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Neutrality in Evolutionary Algorithms...

What do we know?
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Abstract Over the last years, the effects of neutrality have attracted the at-
tention of many researchers in the Evolutionary Algorithms (EAs) community.
A mutation from one gene to another is considered as neutral if this modifi-
cation does not affect the phenotype. This article provides a general overview
on the work carried out on neutrality in EAs. Using as a framework the origin
of neutrality and its study in different paradigms of EAs (e.g., Genetic Al-
gorithms, Genetic Programming), we discuss the most significant works and
findings on this topic. This work points towards open issues, which the com-
munity needs to address.

Keywords Neutrality · Phenotypic Mutation Rates · Problem Hardness ·
Genotype-Phenotype Mappings · Evolutionary Algorithms.

1 Introduction

Evolutionary Computation (EC) systems are inspired by the theory of natural
evolution [14]. The theory argues that through the process of selection, organ-
isms become adapted to their environments and this is the result of accumula-
tive beneficial mutations. However, in the late 1960s, Kimura [48] put forward
the theory that the majority of evolutionary changes at molecular level are
the result of random fixation of selectively neutral mutations. In other words,
the mutations that take place in the evolutionary process are neither advan-
tageous nor disadvantageous to the survival of individuals. Kimura’s theory,
called neutral theory of molecular evolution or more frequently called “neu-
tral theory”, considers a mutation from one gene to another as neutral if this
modification does not affect the phenotype.

Kimura’s theory was highly criticised by the biology research community
when he proposed it because the neutral theory was considered to be opposed
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to the Darwinian Theory. This perception, however, was corrected by Kimura
as he stated “The theory (neutral theory) does not deny the role of natural
selection in determining the course of adaptive evolution, but it assumes that
only a minute fraction of DNA changes in evolution are adaptive in nature,
while the great majority of phenotypically silent molecular substitutions ex-
ert no significant influence on survival and reproduction and drift randomly
through the species” [49].

The Neutral theory has inspired researchers from the EC community to
incorporate neutrality in their systems in the hope that it can aid evolution.

The effects of neutrality, an area that over the last years has been studied
widely in the EC community as we will see in the next paragraphs, on evo-
lutionary search have been considered in a number of studies, the results of
which, however have been contradictory. Despite of this, there are some works
that we consider are relevant for the understanding of neutrality in EC. Thus,
the goal of this paper is to provide a summary of these works and that this
can be used as a main reference in the area of neutrality in EC.

For this purpose, we start this work by presenting the scenario that helped
Kimura to shape his well-known theory of molecular evolution. We focus our
attention on studies carried out using Genetic Algorithms and Genetic Pro-
gramming.

This paper is organised as follows. In the next section, the origins of the
neutral theory are presented. In Section 3, previous work on neutrality from a
biological point of view is surveyed. Theoretical works which study neutrality
are presented in Section 4. In Section 5, a review of the literature on neutrality
in GAs is provided and in Section 6 previous work on neutrality in GP is
surveyed. Finally, in Section 7 we discuss some open issues of neutrality in
EAs and we also summarise the key points of this article.

2 Origins of the Neutral Theory

In [49], Kimura referred to various works that helped him shape his theory. In
the following paragraphs, a brief description of these works will be presented
to set a background and to illustrate how neutrality was proposed within the
framework of evolution.

Kimura started by explaining the work of Lamarck [13,71]. Lamarck was
perhaps the first to propose an explanation, in the field of biology, of how
evolution takes place. Lamarck suggested that the use or disuse of the parts
of an organism is transmitted to offspring. To explain this, he used the well-
known example of giraffes (i.e., their long legs and necks were suggested to be
the result of generations of stretching them to reach the leaves of tall trees).
Later, Weismann [71] argued that Lamarck’s idea was flawed and to show this,
he conducted an experiment where he cut off the tails of mice for twenty two
successive generations. He did not find any change in the structure of the tails
(i.e., shorter tails) in the final generation.
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Years later, Darwin proposed his influential Theory of Natural Selection
[14]. In his work, he provided arguments to explain evolution. He pointed
out that better or fitter individuals will be naturally selected to survive. His
findings can be summarised in his own words “As many more individuals of
each species are born than can possibly survive, and as consequently there is a
frequently recurring struggle for existence, it follows that any being, if it vary
in any manner profitable to itself, under the complex and sometimes varying
conditions of life, will have a better chance of survival and thus be naturally
selected. From the strong principle of inheritance, any selected variety will tend
to propagate its new and modified form.”[14].

Mendel [71] proposed three laws to explain the inheritance from parents
to offspring through generations. These complemented Darwin’s theory. Later
on, the mathematical theory of population genetics was developed by some
researchers like Wright [98] studied the population consequences of Mendel’s
laws. Fisher [23] also presented mathematical work synthesising Darwinian
natural selection and Mendelian’s heredity laws. Fisher’s main contribution
was to use stochastic methods in population genetics. More specifically, he
used the notion of random fluctuation of gene frequency from generation to
generation.

2.1 Genes and Mutations at the Molecular Level

Before molecular data became available, studies of evolution were conducted
at phenotypic level and it was impossible to corroborate ideas by connect-
ing them to changes at molecular level. It was not until the mid-1960s that
molecular data became available and the first studies of amino acid sequences
were carried out. This allowed Kimura to determine the evolutionary rates of
nucleotide substitutions, so Kimura was able to carry out his investigations at
much finer scale than previously done.

In his work, Kimura pointed out that there are two types of gene mutations:
“... (1) replacements of one nucleotide base for another, and (2) structural
changes consisting of deletions and insertions of one ore more nucleotides
bases as well as transpositions and inversions of larger DNA segments.” [49].
Moreover, Kimura stated that the former type of mutation is the most frequent
type of mutation found at molecular level.

Analysing Haldane’s studies [37], Kimura stated that Haldane’s estimations
regarding amino acids substitutions were too conservative by far and that
mutations were occurring more frequently than previously thought. However,
when Kimura estimated the new mutation rate, he found out that if this
new mutation rate will take place in nature, then no organism would been
able to survive. This was a key finding enabling Kimura to state his well-
known neutral theory of molecular evolution: “... a majority of nucleotide
substitutions in the course of evolution must be the result of random fixation
of selectively neutral or nearly neutral mutants rather than positive Darwinian
selection, and many of the enzyme polymorphisms are selectively neutral and
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Table 1 Brief summary on the origins of the neutral theory of molecular evolution proposed
by Kimura [49].

Contribution Short Description or Definition
Mutations at molecular level Kimura [49] found out that Haldane’s estimations

regarding amino acids substitutions were too conser-
vative [37]. This, in consequence, opened the door to
Kimura’s study in neutral mutations.

Neutral theory of molecular
evolution

Kimura [49] considers a mutation from one gene to
another as neutral if this modification does not affect
the phenotype.

Neutral mutations An independent work carried out by King and
Jukes [50] supported the arguments first raised by
Kimura. In their work, King and Jukes argued that
most protein evolution is due to neutral mutations
and genetic drift.

maintained by the balance between mutational input and random extinction.”
[49]. This finding was supported by a similar work independently carried out
by King and Jukes [50].

Kimura’s neutral theory has inspired many researchers to study neutrality
and there is a large body of research papers in this area. In the next sections,
previous work in different fields is presented to give an idea of the results
regarding the presence of neutrality in evolutionary search.

