 0.873 ˘ 0.045+ 0.959 0.952 0.965 0.945

0.01 0.852 ˘ 0.050+ 0.867 ˘ 0.051+ 0.880 ˘ 0.031+ 0.867 ˘ 0.050+ 0.947 0.950 0.944 0.949

0.1 0.853 ˘ 0.062+ 0.869 ˘ 0.048+ 0.875 ˘ 0.051+ 0.872 ˘ 0.049+ 0.941 0.951 0.956 0.938

Spect

– 0.552 ˘ 0.020+ 0.546 ˘ 0.022+ 0.555 ˘ 0.022+ 0.554 ˘ 0.017+ 0.648 0.665 0.638 0.640

0.001 0.550 ˘ 0.026+ 0.562 ˘ 0.025+ 0.561 ˘ 0.025+ 0.592 ˘ 0.026+ 0.661 0.670 0.658 0.706

0.01 0.550 ˘ 0.025+ 0.563 ˘ 0.026+ 0.558 ˘ 0.025+ 0.583 ˘ 0.020+ 0.649 0.675 0.667 0.669

0.1 0.551 ˘ 0.023+ 0.560 ˘ 0.024+ 0.557 ˘ 0.025+ 0.593 ˘ 0.020+ 0.666 0.664 0.678 0.682

Yeast1

– 0.846 ˘ 0.006+ 0.846 ˘ 0.005+ 0.847 ˘ 0.005+ 0.848 ˘ 0.006+ 0.864 0.868 0.871 0.869

0.001 0.849 ˘ 0.006+ 0.848 ˘ 0.005+ 0.850 ˘ 0.007+ 0.850 ˘ 0.005+ 0.873 0.868 0.871 0.869

0.01 0.850 ˘ 0.005+ 0.849 ˘ 0.007+ 0.850 ˘ 0.006+ 0.851 ˘ 0.006+ 0.870 0.874 0.872 0.872

0.1 0.850 ˘ 0.006+ 0.850 ˘ 0.005+ 0.850 ˘ 0.005+ 0.851 ˘ 0.006+ 0.876 0.873 0.872 0.870

Yeast2

– 0.957 ˘ 0.007+ 0.959 ˘ 0.007+ 0.957 ˘ 0.009+ 0.959 ˘ 0.007+ 0.973 0.978 0.976 0.978

0.001 0.960 ˘ 0.010+ 0.962 ˘ 0.005+ 0.964 ˘ 0.005+ 0.962 ˘ 0.008+ 0.976 0.976 0.978 0.977

0.01 0.962 ˘ 0.006+ 0.962 ˘ 0.006+ 0.962 ˘ 0.005+ 0.962 ˘ 0.006+ 0.977 0.975 0.974 0.975

0.1 0.964 ˘ 0.006+ 0.960 ˘ 0.010+ 0.963 ˘ 0.005+ 0.961 ˘ 0.007+ 0.976 0.976 0.977 0.975

Abal1

– 0.890 ˘ 0.051+ 0.881 ˘ 0.070+ 0.885 ˘ 0.046+ 0.884 ˘ 0.058+ 0.959 0.966 0.961 0.952

0.001 0.861 ˘ 0.079 0.848 ˘ 0.073 0.877 ˘ 0.078+ 0.864 ˘ 0.075 0.962 0.957 0.962 0.959

0.01 0.864 ˘ 0.067 0.858 ˘ 0.076 0.865 ˘ 0.070 0.873 ˘ 0.066+ 0.967 0.959 0.962 0.962

0.1 0.858 ˘ 0.082 0.887 ˘ 0.061+ 0.864 ˘ 0.074 0.860 ˘ 0.075 0.963 0.968 0.962 0.955

Abal2

– 0.704 ˘ 0.083+ 0.699 ˘ 0.072+ 0.706 ˘ 0.069+ 0.711 ˘ 0.076+ 0.826 0.859 0.874 0.858

0.001 0.725 ˘ 0.070+ 0.743 ˘ 0.079+ 0.745 ˘ 0.060+ 0.733 ˘ 0.075+ 0.859 0.871 0.854 0.877