2.2 Summary

In this section, we have presented some relevant works that helped Kimura to
establish his well-known theory called “Neutral theory of molecular evolution”
(more frequently called “neutral theory”). We started with a general overview
of the work presented first by Lamarck [13,71], followed by the influential
theory of natural selection as proposed by Darwin [14]. When Kimura proposed
his theory, he was highly criticised because many researchers considered his
theory to be opposed to the Darwinian Theory. This, however, was corrected
by Kimura by stating that his theory should be seen as a complement to
the Darwinian Theory. We also briefly summarised the work conducted by
Haldane [37]. This work was a key finding that helped Kimura to realised
that neutral mutations take place more frequently than previously thought.
Kimura’s finding were independently corroborated by King and Jukes [50].
Table 1 shows a brief summary of some works that helped Kimura to shaping
his theory.

3 Previous Work on Neutrality in Biology

In [97], Wilke et al. emphasised the role of mutation in selecting for flatter
landscapes. In particular, the authors made an effort to show how selection
favours genotypes, interconnected by mutation, whose average replication rate
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is highest. As shown by the Wilke et al., this was achieved when using low
mutation rates. Interestingly, the authors also were able to show that when
the mutation rate was increased substantially, these genotypes occupied lower
fitness peaks. However, they also noticed that these genotypes were located
in flatter regions in the fitness landscape, indicating that neutrality provides
robustness.

Schuster et al. [73] focused their attention on the distribution of RNA
secondary structures (i.e., mapping from the RNA sequence to RNA secondary
structure). This analysis of the distribution was carried out by studying the
frequencies of occurrence for individual shapes and for this purpose the authors
represented samples of RNA secondary structures as a tree-graph. The results
showed that common shapes (these are structures that can be accessed from an
arbitrary sequence by a number of mutations smaller than the chain length)
are less frequently found than rare structures. Furthermore, Schuster et al.
found that sequences leading to the same structure are randomly distributed.

Schuster [74] extended his previous investigation [73] suggesting that evolu-
tion cannot be understood without studying the genotype-phenotype mapping.
He carried out molecular evolution experiments with RNA molecules that led
him to conclude that the existence of selectively neutral phenotypes plays an
important role in the success of evolution. Schuster, however, also pointed out
that neutrality is not an indispensable element for evolution. Instead neutral-
ity should be considered as a medium that, under certain circumstances, might
help evolution.

Huynen pointed out that the existence of large amounts of redundancy is
a key search strategy in natural evolution [41]. The author used the mapping
from RNA sequence to RNA secondary structure to carry out his research. The
mapping in this sequence presents extensive amounts of redundancy. Although,
on average, RNA landscapes are very rugged, the existence of neutral paths
allows smooth exploration. A similar point has been made in [40]. To illustrate
the existence of neutral paths, Huynen et al. performed neutral walks (a brief
description of how they work is presented in the following paragraph) on the
network of RNA secondary structures to measure the total number of new
structures encountered by neutral mutations. The authors called this the rate
of innovation and this helped them to show that the number of new structures
found by neutral mutations increased linearly over time.

In [5,41,69,76] the authors used neutral random walks. The algorithm to
perform neutral walks is given in [70] (see Algorithm 1 for a full description)
and works as follows: (a) start with a random solution, (b) generate all its
neighbours and (c) choose a neutral neighbour that results in an increase in
the distance from the starting point. This process is repeated until no further
distance can be increased.

Fontana and Schuster [25] pointed out that protein folding induces very
complex topologies. They used a sample RNA sequence and mapped it into
an RNA secondary structure. They carried out an experiment which consisted
in defining a specific target shape and observing how the population evolved
towards that shape. Interestingly, they found that during the process, there
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Algorithm 1: Neutral Random Walk
input: landscape

x0 ← random configuration
walk ← x0

d ← 0
ξ ← neutral neighbours (x0)
while ξ 6= ∅ do

randomise the order of the list ξ

search for a y ∈ ξ such that d (x0,y) > d

if found y then
append y to walk

ξ ← neutral neighbours (y)
d ← d (x0,y)

else
ξ ← ∅

return walk

were flat periods (clearly referring to neutrality) where no apparent adap-
tive progress was taking place. However, there were also sudden approaches
towards the defined target. Moreover, the authors pointed out that the domi-
nant shapes were changing during periods of no apparent progress.

In [65], Nimwegen et al. mentioned that throughout the evolutionary pro-
cess, neutrality appears automatically. They focused their attention on how the
population tends to move (i.e., evolve) through neutral networks (this concept
will be discussed in Section 5). Nimwegen and co-workers suggested that the
population does not move purely randomly through these networks. Instead,
the majority of individuals tend to migrate and stay at highly connected (i.e.,
with a high number of neutral neighbours) parts of the network, resulting in
phenotypes that are relatively robust against mutations (i.e., thanks to neu-
trality, the phenotype remains unchanged when mutations are affecting the
genotype). It should be noticed that it is normally accepted that a solution
s′ is considered to be a neighbour of a solution s if s′ is one Hamming dis-
tance away from s, the set of s neighbours is denoted by V (s). Thus, a neutral
neighbour of s is a neighbour of the same fitness.

In the same vein, Wagner [95] argued that the presence of neutrality in a
system makes it more robust against mutations. Moreover, Wagner stated that
neutrality should be viewed as an element that offers evolvability in the sense
that it can help to discover new phenotypes. He pointed out that neutrality
in itself cannot offer any benefit because, by definition, a neutral mutation
at genotype level does not change the phenotypic expression. Wagner, how-
ever, stated that through evolution, neutrality provides new adaptations, so it
could be of help in that it allows evolutionary search to visit areas previously
unexplored.
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Table 2 Brief summary of some works developed in the area of biology.

Keywords Short Description or Definition

RNA secondary structures It refers to the mapping from the RNA sequence
to RNA secondary structure. These structures have
been widely used in various works (e.g., [73,74,40,
41]). Studies varies from analysing distribution of
RNA secondary structures [73], existence of selec-
tively neutral phenotypes [74], measure of redun-
dancy [40,41], among others .

Neutral random walks The use of neutral random walks have been widely
used [5,41,69,76]. It has been used, normally, to gain
insight of the neutral landscape’s features. A full
description of the algorithm can be found in Algo-
rithm 1.

Neutral networks It is normally accepted that a solution s′ is consid-
ered to a neighbour of a solution s if s′ is one Ham-
ming distance away from s. Thus a neutral neighbour
of s is a neighbour of the same fitness [65].

3.1 Summary

As the reader might be aware, there are many interesting papers in the area of
biology dedicated to study and analyse the effects of neutrality. In this section,
we have made an effort to summaries few works on this area, selecting those
that we think have been relevant or inspired in the area of evolutionary com-
putation. This section started describing the use of RNA secondary structures
on the analysis of neutrality. Then, we briefly described some works using two
of the most-well known tools used to analyse neutrality called neutral random
walks and neutral networks. Table 2 presents a brief summary of some key
works on neutrality in biology.

4 Theoretical Work on Neutrality

4.1 Biological Based

In [69], Reidys et al. focused their attention on neutral networks and used
a mathematical model of genotype-phenotype mapping to analyse them. In
contrast with other works that state that elements form a neutral network if
they are one Hamming distance away from each other, Reidys and co-workers
suggested that identical phenotypic structures form a neutral network if these
structures exceed a certain threshold value. In their studies, the authors used
the RNA secondary structure because of its high degree of redundancy (i.e.,
there are many more sequences than structures). The relationship between
RNA sequence and secondary structure is seen as a mapping from sequence
space into shape space [73].
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4.2 Artificial Based

In [82], Toussaint and Igel pointed out that standard approaches to self-
adaptation in evolutionary algorithms [21] are a basic and explicit example
of the benefit of neutrality. In these approaches the genome is augmented
with strategy parameters which typically describe the mutation distribution
(e.g., the mutation rate). These are neutral parts of the genome which are
co-adapted during evolution so as to induce better search distributions. The
point of view developed in [82] suggests that the core aspect of neutrality is
that different genomes in a neutral set provide a variety of different mutation
distributions from which evolution may select in a self-adaptive way. Interest-
ingly, theoretical work on the evolution of strategy parameters [8] can thus be
re-interpreted as theoretical results on the evolution of neutral traits.

This line of thought was further formalised by Toussaint in [81]. Given a
fixed genotype-phenotype mapping one can investigate the variety of mutation
distributions induced by different genomes in a neutral set. In their work, the
authors introduced and formalised trivial neutrality that is a form of neutrality
and the phenotypic projections (i.e., phenotypic mutation distributions) are
constant over each neutral set. Toussaint showed that trivial neutrality is a
necessary and sufficient condition for compatibility with phenotypic projection
of a mutation-selection GA, i.e., whether one or another representative of a
neutral set is present in a population does not influence the evolution of pheno-
types. Intuitively this means that, in the case of trivial neutrality, neutral traits
have no effect on phenotypic evolution. In the case of non-trivial neutrality,
different genotypes in a neutral set induce different phenotypic distributions,
which imply a selection between equivalent genotypes similar to the selection
of strategy parameters in self-adaptive EAs. Toussaint interpreted this as the
underlying mechanism of the evolution of genetic representations.

In [54,55], Lehre and Haddow proposed a simple mapping called 2PD0L.
Basically the idea of this mapping consists of rewriting a given expression
by expanding each element into two symbols (i.e., 2 in 2PD0L refers to this
property). Lehre and Haddow pointed out that the proposed mapping was
inspired by the simplicity of the RNA secondary structure folding which has
been shown to be successful in finding a specific shape target [25]. Using this
mapping, the authors defined two types of neutrality: step k-neutrality and
remaining neutrality. The former refers to neutrality that takes place during
the mapping process whereas the latter refers to neutrality that can be seen
once the mapping process has taken place. Using the step k-neutrality, Lehre
and Haddow found that the amount of neutrality varies at the genotype level
and showed, at least for their studies, how for complex phenotypes (they used
Kolmogorov complexity as a measure) the amount of neutrality is low. Con-
versely, they found that for phenotypes with low complexity the amount of
neutrality is high. Moreover, Lehre and Haddow showed how the size of the
neutral networks using 2PD0L varies from small to very large.

In [24], Fonseca and Correia developed two redundant representations using
different approaches based on mathematical tools. They focused their attention
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on the properties highlighted in [72] and mentioned that some of Rothlauf and
Goldberg’s findings disagree with the results found in [24]. That is, Rothlauf
and Goldberg (see Section 5) reported that when using synonymously redun-
dant representation, the connectivity between phenotypes is not increased.
Fonseca and Correia, however, stated that this is not necessarily true. They
reported that in their proposed representations the connectivity between phe-
notypes tends to increase with the number of redundant bits. Moreover, they
argued that such connectivity is observed even with very little redundancy, so
the belief that large amounts of neutrality must be present to aid evolution
[76] (this work will be explained in the following section) should be analysed
in more detail.

In [16], Doerr et al. analysed in detail the run-time, which was defined by
the authors as the number of constructed solutions until an optimal solution
has been obtained for the first time, of the (1+1) EA using the model proposed
in our previous works [31–33]. Basically the idea presented in [31–33] was to
allow having a neutral layer, of constant fitness, identically distributed in the
whole search space. In their investigation, Doerr et al. used three problems:
OneMax problem (where the idea is to maximise a bitstring) and two deceptive
problems: (a) one with a single global optimum and a single local optimum
and, (b) one with a single global optimum and two local optima. The authors
showed that when neutrality is added in the search space, the run-time for
the first two problems increases exponentially, whereas for the last problem
(a deceptive problem with a single global optimum and two local optima)
neutrality significantly reduces the run-time from exponential to polynomial.
This shows how neutrality could be more beneficial depending on the degree
of neutrality (i.e., the fitness defined in the neutral layer) and the type of
problem used. Their findings, interestingly, correspond to the results firstly
shown in [31–33].

In [94], Verel et al. presented a similar analogy of “connecting” two points
in the search space as expressed in our previous work [31,32], as described
previously. In their work, the authors presented an algorithm, called scuba
search, that allows to move from one point to another in the search space when
there is no gradient information. As the authors pointed out, this algorithm
is expensive in terms of exploring part of the search space to get information
that could guide evolution. They also proposed a more generic algorithm that
tries to overcome this situation.

In the following paragraphs, we will present some works where neutral-
ity has been studied using GAs and GP. Before doing so, we can say that
researchers have added neutrality in very different ways. Generally speaking,
however, we can say that neutrality is added (i.e., increasing the search space
without correspondingly the solution space, assigning constant fitness to most
individuals in the population, etc.) in a way that after an individual is mutated,
the resulting individual remains the same at the genotype level
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Table 3 Brief summary of some theoretical works on neutrality.

Keywords Short summary

Self-adaptation According to [82], standard approaches to self-
adaptation are an example of the benefits of neutral-
ity. This implies that theoretical work on the evolu-
tion of strategy parameters [81] can be re-interpreted
as theoretical results on the evolution of neutral
traits.

Trivial neutrality This type of neutrality is present if the phenotypic
mutation projections (the phenotypic mutation dis-
tributions) are constant over each neutral set []. This
means, that this type of neutrality, neutral traits
have no effect on phenotypic evolution

Synonymously redundant rep-
resentation

The work first presented by Rothlauf [72] (described
in Section 5) was further analysed by Fonseca and
Correia [24]. In their work, the authors mentioned a
disagreement between their results and Rothlauf’s
findings. That is, Fonseca and Correia mentioned
that the the degree of connectivity between pheno-
types increases with the number of redundant bits.

Tunneling properties In [31], we proposed for the first time one of the sim-
plest form of neutrality, called ’constant neutrality’
which consists of of a neutral network of constant fit-
ness identically distributed in the whole search space.
To better imagine the effects of neutrality in evolu-
tionary search, constant neutrality was treated as a
tunnel between two points of attraction. This work
has been further been explored in [16,94,32].

Run-time Neutrality has also been studying by analysing the
run-time of the algorithm in the presence of various
degrees of neutrality and different types of problems.
The results reported in [16] perfectly agree with other
results presented in [31–33].

4.3 Summary

In this section, we made an effort to connecting those studies of neutrality in
biology (presented in Section 3) to theoretical studies developed in EC. We
started this section by summarising works that tried to calculate real muta-
tion rates in the presence of neutrality. Then, we presented works that clearly
stated the benefits of neutrality in EC, in particular, in self-adaptation [82,81].
Some results that contradict other works were also covered in this section (e.g.,
the work developed by [24] shows some degree of contraction with the work
developed in [72]). We also covered simple approaches (e.g., constant neutral-
ity [31]) that helped to better understand how neutrality can bee seen as a
tunnel between two points of attraction. We finished this section by presenting
how the effects of neutrality can also be studied by analysing the run-time of
an algorithm, as shown in [16]. A brief summary of these works is presented
in Table 3.
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5 Previous Work on Neutrality in Genetic Algorithms

According to Harvey and Thompson [38], improvements of fitness can oc-
cur during evolution in GAs even in the presence of a converged population.
Furthermore, they claimed: “If a non-neutral genetic encoding (one which gen-
erates a non-neutral fitness landscape), with binary genotypes of length n, is
modified by the addition of g extra redundant loci, then each phenotype will
now be represented by 2g points in genotype space instead of just one. These
points will form a connected neutral network. However nothing will have been
gained by this exercise – we shall term this type of redundancy useless junk”
[38]. To understand this it is necessary to define a fitness landscape. This was
first introduced in biology by [98]. This concept has dominated the way ge-
neticists think about biological evolution and has been adopted within the EC
community. In simple terms, a fitness landscape can be seen as a plot where
each point on the horizontal axis represents all the genes in an individual
corresponding to that point. The fitness of that individual is plotted as the
height against the vertical axis. Thus, a fitness landscape is a representation
of a search space which may contain peaks, valleys, hills and plateaus.