0.01 0.741 ˘ 0.086+ 0.735 ˘ 0.074+ 0.724 ˘ 0.070+ 0.728 ˘ 0.069+ 0.873 0.867 0.870 0.873

0.1 0.743 ˘ 0.061+ 0.723 ˘ 0.073+ 0.719 ˘ 0.088+ 0.722 ˘ 0.063+ 0.877 0.847 0.846 0.851

Better (+) / Worse (-) 21 / 0 22/ 0 22 / 0 22 / 0

Same (=) / NSS 0 / 3 0 / 2 0 / 2 0 / 0 2

NSGA-II SSCDO

Ion – – 0.864˘ 0.032+ – – – 0.953 – –

Spect – – 0.582˘ 0.026+ – – – 0.679 – –

Yeast1 – – 0.851˘ 0.007+ – – – 0.882 – –

Yeast2 – – 0.962˘ 0.009+ – – – 0.980 – –

Abal1 – – 0.885˘ 0.059+ – – – 0.971 – –

Abal2 – – 0.644 ˘ 0.111 – – – 0.881 – –

Better (+) / Worse (-) - / - 5 / 0 - / - - / -

Same (=) / NSS - / - 0/ 1 - / - - / -



Table 4: Average hyperarea (˘ std. deviation) and last run Pareto Front for SPEA2 SDO, SPEA2 PSDO and

SPEA2 SSCDO methods. SPEA2 SDO Results have been reproduced under permission from Galván et. al 2020

Hypervolume

Average PO Front

UBSS UBSS

LBSS 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

SPEA2 SDO

Ion

– 0.859 ˘ 0.031+ 0.869 ˘ 0.029+ 0.862 ˘ 0.034+ 0.865 ˘ 0.047+ 0.951 0.952 0.950 0.961

0.001 0.858 ˘ 0.041+ 0.852 ˘ 0.075+ 0.870 ˘ 0.055+ 0.874 ˘ 0.055+ 0.946 - 0.955 0.952 0.956

0.01 0.837 ˘ 0.097+ 0.851 ˘ 0.077+ 0.875 ˘ 0.032+ 0.863 ˘ 0.049+ 0.956 0.951 0.953 0.959

0.1 0.852 ˘ 0.071+ 0.856 ˘ 0.053+ 0.873 ˘ 0.035+ 0.862 ˘ 0.038+ 0.947 0.949 0.952 0.950

Spect

– 0.591 ˘ 0.020+ 0.599 ˘ 0.021+ 0.597 ˘ 0.018+ 0.595 ˘ 0.022+ 0.678 0.688 0.686 0.695

0.001 0.569 ˘ 0.021+ 0.565 ˘ 0.024+ 0.566 ˘ 0.023+ 0.563 ˘ 0.023+ 0.668 0.666 0.672 0.658

0.01 0.568 ˘ 0.023+ 0.567 ˘ 0.024+ 0.564 ˘ 0.025+ 0.563 ˘ 0.023+ 0.666 0.674 0.664 0.658

0.1 0.566 ˘ 0.023+ 0.560 ˘ 0.020+ 0.567 ˘ 0.027+ 0.561 ˘ 0.022+ 0.666 0.654 0.673 0.658

Yeast1

– 0.850 ˘ 0.007+ 0.850 ˘ 0.006+ 0.849 ˘ 0.008+ 0.849 ˘ 0.004+ 0.882 0.881 0.881 0.881

0.001 0.848 ˘ 0.006+ 0.847 ˘ 0.007+ 0.848 ˘ 0.004+ 0.850 ˘ 0.006+ 0.880 0.883 0.880 0.883

0.01 0.848 ˘ 0.006+ 0.847 ˘ 0.006+ 0.850 ˘ 0.005+ 0.850 ˘ 0.005+ 0.881 0.880 0.882 0.879

0.1 0.847 ˘ 0.005+ 0.849 ˘ 0.006+ 0.848 ˘ 0.005+ 0.849 ˘ 0.006+ 0.879 0.882 0.880 0.882

Yeast2

– 0.962 ˘ 0.007+ 0.962 ˘ 0.006+ 0.962 ˘ 0.006+ 0.963 ˘ 0.008+ 0.979 0.979 0.979 0.977

0.001 0.958 ˘ 0.008+ 0.960 ˘ 0.007+ 0.960 ˘ 0.005+ 0.960 ˘ 0.005+ 0.980 0.979 0.979 0.977

0.01 0.959 ˘ 0.008+ 0.961 ˘ 0.007+ 0.961 ˘ 0.005+ 0.962 ˘ 0.007+ 0.979 0.980 0.978 0.978

0.1 0.961 ˘ 0.007+ 0.961 ˘ 0.007+ 0.960 ˘ 0.007+ 0.964 ˘ 0.007+ 0.980 0.979 0.979 0.980

Abal1

– 0.875 ˘ 0.059+ 0.868 ˘ 0.081+ 0.875 ˘ 0.059+ 0.873 ˘ 0.069+ 0.965 0.974 0.968 0.972

0.001 0.895 ˘ 0.061+ 0.911 ˘ 0.031+ 0.905 ˘ 0.044+ 0.903 ˘ 0.036+ 0.974 0.973 0.972 0.972

0.01 0.903 ˘ 0.038+ 0.906 ˘ 0.042+ 0.901 ˘ 0.048+ 0.910 ˘ 0.039+ 0.966 0.969 0.972 0.974

0.1 0.888 ˘ 0.067+ 0.918 ˘ 0.032+ 0.910 ˘ 0.046+ 0.916 ˘ 0.027+ 0.974 0.970 0.968 0.967

Abal2

– 0.620 ˘ 0.148+ 0.633 ˘ 0.124+ 0.651 ˘ 0.146+ 0.630 ˘ 0.138+ 0.874 0.861 0.879 0.876

0.001 0.717 ˘ 0.069+ 0.709 ˘ 0.079+ 0.722 ˘ 0.083+ 0.733 ˘ 0.075+ 0.868 0.883 0.886 0.891

0.01 0.706 ˘ 0.084+ 0.720 ˘ 0.067+ 0.726 ˘ 0.067+ 0.747 ˘ 0.070+ 0.884 0.880 0.877 0.887

0.1 0.732 ˘ 0.064+ 0.733 ˘ 0.066+ 0.749 ˘ 0.063+ 0.737 ˘ 0.081+ 0.880 0.876 0.883 0.877

Better (+) / Worse (-) 24 / 0 24 / 0 24 / 0 24 / 0 22 / 2 23 / 1 23 / 0 18 / 5

Eq. (”) / NS (x) 0 / 0 0/ 0 0 / 0 0 / 0 0 / - 0 / - 1 / - 1 / -

SPEA2 PSDO

Ion

– 0.864 ˘ 0.038+ 0.861 ˘ 0.032+ 0.865 ˘ 0.031+ 0.868 ˘ 0.034+ 0.926 0.932 0.921 0.922

0.001 0.852 ˘ 0.076+ 0.857 ˘ 0.055+ 0.872 ˘ 0.033+ 0.869 ˘ 0.036+ 0.872 0.895 0.846 0.893

0.01 0.880 ˘ 0.036+ 0.864 ˘ 0.041+ 0.857 ˘ 0.068+ 0.871 ˘ 0.036+ 0.955 0.922 0.944 0.905

0.1 0.856 ˘ 0.056+ 0.874 ˘ 0.034+ 0.866 ˘ 0.03+ 0.874 ˘ 0.034+ 0.931 0.921 0.830 0.900

Spect

– 0.595 ˘ 0.028+ 0.599 ˘ 0.020+ 0.595 ˘ 0.020+ 0.602 ˘ 0.025+ 0.669 0.670 0.664 0.657

0.001 0.563 ˘ 0.028+ 0.568 ˘ 0.020+ 0.570 ˘ 0.022+ 0.565 ˘ 0.021+ 0.670 0.621 0.623 0.607