Also, Harvey and Thompson [38] introduced, probably for the first time
the concept of neutral networks. The original definition of a neutral network
was defined a set of points in the search space which fitness is the same.
Sometimes, neutral networks are also defined as points in the search space
that are connected through neutral point-mutations where the fitness is the
same for all the points in such network. This concept has been regarded as
a key element in neutrality as shown in [45,83]. In [45], the authors provided
a more formal definition of a neutral network. Also, in their work, in the
context of Terraced NK Landscapes [63] (this will be explained later in this
section), Katada and Ohkura pointed out that landscapes with a higher degree
of neutrality have the larger sizes of neutral networks. They also indicated that
all networks have some portals to the networks of higher fitness. According to
the authors, this means that all neutral networks are, somehow, connected.

The line of thought presented by [38] was further explored years later in
[6], where Barnett highly criticised what he called the “traditional GA view”
regarding convergence. He stated that the lack of improvement in fitness is
not due to the population being trapped in local optima. In many real-world
problems it is possible (or even common) to have a large amount of neutral-
ity, so the dynamics of evolution must be seen in terms of navigating among
neutral networks that eventually will lead to higher-fit neutral networks. So,
in problems with these features the problem of premature convergence would
not exist.

Some useful techniques have also been proposed to analyse the neutrality
present in fitness landscapes using GAs as shown by Katada et al. [46]. In
their work, the authors noticed how the mutation rate plays a key element
in evolutionary search and, in specific, they focused their attention on its
effects when neutrality is present. More specifically, Katada and collaborators
noticed how during evolution and the presence of neutrality, the population
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Fig. 1 An NK system with N = 8 and K = 2. Epistatic interactions are shown for the
fourth locus whose fitness contribution is 0.70. In this example, epistatic interactions are
adjacent loci.

can be one of two periods: transient periods that refers when fitness tends to
improve and equilibrium periods where the population exhibits a more less
constant fitness behaviour. The equilibrium period last longer compared to
the transient period. The authors made an effort to vary the length of these
periods by varying the mutation rate during the evolutionary process. They
were able to show, that this is possible, but one should pay attention to a
maximum threshold for the mutation rate because a high mutation rate could
harm evolution by losing fit individuals.

As we will see in the next sections, the work on neutrality developed in the
area of GAs is quite vast. We have decided to categorise these works in two
main parts: fitness landscapes proposed to the analysis of neutrality, followed
by the addition of neutrality by the use of genotype-phenotype mappings (in-
cluding some criticism by using this approach).

5.1 Fitness Landscapes Proposed to Analyse Neutrality

The NK landscape [47] was developed to investigate how the ruggedness (e.g.,
a rugged landscape has an irregular topography consisting of numerous peaks
(i.e., local optima)) of a landscape changes according to the degree of epistasis.
The latter takes place when the action of one gene is modified by one or
more genes. Thus, the fitness of individuals depends upon the interaction of
a number of their genes. An NK landscape is defined by two parameters:
N which represents the number of genes that an organism has and K which
represents the number of epistatic interactions between genes. Each gene makes
a contribution to the total fitness of the system based on K+1 values: its own
and those of the K components to which it is linked. Epistatic interactions
can be either with random loci or restricted to adjacent loci. Each of the 2K+1

possible combinations of component values is mapped to a fitness contribution
drawn uniformly at random from the range [0, 1]. Figure 1 depicts an example.
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The total fitness of a system is the average of theN fitness contributions. Thus,
in this type of landscape it is very unlikely to find a neutral mutation.

Inspired by this type of landscape, Barnett [5] introduced the NKp land-
scape where the parameter p controls the degree of neutrality present in the
landscape. In this landscape the values to the fitness tables are assigned to
0 with probability p. In case an entry is not set to 0, then a value drawn
uniformly at random from the range [0, 1] is assigned. Thus, when p = 1, the
NKp landscape is a flat landscape. Barnett performed some theoretical and
empirical studies and pointed out that the addition of neutrality in this type
of landscape has minimal or null effects on the ruggedness of the landscape.
Moreover, Barnett claimed that the amount of neutrality decreases as the fit-
ness increases, so the degree of neutrality present in the evolutionary search is
not constant.

Designing a fitness landscape based on NK landscapes to vary the degree
of neutrality was also explored in [62]. Newman and Engelhardt proposed the
NKq landscapes which are very similar to the NKp landscape [5] the main
difference being that the fitness contribution of the genes is in the range of
[0, q] but the final fitness is normalised in the range of [0, 1].

In [34], Geard et al. compared the NK, NKp and NKq landscapes and found
that there are several big differences in the distribution of neutral mutations
when neutrality is artificially added. For instance, they reported that the NKq
landscapes are qualitatively similar to the NK landscapes, while the opposite
is true for the NKp landscapes where the presence of neutrality seems to make
the sampling of detrimental mutations more likely.

In the context of economics, Lobo and co-workers [56] proposed a type
of fitness landscape called technological landscape. This type of landscape, in-
spired by the NK landscape, allowed them to study some effects of neutrality.
A technological landscape is tuned by natural number M . More specifically
the fitness of a solution is rounded so it can take M different values. In their
work, Lobo et al. argued that neutral networks can be seen as elements that
allow individuals to improve their fitness by moving through the search space.
According to the authors, this depends on the accessibility [25] of the neu-
tral networks near the global optimum. Furthermore, the authors stated that
neutrality offers robustness and innovation, so it is a desirable feature in a
system. Lobo et al., mentioned that in the presence of a rugged landscape, a
high degree of neutrality will help the search to find better solutions, rather
than in the absence of neutrality. The opposite will occur for a smooth land-
scape. That is, the presence of neutrality will be detrimental in finding a global
solution for this type of landscape.

In [7], Beaudoin et al. proposed another type of fitness landscape denomi-
nated ND landscape, where N is the length of the genome and D is what they
called the neutral degree distribution. They divided the search space into D
neutral networks by giving each of them a different fitness value (details of the
algorithm can be found in [7, page 508]). The authors claimed that the other
types of landscapes (i.e., NKp, NKq and Technological) used in the literature
to analyse neutrality do not consider the distribution of neutrality which, is
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in fact, a key feature in evolution. They used neutral degree distributions and
fitness distance correlation [42] to analyse how neutrality affects evolution in
this type of landscape. For this purpose, they built a ND landscape with de-
ceptive features [36] and found that when the problem is difficult, the addition
of neutrality makes the problem easier while the opposite happens when the
problem is easy. The results reported in [7] are particularly interesting because
they match perfectly our own independent findings [31–33,66,26].

5.2 Further Comments on Fitness Landscapes with Neutrality

In the last paragraphs, we have presented some fitness landscapes that haven
been proposed or used to better understand the effects of neutrality in evolu-
tionary search. There are, however, other elements that researchers have used
to analyse neutrality.