0.01 0.569 ˘ 0.027+ 0.565 ˘ 0.021+ 0.566 ˘ 0.023+ 0.562 ˘ 0.022+ 0.628 0.620 0.599 0.610

0.1 0.567 ˘ 0.025+ 0.563 ˘ 0.022+ 0.564 ˘ 0.022+ 0.562 ˘ 0.022+ 0.632 0.633 0.606 0.620

Yeast1 – 0.849 ˘ 0.006 0.849 ˘ 0.005 0.850 ˘ 0.006 0.849 ˘ 0.006 0.874 0.875 0.867 0.872

0.001 0.847 ˘ 0.005 0.847 ˘ 0.007 0.848 ˘ 0.006 0.847 ˘ 0.005- 0.867 0.868 0.865 0.865

0.01 0.847 ˘ 0.005 0.848 ˘ 0.006 0.849 ˘ 0.006 0.849 ˘ 0.006 0.865 0.864 0.864 0.865

0.1 0.848 ˘ 0.006 0.849 ˘ 0.006 0.849 ˘ 0.007 0.849 ˘ 0.006 0.863 0.866 0.867 0.871

Yeast2

– 0.961 ˘ 0.008+ 0.951 ˘ 0.007+ 0.962 ˘ 0.008+ 0.963 ˘ 0.007+ 0.979 0.977 0.978 0.975

0.001 0.956 ˘ 0.010+ 0.959 ˘ 0.005+ 0.958 ˘ 0.005+ 0.960 ˘ 0.008+ 0.977 0.975 0.977 0.975

0.01 0.959 ˘ 0.006+ 0.960 ˘ 0.006+ 0.960 ˘ 0.005+ 0.963 ˘ 0.006+ 0.973 0.976 0.973 0.976

0.1 0.960 ˘ 0.006+ 0.958 ˘ 0.010+ 0.963 ˘ 0.005+ 0.964 ˘ 0.007+ 0.975 0.972 0.975 0.974

Abal1

– 0.858 ˘ 0.067 0.840 ˘ 0.097 0.855 ˘ 0.082 0.869 ˘ 0.073+ 0.962 0.954 0.962 0.958

0.001 0.888 ˘ 0.048+ 0.890 ˘ 0.059+ 0.902 ˘ 0.045+ 0.905 ˘ 0.037+ 0.964 0.958 0.958 0.965

0.01 0.893 ˘ 0.049+ 0.908 ˘ 0.043+ 0.913 ˘ 0.046+ 0.917 ˘ 0.026+ 0.957 0.959 0.967 0.949

0.1 0.912 ˘ 0.031+ 0.904 ˘ 0.053+ 0.916 ˘ 0.033+ 0.919 ˘ 0.027+ 0.953 0.963 0.962 0.958

Abal2

– 0.655 ˘ 0.104+ 0.621 ˘ 0.121+ 0.662 ˘ 0.107+ 0.647 ˘ 0.117+ 0.863 0.864 0.866 0.862

0.001 0.720 ˘ 0.061+ 0.717 ˘ 0.066 0.715 ˘ 0.067+ 0.726 ˘ 0.059+ 0.861 0.818 0.840 0.850

0.01 0.698 ˘ 0.080+ 0.716 ˘ 0.070+ 0.723 ˘ 0.077+ 0.728 ˘ 0.091+ 0.862 0.869 0.837 0.839

0.1 0.727 ˘ 0.064+ 0.723 ˘ 0.063+ 0.752 ˘ 0.061+ 0.741 ˘ 0.086+ 0.834 0.791 0.834 0.837

Better (+) / Worse (-) 23 / 0 23 / 0 23 / 0 24 / 0

Same (=) / NSS 0 / 1 0 / 1 0 / 1 0 / 0

SPEA2 SSCDO

Ion – – 0.876˘ 0.029+ – – – 0.961 – –

Spect – – 0.587˘ 0.022+ – – – 0.672 – –

Yeast1 – – 0.851˘ 0.007+ – – – 0.881 – –

Yeast2 – – 0.963˘ 0.007+ – – – 0.979 – –

Abal1 – – 0.879˘ 0.078+ – – – 0.974 – –

Abal2 – – 0.650 ˘ 0.116+ – – – 0.874 – –

Better (+) / Worse (-) 6 / 0



A series of payoff matrices can be used to show which strategies have significant

better values or ’Wins’ versus the other strategies. The table can be read as follows; the

strategies of the column index are compared against the strategies of the row index and

for each LBSS and UBSS setting which is significantly better for the column strategy

counts as one ’win’ towards the count. For example SDO vs NSGA-II for the Ion data

set is significantly better for all settings of LBSS and UBSS and as such has 16 ’Wins’

overall. As the SSCDO strategy from table 3 and 4 uses only one setting this strategy is

only compared against SDO and PSDO with a LBSS value undefined and UBSS value

0.5. As such SSCDO can only have a single win in their respective cells when compared

against the other strategies (As seen in the bottom row and right-most column of each

data set table). The tables have been colour coded as such with solid Red denoting that

the strategy is the best overall in terms of the number of wins and Yellow being the

worst overall.

All of the 3 Objective strategies outperformed their respective canonical counterparts

with the exception of Abal1 which had a number of settings that produced no signifi-

cant difference in the hyperarea averages for canonical NSGA-II. Additionally for Abal1

NSGA-II SDO had the greatest number of wins over other strategies.

NSGA-II PSDO produced more wins for certain data sets like Ion, Yeast1 and Yeast2

when compared with NSGA-II SDO but under performed for Spect and Abal. Typically

when NSGA-II PSDO out performed against NSGA-II SDO it was for settings that

were held constant. For instance 3 of the wins associated with Ion were a result of

keeping UBSS constant at 0.75 with LBSS values of 0.001, 0.01, 0.1 and for Spect with

a UBSS value of 1.0 and LBSS values of (0.001, 0.01, 0.1). NSGA-II PSDO performed

significantly worse most often when LBSS was undefined except for Abal1 where the

results were reversed, i.e when LBSS was undefined PSDO performed significantly better

but was significantly worse for all 12 of the other LBSS settings. There was little or no

significant difference when comparing SPEA2 SDO and SPEA2 PSDO stratgies with

only SPEA2 PSDO vs SPEA2 SDO in Ion producing 2 ’Wins’.

NSGA-II SSCDO preforms better than SDO for Ion but loses against SPECT. NSGA-

II SSCDO performs better than PSDO for Spect and Yeast but PSDO ’wins’. over

SSCDO for ABal2. Again SPEA2 showed less significant results but SSCDO showed

improvements over PSDO for Ion and Spect.
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Ion

NSGA-II SDO PSDO SSCDO

NSGA-II - 0 0 0

SDO 16 - 3 0

PSDO 16 5 - 0

SSCDO 1 1 0 -

Spect

NSGA-II SDO PSDO SSCDO

NSGA-II - 0 0 0

SDO 16 - 7 1

PSDO 16 3 - 0

SSCDO 1 0 1 -

Yeast1

NSGA-II SDO PSDO SSCDO

NSGA-II - 0 0 0

SDO 16 - 2 0

PSDO 16 5 - 0

SSCDO 1 0 1 -

Yeast2

NSGA-II SDO PSDO SSCDO

NSGA-II - 0 0 0

SDO 16 - 2 0

PSDO 16 5 - 0

SSCDO 1 0 0 -

Abal1

NSGA-II SDO PSDO SSCDO

NSGA-II - 0 0 0

SDO 12 - 12 0

PSDO 7 4 - 0

SSCDO 1 0 0 -

Abal2

NSGA-II SDO PSDO SSCDO

NSGA-II - 0 0 0

SDO 16 - 1 0

PSDO 16 5 - 1

SSCDO 1 0 0 -

Table 5: Payoff tables for NSGA-II, NSGA-II SDO, NSGA-II PSDO and NSGA-II SS-

CDO for each of the 6 data sets
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Ion