Nimwegen et al. [83] studied the dynamical features observed of a popu-
lation using the royal road problem [60]. In their work, the authors studied
several elements to understand the behaviour of a population during genera-
tions. In particular, they were interested in understanding metastability (e.g.,
period of stasis followed by brief periods of rapid change in evolutionary pro-
cesses behaviour). For this purpose, Nimwegen et al. defined some elements
that helped them in their studies. These include epochal evolution which is
defined as the period of time where the system seems stabilise (clearly indi-
cating the presence of neutrality) on some feature distribution followed by a
brief burst of change, speed of innovation that refers how often the population
moves towards better spaces (fitter areas), and fitness fluctuation amplitude
that measures the “jumps” performed by a population through generations.

Smith et al. [78] also proposed the use of other elements to understand
the effects of neutrality. They were inspired by the fact that most researchers
use a single global metric to understand the properties of a fitness landscape.
The authors stated that even when these global measures can be of use, it
will be more beneficial to have measures that focus on specific areas of the
search space. Thus, they proposed the use of fitness evolvability portraits (this
is calculated by averaging evolvability over a population of equal fitness) that
can be used to compare both the ruggedness and neutrality in a set of tunable
rugged and tunable neutral landscapes. Smith et al. showed how the method
used in their work is beneficial in detailing features of the search space. More-
over, as they stated in their work, the method used by them should be seen as
a complement to other methods, rather than considering it as the only method
that can be used to “visualise” properties of the landscape (e.g., ruggedness).

Other measures have been proposed by Vassilev et al. [92]. The authors
made a similar argument arose by Nimwegen et al. [83], the analysis of the fit-
ness landscape should be considered as an ensemble of various objects, which
are characterised by several elements such as size, form and distribution. In
other words, they also considered the study of the landscape by decomposing
it. To do so, the authors proposed three new information analysis of fitness
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landscapes: information content, partial information content and information
stability. As explained by the authors, the first two are based on measures
of the amount of information contained in the ensemble of objects, where
each of them consists of a point in the landscape and its nearest neighbours.
More specifically, information content can be seen as the amount of informa-
tion needed to reconstruct the system exactly. This measure is an estimate
of the variety of shapes in the ensemble. So, this can be used to measure the
ruggedness of the landscape. Partial information content relates to the modal-
ity encountered on the landscape path. Finally, information stability refers as
the highest possible difference in the fitness values of two neighbouring points.

Other element to study neutrality is the Nei’s standard genetic distance as
shown by Katada and Ohkura [44]. In their work, the authors highlighted some
benefits of the Nei’s distance when the the mutation rate per locus is small.
These include that the distance increases approx. linearly over generations in
the presence of neutrality, the distance increases when neutrality increases, the
distance decreases with the increase of ruggedness in landscape with neutrality.
To test their idea, Katada and Ohkura used NK landscapes (as described
in the previous paragraphs) and found out that the Nei’s distance was able
to measure the amount of neutrality present in the fitness landscape. They
further confirmed their results by using robotics simulations and compared
their analysis with extensive experimental analysis. Details of how to calculate
the Nei’s distance can be found in [44].

In Section 6, we further present other works that propose the use of different
methods to analyse the degree of neutrality in a landscape in the context of
Genetic Programming [52,67].

As we have seen, researchers have proposed and used different types of
fitness landscapes for the study of neutrality. There are other elements, how-
ever, that researchers have also used, as we will see in the following section.
In particular by the use of genotype-phenotype mappings.

5.3 Genotype-Phenotype Mappings - Definitions and Properties

In [79], Smith et al. used a complex genotype-phenotype mapping in the con-
text of a visual shape recognition task to control the navigation of a robot
and studied the population’s behaviour during neutral phases (i.e., periods
where fitness remains constant). They focused their attention on the evolv-
ability of the population defined as the ability of individuals both to produce
fitter individuals and to not produce less fit individuals. Empirically, Smith et
al. concluded that during neutral phases, the population is not doing anything
useful. The authors did not deny that neutrality could provide a buffer to move
the population towards better places but, at the same time, they argued that
the presence of neutrality alone does not allow the evolving of the population
faster than in its absence. So, they concluded that the presence of neutrality is
not beneficial for evolutionary search. This line of thought was further inves-
tigated in [80] where Smith et al. focused their attention on the population’s
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dynamics to point out that when the fitness does not change, this is due to
the presence of neutrality rather than to the population getting stuck in local
optima.

In [76], Shipman argued that neutrality is beneficial if neutral networks
are spread over the search space and if there is a high degree of connectiv-
ity between them. Shipman mentioned that these neutral networks are sets
of genotypes at the same level of fitness. Furthermore, he stated that these
networks have a high degree of connectivity if they are connected by single
point mutations. To study the effects of neutrality, he used a hybrid approach
of neural networks and GAs to conduct his research. Shipman tested his ap-
proach on a robotic task where the goal was to control a robot that navigates
through a corridor. He found that the presence of a high degree of neutrality
helped to discover many more phenotypes and eventually to sample higher
fitness. That is, the presence of neutrality has a beneficial impact in evolu-
tionary search because it helps to discover fitter solutions. However, Shipman
also concluded that he could not see any benefit in the number of generations
required to find optimal solutions (i.e., the presence of neutrality does not help
to find solutions faster).

In [75,77], Schackleton et al. illustrated that neutrality can be artificially
added to the evolutionary search with the use of genotype-phenotype map-
pings. To illustrate this, the authors proposed five different types of mappings.
Let us briefly describe them. The first mapping, called static random mapping,
consisted in defining a genotype of length 30 which is mapped to a phenotype
of 16 bits. The mapping used was randomly initialised and remained static
afterwards. The second mapping, called trivial voting mapping, consisted in
taking 3 bits at genotype level to represent one bit a phenotypic level. The
bit is set to 1 if the majority of the 3 bits voted in favour, 0 otherwise. The
third mapping, called standard voting mapping, is a variation of the previous
mapping. The main difference is that the set of bits at genotype level can
overlap, so when a single point mutation takes place multiple phenotypic bits
could simultaneously change. In the fourth mapping, called cellular automa-
ton mapping, each of the phenotypic bits was associated with a truth table.
Three adjacent bits were used as inputs in the truth table and the correspond-
ing output determined the new state (i.e., phenotypic bit). Finally, the fifth
mapping, called random Boolean network (RBN) is a variation of the previous
mapping. The main difference is that the 3 bits can be at any positions, so
it is necessary to encode those positions at the genotype level. The authors
noted that the amount of redundancy plays a key role in evolution. Moreover,
they observed that some mappings (i.e., standard voting, cellular automaton
and RBN) were more beneficial than others (i.e., trivial voting).

In [19,20], Ebner et al. extended the previous investigation of [75,77]. For
this purpose, the authors analysed the effects of the RBN mapping and the
cellular automaton (both described previously) in the context of what they
called phenotype-species mapping. In they work, Ebner et al. emphasised some
benefits gained in the presence of neutral mappings. As detailed in their work,
the authors explained how neutral networks (defined and discussed in Sec-
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tion 5) induced by mappings sustain high mutation rates. Moreover, neutral
networks help the population to spread “randomly” throughout the search
space which could represent an advantage if the environment changes. Also,
the authors stated that one of the main benefits of a redundant mapping is
that this type of mapping offer diversity. Thus allowing the population to get
stuck in local optima.