SPEA2 SDO PSDO SSCDO

SPEA2 - 0 0 0

SDO 16 - 0 0

PSDO 16 2 - 0

SSCDO 1 0 1 -

Spect

SPEA2 SDO PSDO SSCDO

SPEA2 - 0 0 0

SDO 16 - 0 0

PSDO 16 0 - 0

SSCDO 1 0 1 -

Yeast1

SPEA2 SDO PSDO SSCDO

SPEA2 - 0 0 0

SDO 16 - 0 0

PSDO 16 0 - 0

SSCDO 1 0 0 -

Yeast2

SPEA2 SDO PSDO SSCDO

SPEA2 - 0 0 0

SDO 16 - 0 0

PSDO 16 0 - 0

SSCDO 1 0 0 -

Abal1

SPEA2 SDO PSDO SSCDO

SPEA2 - 0 0 0

SDO 16 - 1 0

PSDO 13 1 - 0

SSCDO 1 0 0 -

Abal2

SPEA2 SDO PSDO SSCDO

SPEA2 - 0 0 0

SDO 16 - 0 0

PSDO 16 0 - 0

SSCDO 1 0 0 -

Table 6: Payoff tables for SPEA2, SPEA2 SDO, SPEA2 PSDO and SPEA2 SSCDO for

each of the 6 data sets.
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5.3 Further semantic plot analysis

In the previous section a series of experiments were done on three methods SDO, PSDO

and SSCDO. In this section we will focus primarily on the results for NSGA-II with just

a UBSS value of 0.5. The results for SPEA2 can be seen in the Appendix. Also, to aid

our interpretation of the plots these values have broken out into their own table

SDO PSDO SSCDO

Ion 0.869 ˘0.037 0.811 ˘0.084 0.864 ˘0.032

Spect 0.593 ˘0.025 0.546 ˘0.022 0.582 ˘0.026

Yeast1 0.849 ˘0.008 0.846 ˘0.005 0.851 ˘0.007

Yeast2 0.961 ˘0.007 0.959 ˘0.007 0.962 ˘0.009

abal1 0.862 ˘0.087 0.881 ˘0.070 0.885 ˘0.059

abal2 0.623 ˘0.138 0.699 ˘0.072 0.644 ˘0.111

Table 7: Table of hypervolume averages with ˘ std deviation for NSGA-II for SDO,

PSDO and SSCDO with UBSS 0.5

From the Ion and Spect data sets we can see that SDO and SSCDO better approxi-

mate the Pareto front (denoted in green and blue). These methods have solution clusters

which preference larger distance. If we look at table 5.3 we can see that these meth-

ods produce significantly better hypervolume averages. For yeast1 the distance versus

majority and distance versus minority the points appear to be randomly spread for all

three methods. PSDO on the other hand appears tends to preference the higher semantic

distance in the Yeast2 data set.

Another interesting result of these plots is the case of Abal2. While SDO and SSCDO

appear as expected PSDO exhibits a more unusual behaviour. We know that Abal2 has

quite a large imbalance ratio between the majority and minority class (Table ). This is

reflected in the distance versus majority plot where the point are flushed to the right and

in the distance versus minority plot where point are flushed to left. This indicates that

a large portion of the candidate solutions for PSDO are biased towards the majority.
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Figure 22: Plot of Majority vs Minority, Distance vs Minority and Distance vs Majority

(Left to Right respectively) for Ion data using NSGA-II SDO, SDO2 and SSC2
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Figure 23: Plot of Majority vs Minority, Distance vs Minority and Distance vs Majority

(Left to Right respectively) for Spect data using NSGA-II SDO, SDO2 and SSC2
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Figure 24: Plot of Majority vs Minority, Distance vs Minority and Distance vs Majority

(Left to Right respectively) for Yeast1 data using NSGA-II SDO, SDO2 and SSC2
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Figure 25: Plot of Majority vs Minority, Distance vs Minority and Distance vs Majority

(Left to Right respectively) for Yeast2 data using NSGA-II SDO, SDO2 and SSC2
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Figure 26: Plot of Majority vs Minority, Distance vs Minority and Distance vs Majority

(Left to Right respectively) for Abal1 data using NSGA-II SDO, SDO2 and SSC2
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Figure 27: Plot of Majority vs Minority, Distance vs Minority and Distance vs Majority

(Left to Right respectively) for Abal2 data using NSGA-II SDO, SDO2 and SSC2
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5.4 MOEA/D-TCH Results

Experimental results were gathered for a canonical MOEAD/D framework and by com-

bining MOEA/D with the SSC method as outlined by Uy et al (2011). Both methods

used the Tchebycheff approach and only consider the majority and minority as objectives.

The results of these methods can be seen in table 8. By using SSC with MOEA/D-TCH

we find that the hypervolume results are significantly better for for every digit.

Table 8: Average (˘ standard deviation) hypervolume of evolved Pareto-approximated

fronts and PO fronts for MOEA/D-TCH and MOEA/D-TCH SSC for over 30 indepen-

dent runs for MNIST data set.

Dataset MOEA/D-TCH MOEA/D-TCH SSC

Hypervolume Hypervolume

Average PO Front Average PO Front

Mnist 0 0.908 ˘ 0.009 0.918 0.925 ˘ 0.008+ 0.928

Mnist 1 0.945 ˘ 0.011 0.949 0.961 ˘ 0.005+ 0.957

Mnist 2 0.911 ˘ 0.012 0.911 0.925 ˘ 0.010+ 0.928

Mnist 3 0.869 ˘ 0.020 0.860 0.890 ˘ 0.014+ 0.894

Mnist 4 0.867 ˘ 0.021 0.863 0.893 ˘ 0.012+ 0.886

Mnist 5 0.822 ˘ 0.018 0.799 0.850 ˘ 0.013+ 0.845

Mnist 6 0.914 ˘ 0.012 0.903 0.929 ˘ 0.009+ 0.928

Mnist 7 0.920 ˘ 0.012 0.921 0.931 ˘ 0.008+ 0.925

Mnist 8 0.786 ˘ 0.021 0.795 0.806 ˘ 0.022+ 0.803

Mnist 9 0.783 ˘ 0.018 0.783 0.818 ˘ 0.018+ 0.813
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6 Conclusion

The analysis and experimentation conducted for this dissertation clearly show the ben-

efits of incorporating semantics in MOGP. A key finding was that regardless of which

method was used in calculating semantic distance as objective, each method proved to

significantly better than canonical methods.

When the various semantic-as-objective methods were analysed it was found that in

spite of the distance serving as an objective to maximise, these methods had a tendency

to preference programs that were semantically very similar and also semantically very

dissimilar relative to the pivot. This was observed to be somewhat problem dependant

occurring for Yeast1, Yeast2, Abal1 and Abal2 data sets and can be seen graphically as

two clusters of points at the top and bottom of the distance versus majority and distance

versus minority plots, while Spect and Ion only had a single cluster at the top. Whether

these clustering patterns are related to the relatively higher class imbalance of these

data sets would require more extensive research. It is of interest that Abal2 appear to

be biased toward the majority class considering the fitness classification using TPR and

TNR should compensate for this bias. This is a further indication that the distance is

not an objective in conflict.

It was found that integrating semantics into MOEA/D using the SSC method pro-

duced significantly better results when used with canonical MOEA/D on the MNIST

data set, further showing the benefit of using semantics in MOGP.

6.1 Future work

An interesting outcome of this work is the discovery that semantic distance is not an

objective in conflict. The reason the Pareto dominance relation is integrated in MOGP

algorithms is that it works for objectives in conflict. New strategies could be developed

using semantic distance without a dependence on dominance-based fitness assignment

for this objective. It would be interesting to benchmark the MOEA/D-TCH SSC method

against the UCI data sets outlined in this paper and also to compare it with MOEA/D-

PBI method which has also been integrated into this framework but due to time con-

straints experimental results have not yet been gathered. There are also a number of

extensions to MOEA/D and other decomposition methods which may find performance

benefits from using semantics [8] [9].
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