In [96], Weicker and Weicker focused their attention on the consequences
of redundancy. They stated that there are four areas where redundancy can be
found: coding based, representation based, conceptual redundancy and tech-
nical redundancy. Coding based redundancy takes place when the size of the
search space does not match the size of the genotype space. Representation
based redundancy is caused by structural reasons (i.e., it is caused by either
the problem considered or the optimisation technique used). Conceptual re-
dundancy takes place when redundancy is added using gene interactions (i.e.,
[77,75]). Technical redundancy takes place when, for instance, a decoder is
used to improve or repair a given solution. Weicker and Weicker focused their
studies on the latter two cases using a decoder method and a diploid encod-
ing on a binary representation. The former method works by defining “1” as
an element for inclusion and “0” as an element to be omitted. In the diploid
encoding, each individual is formed by two complete candidate solutions and
an extra bit which defines the active solution. The diploid encoding was in-
spired by the work reported in [15] where the authors proposed the structured
Genetic Algorithm which is a special case of diploid encoding, where an extra
bit switches between two complete candidate solutions. As can be seen, We-
icker and Weicker used very different ways of adding neutrality and analysed
a particular point: how the presence of redundancy converts local optima into
plateau points. They reported that, in both cases, this happens and that a
decoder method can find good solutions quicker than a diploid encoding. The
authors, however, were unable to explain why this happened.

In [9,10], Chow proposed the use of a population of individuals that are
composed by two chromosomes: a data chromosome and a mapping chromo-
some. The former chromosome is one that contains the genotypic expression
(i.e., 0s and 1s for binary strings) whereas the latter chromosome stores bit
locations as integers and these determine the position of the values of the data
chromosome. Both chromosomes undergo separate genetic operations. For the
data chromosome the traditional genetic operators (i.e., crossover and muta-
tion) are used, while for the mapping chromosome, the permutation operator is
used to alter the bit ordering. Neutrality is present in this type of mapping be-
cause when the permutation operator takes place, there is no guarantee that
all the bits in the data chromosome participate in the genotype-phenotype
mapping. That is, there is a possibility that more than one integer is repeated
in the mapping chromosome. Using a hybrid algorithm (i.e., GA receiving feed-
back from a local hill climbing), Chow tested his approach on trap functions
[35,36,43] and reported that this type of neutrality had a beneficial impact in
evolutionary search.
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In [72], Rothlauf and Goldberg stated that redundancy is a common ele-
ment found in any EC system and emphasised that the effects of redundancy
in evolutionary search depend basically on the nature of redundancy. They
identified some properties of redundant representations: (a) a redundant rep-
resentation is uniform if all phenotypes can be obtained by the same number
of genotypes, (b) a redundant representation is synonymously redundant (an
example of this type of redundancy is the trivial voting mapping proposed in
[75,77]) if the genotypes that map to the same phenotype are part of a neutral
network (i.e., they are close to each other), (c) a redundant representation
presents high locality if neighbouring genotypes map to neighbouring pheno-
types and finally, (d) a redundant representation presents high connectivity if
the number of phenotypes which are accessible from a phenotype by one bit-
flip mutation is high. They also mentioned that non-synonymously redundant
representations (examples of this type of redundancy are the cellular automa-
ton and the RBN described in [75,77] and criticised in [51], see below) are
those where two genotypes representing the same phenotype are very different
from each other. Thus, in synonymously redundant representations, genetic
operators work well and the search is smoother than in the non-synonymously
redundant representations where the search operators show a poor perfor-
mance. So, in this type of redundancy the search behaves like random search.

5.3.1 Criticism to Some Genotype-Phenotype Mappings

In [51], Knowles and Watson criticised the usefulness of neutrality when added
via a mapping function. In particular, they focused their attention on the
RBN mapping proposed and studied in [19,75,77] and measured its perfor-
mance using the rate of fitness increase. Knowles and Watson used GAs and
Hill-Climbing on three different problems free of neutrality to compare the
performance obtained when RBN was and was not used. They showed that
the performance of the search algorithms used in their experiments was better
in the absence of neutrality. Moreover, they suggested that the RBN mapping
leads to a random exploration in the search space, so it is difficult to imagine
how evolutionary search can gain anything from using this type of mapping.

5.4 Summary

In this section we have presented some works using genetic algorithms to
study and analyse the effects of neutrality in evolutionary search. We started
by reviewing works that defined key concepts in neutrality (e.g., neutral net-
works [38]). Then, we focused our attention on some fitness landscapes that
have been proposed and used to study neutrality (mostly all of them inspired
by the NK landscape proposed in [47]). We followed our summaries on some
“tools” that researches have been using in the study of neutrality. Table 4
shows a brief summary of some works that have used GAs for the study and
analysis of the effects of neutrality.
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Table 4 Brief summary of some works using on neutrality using Genetic Algorithms.

Keywords Short summary

Neutral networks It is defined as a set of points in the search space
which fitness is the same [38]. Sometimes neutral net-
works are also defined as points in the search space
that are connected through neutral point-mutations
where the fitness is the same for all the points in such
network.

Fitness Landscapes As acknowledge by several researchers, the effects of
neutrality are hard to understand for different rea-
son, such as the use of different operators, represen-
tations and more, as pointed out in [31]. Thus, re-
searchers have used different fitness landscapes such
as: NK landscapes [47] (Figure 1 depicts an ex-
ample), KKp [5], NKq [62], technological [56], and
ND [7] landscapes. All these type of landscapes
have in common that is relatively easy to control
the amount of some properties, such as neutrality,
present in the landscape. Intuitively this means that,
these type of landscape offer a control environment
to studying some effects.

“Tools” to study neutrality Genetic Algorithms have widely been used to study
the effects of neutrality because of their “simplicity”.
Researchers have proposed and studied different as-
pects of neutrality by using different “tools” or “met-
rics”, such as epochal evolution, speed of innovation,
fitness fluctuations [83], information content, partial
information content and information stability [92],
Nei’s standard genetic distance [44], phenotypic mu-
tation rates [66].

Genotype-Phenotype map-
pings

Several methods have also been proposed to add neu-
trality in the evolutionary search. In particular by the
use of genotype-phenotype mappings. Works include
the use of constant neutrality [31], static random
mapping, trivial voting mapping, standard voting
mapping, cellular automaton mapping and Boolean
network [75,77], bit-wise neutrality [66].

6 Previous Work on Neutrality in Genetic Programming

In [2], Banzhaf mentioned that constrained optimisation problems (i.e., prob-
lems where a potential solution is judged by its fitness and that also must
obey certain restrictions) can be handled using a genotype-phenotype map-
ping. To do so, he proposed a mapping called Binary Genetic Programming.
He argued that this mapping allows one to use unrestricted search operators
in the genotype space (i.e., search space) while at the same time the feasibility
of solutions in the phenotype space (i.e., solution space) is guaranteed. The
latter is accomplished thanks to a correction step that takes place in case a
solution is not feasible. Briefly, Banzhaf’s mapping was based on the use of
a transition table that was composed of 32 codes (i.e., 5-bit binary coding)
to each of which a corresponding symbol was assigned (i.e., a function or a
terminal). So, a bitstring of length n (i.e., where n is a multiple of 5) can be
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translated into an expression of n/5 functions and terminals. Given that there
were fewer functions and terminals than different combinations of codings, this
introduces neutrality. Banzhaf showed that this type of mapping was useful in
a constraint optimisation problem. However, his conclusions are the result of
several steps which were not analysed in detail.

In [18], Ebner suggested that part of the success of GP in finding solutions
is due to fact of neutrality induced by “junk” code or introns (which are
defined as “parts of the genotype that emerge as a result of the evolution of
individuals with a variable length representation and have no influence on the
survival of the individual” [4]). In his work, Ebner mentioned that finding a
specific individual in the GP search space is almost impossible, but finding a
specific results it is not. To explain this, he mentioned that the presence of
introns helps to have multiple individuals leading to the same result. Thus,
the presence of introns in GP could be beneficial.

In [93], Vasseliv and Miller explored the effects of adding artificial neu-
trality to Miller’s approach, called Cartesian Genetic Programming (CGP)
[57], and studied its effects using an evolvable hardware problem (i.e., three-
bit multiplier). CGP uses a genotype-phenotype mapping (an integer string
coding) that allows the presence of inactive code (i.e., this is, according to
the authors, how neutrality is artificially added). This is a representation of
programs in which functions are joined by connections. The authors claimed
that neutrality helps avoid getting stuck in local optima. Moreover, Vassilev
and Miller performed neutral random walks [70] to show that the amount of
neutrality decreases when the search is close to the global optimum.

This line of research was further extended in [99], where Yu and Miller
argued that in the traditional GP representation there are two types of
implicit neutrality (i.e., neutrality that is already present in the evolution-
ary search): functional redundancy and introns. The former refers to the
fact that multiple genotypes can represent the same phenotype whereas the
latter refers to the fact that there are parts of a program that are se-
mantically redundant. This means that if a genetic transformation removes
that redundancy from the genotype, the program’s behaviour will remain
the same (i.e., suppose that we are in the presence of the genotype G1 =
(NOT (NOT (AND(OR X1 X2)X1))) by removing (NOT,NOT ), the result-
ing new genotype will be G′

1 = (AND(OR X1 X2)X1) so it is clear that G1

and G′

1 will compute the same result). The authors argued that this type of
neutrality (i.e., implicit neutrality) is difficult to identify and control during
evolution, so they used CGP to add explicit neutrality (where the authors were
referring to inactive code). They tested their approach on the even-3-parity
problem. CGP allowed the authors to use Hamming distance to measure the
amount of neutrality present in the evolutionary search. They found that the
more neutrality is present during evolution, the higher the percentage of suc-
cess in finding the global optimum irrespective of the mutation rate used.
Thus, they concluded, neutrality is fundamental to improve evolvability. the
phenotype level (e.g., a node that is multiplied by zero). They carried out
extensive empirical experiments that helped them to conclude that the best
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performance (using an evolutionary strategy on the even-3-parity and 2-bit
multiplier) was achieved with high degrees of neutrality. However, they were
unable to give a clear explanation for what happened as they mentioned “De-
tailed further study is required to ascertain how the redundancy is utilized and
interacts during evolution to asses problem solving.” [58].

Yu and Miller [100] developed a mathematical framework to study the
implicit neutrality found in the OneMax problem when using a simple GA.
They focused their attention on the amount of neutrality in each of the fitness
classes (in OneMax there are ℓ+1 fitness classes for a chromosome of length ℓ).
The number of chromosomes with a given fitness in the search space is given
by a binomial coefficient. So, the largest number of chromosomes corresponds
to the fitness ℓ/2 (assuming, for simplicity, that ℓ is even). The situation
changed dramatically when they used CGP [57]. As the authors pointed out,
the amount of neutrality is highly dependent on the representation. Based on
their empirical findings, Yu and Miller found that neutrality had a beneficial
impact on this unimodal landscape and claimed that it provides a buffer to
absorb destructive mutations.

6.1 Work Inspired by Genotype-Phenotype Mappings

In [17], Downing used Binary Decision Diagrams (BDDs), which are a special
case of Binary Decision Trees (BDT) (where each non-terminal element is
associated with a Boolean variable which has if and else children). BDDs
are presented as directed and acyclic graphs. This allowed Downing to define
four different neutral mutations and one adaptive mutation. When a neutral
mutation takes place, the fitness of the new individual is copied from its parent,
so there is no need to calculate the fitness value for the generated child (as
pointed out by Downing, this is an advantage over Yu and Miller’s approach
[99] where each time a neutral mutation takes place, the fitness of a new
individual must be calculated). Given the nature of BDD, Downing tested his
proposed approach on Boolean problems (i.e., even-n-parity Boolean functions,
where 7 ≤ n ≤ 17) obtaining excellent performance (i.e., 100% success rate for
all the even-n-parity functions). As stated by Downing, one should be careful
to interpret the results bearing in mind that not only is neutrality present but
also the representation allows modularisation, so the results are a mixture of
several ingredients.

6.2 Criticism to Explicit Neutrality in GP

In [12], Collins claimed that the conclusions reported in [101], i.e., that neu-
trality is beneficial, are flawed. Collins started his analysis by highlighting that
the use of a Boolean parity problem is a strange choice given that the problem
in itself is neutral. In particular, Yu and Miller used two different function
sets formed by either EQ and XOR or simply EQ, so this problem has a
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needle-in-haystack property: there are only two possible fitness values. So, the
effects of neutrality are harder to analyse using this type of problem. More-
over, Collins focused his attention on the results found for the even-12-parity
Boolean problem and pointed out that the CGP representation used in [101]
favours shorter sequences than those yielding solutions for this Boolean prob-
lem. Although [101] reported good results (i.e., 55% of success in finding the
solutions), Collins proved that random search has even better performance.
Collins used various sampling methods to corroborate his findings and con-
cluded that the effects of neutrality are more difficult to comprehend than
previously thought.

6.3 Analysis of Landscapes

In [3], Banzhaf and Leier exhaustively analysed the search space of a Boolean
function problem using only the AND function to illustrate how there are
many more common phenotypes than uncommon phenotypes (i.e., phenotypes
that represent the global solution) in the search space and the latter can
be made accessible by the presence of neutrality. According to Banzhaf and
Leier, neutral networks can be of use only if they are highly intertwined. This
property allows the search to move quickly from one neutral network to another
and, eventually, to sample the global optimum.

Recently, Vanneschi and co-workers [88] defined and used several measures
to analyse the neutrality present in some Boolean parity fitness landscapes.
Let us briefly describe them. Firstly, they defined the average neutrality ratio
r of neutral network as the mean of the neutrality ratios of the individuals
contained in a network. Secondly, the authors defined the average ∆-fitness
of the neutral network which is the average fitness obtained after applying
a mutation to an individual contained in the neutral network. Thirdly, they
defined the Non Improvable (NI) Solutions ratio (rni) which is the number of
solutions that are generated by mutation operators and that are not fitter than
the original solution. Fourthly, Vanneschi et al. defined the Non Worsenable
(NW) Solutions ratio (rnw) which is the number of solutions that are generated
by mutation operators and that are not worse than the original solution.

In their initial analysis, the authors focused their attention on small land-
scapes (i.e., the even-2-parity function and set a maximum depth of 3), and
used two different function sets, F1 = {XOR} and F2 = {NAND,NOT}.
Finally, they defined three mutations which are a variation of the inflate and
deflate mutation operators originally defined in [84] to study the effects of
neutrality on evolutionary search. Vanneschi et al. pointed out that the effects
of neutrality strongly depend on a landscape’s features. To prove this, they
used the proposed measures to show that in certain landscapes such as the one
induced by the function set {NAND} it is very unlikely that neutrality will
help to improve fitness, where the opposite is true in the landscapes defined
by {XOR,NOT}.
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In [86], Vanneschi summarised some “tools” that people have used to study
different properties of the fitness landscape, including neutrality. These include
measuring neutrality in Cartesian gp using the Hamming distance, a pioneer
study performed by Yu and Miller [99] (as described previously in Section 6),
fitness distance correlation used in GP (tree-like structures) [84]. Other “tools”
mentioned by Vanneschi include the negative slope coefficient [87] that can
be calculated even without knowing the optimas genotypes and it does not
(explicitly) use any distance. In [87], the authors reported good results on
some GP benchmark problems. Successively in [85] these results have been
extended to some real-like applications. Then in [68] the authors gave a formal
model of the fitness proportional negative slope coefficient and a more rigorous
justification of it. Finally, in [91], the authors pointed out the limitations of
this approach.

6.4 Summary

In this section, we covered several works in the area of GP that have made an
effort to better understand the effects of neutrality in evolutionary search. Con-
trary to the studies carried out using GAs where there is a substantial amount
of work (as summarised in the previous section), there are fewer works using
GP. Probably one reason is the difficulty that the tree-like structure repre-
sentation used in typical GP presents. In section, we started reviewing works
that have used some form of genotype-phenotype mapping. We then presented
some criticism to this kind of approaches (i.e., genotype-phenotype mapping).
We finalised this section by summarising some measures that researchers have
proposed in the study of neutrality in GP. Table 5 presents a brief summary
of some works done on the study of neutrality in GP.

7 Open Issues and Conclusions

There are many techniques available in the specialised literature that allow
computer systems to learn (i.e., decision trees, neural networks, Bayesian learn-
ing, evolutionary algorithms and more [61]). This work is primarily based on
the use of Evolutionary Computation (EC) [1,22] systems (also known as evolu-
tionary algorithms). Genetic Algorithms (GAs) [39] and Genetic Programming
(GP) [52] are the methods widely analysed and summarised in this work.

The Genetic Algorithm is a widely used form of the evolutionary algorithm.
Originally, GAs were conceived by Holland as a means of studying adaptive be-
haviour. They, however, are largely used as function optimisation techniques.
GP has perhaps the richest representation among all the paradigms in EC
systems. GP can be used to evolve computer programs to solve problems au-
tomatically without having to tell them explicitly how [52,53,67].

Despite the proved effectiveness of EC systems, there are limitations in such
systems and researchers have been interested in making them more powerful by



24

Table 5 Brief summary of some works using on neutrality using Genetic Programming.

Keywords Short summary

Genotype-Phenotype map-
pings

Just as in GAs, the use of genotype-phenotype map-
pings has also been used in GP. Different approaches
have been used. Some studies include the use of Bi-
nary GP [2], Cartesian GP [57], Constant neutral-
ity [27], Uniform GP [29].

“Tools” to study neutrality In GP, the study of neutrality, and in fact, of any
effect seen in GP evolution is hard to measure given
the typical representation used in GP (i.e., tree-like
structure). There are, however, some “tools” that
have been defined to study some neutrality effects.
These include the use of the average neutrality ratio,
average fitness of the neutral network, non improv-
able solutions ratio, and ’worsenable’ solutions [88].
Another tool that has been used to analyse the hard-
ness of a problem with and without the presence of
neutrality (artificially induced) is the fitness distance
correlation (fdc) [42]. The use of fdc in GP has been
reported in [11,89,84]. For fixed-length representa-
tions in GP (e.g., Cartesian GP), the Hamming dis-
tance has also been used [99] in the study of neutral-
ity.

using different elements. One of these elements is neutrality (the neutral theory
of molecular evolution [48,49]) which the EC community has incorporated in
their systems in the hope that it can aid evolution. Briefly, neutrality considers
a mutation from one gene to another as neutral if this modification does not
affect the fitness of an individual. A more detailed description of neutrality is
presented in Section 2.

Neutrality has attracted the interest of researchers in the EC community.
However, the results reported in relation to the benefits of neutrality in evolu-
tionary search are contradictory, as we have mentioned throughout this work.
For instance, in “Finding Needles in Haystacks is not Hard with Neutrality”
[101], Yu and Miller performed runs using the well-known Cartesian GP (CGP)
representation [57,59] and also used the even-n-parity Boolean functions with
different degrees of difficulty (n = {5, 8, 10, 12}). They compared performance
when neutrality was present and in its absence and reported that the perfor-
mance of their system was better when neutrality was present.

A few years later, Collins claimed the opposite and presented the paper
entitled “Finding Needles in Haystacks is Harder with Neutrality” [12]. He
further explored the idea presented by Yu and Miller and explained that the
choice of this type of problems is unusual and in fact not suitable for analysing
neutrality using CGP. This is because both the landscape and the form of
the representation used have a high degree of neutrality and these make the
drawing of general conclusions on the effects of neutrality difficult.

These works (both nominated as best papers in their conference tracks!) are
just two examples of many publications available in the specialised literature
which show controversial results on neutrality.
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It is clear that a large amount of work has been done towards understanding
the effects of neutrality in evolutionary search. However, there are some areas
that in our view need to be addressed. In the following paragraphs, some
potential areas to be explored are discussed.

7.1 Form of Neutrality

As shown in Section 5, there is a large number of works on the use of differ-
ent genotype-phenotype mappings in GAs to add neutrality in evolutionary
search. Possibly, the main reason for doing this, it is the relative “simplicity”
of GAs. This has allowed researchers to perform a more detail analysis of the
effects of neutrality. In fact, many works have defined and used several tools
to performing this exhaustive analysis as mentioned in Sections 5 and 6, and
briefly summarised in Tables 4 and 5.

Genotype-phenotype mappings have also been used in GP to add neutral-
ity into the search space, as described in Section 6. Of course, neutrality’s
effects are harder to analyse using this kind of representation (tree-like struc-
tures). However, it is possible to analyse it in detail under some circumstances
that allow to have more less control of the system. So, it would be interested
exploring new forms of encoding functions (in bit-wise neutrality), or using
bitwise-type (introduced and explored in Section 5) of neutrality in GP. Like-
wise, it would be interesting using something like degree neutrality (introduced
and explained using GP in Section 6) but in GAs (e.g., using variable length
strings to encode fixed length ones).

7.2 Mathematical Frameworks

Often, it is common to see that researchers report experimental results without
a support of statistical information nor mathematical frameworks. In our view,
this is one of the key elements missing in the understanding on the effects of
neutrality. Put it in other way, the lack of mathematical frameworks developed
within the frame of understanding the effects of neutrality in evolutionary
search has had a big impact on the confusion of it.

It will be highly desired if research can be further explored into theoretical
work to corroborate empirical evidence. For instance, we need to do theory of
fitness distance correlation and phenotypic mutation rates for GP. We need to
understand phenotypic crossover rates both for GP and GAs.

7.3 Prediction on the Effect of Neutrality

Throughout the paper, we have mentioned different benchmark problems that
have been used in the study and analysis of neutrality in evolutionary search.
There are some cases where the effects, whether beneficial or detrimental, of
neutrality are clearer. Intuitively this means that the fitness landscape and
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the type of neutrality play an important role in determining the effects of
neutrality in the problem.

That is why, we believe that one needs to find good ways of predicting [30,
28,29,42,90] when the addition of neutrality (and what form of neutrality) can
be beneficial in practical situations, e.g., when facing an unknown problem.

7.4 Final Comments

We have presented a survey of neutrality. To do so, we have summarised works
where neutrality has been analysed, starting from its origins in biology and fin-
ishing with the most recent studies including the use of Genetic Algorithms and
Genetic Programming, where both empirical experiments and mathematical
frameworks have been used in an attempt to explain the effects of neutrality.

Throughout this work, we have highlighted the fact that there are no con-
clusive results on neutrality in EAs. The confusion regarding neutrality is due
to several reasons. These include the following:

– many studies have based their conclusions on performance statistics (i.e.,
on whether or not a system with neutrality could solve a particular prob-
lem faster than a system without neutrality) rather than a more in-depth
analysis (i.e., measure of hardness, population dynamics, etc.),

– studies often consider problems, representations and search algorithms that
are relatively complex and, so, results represent the compositions of mul-
tiple effects (e.g., bloat or spurious attractors in GP),

– there is not a single definition of neutrality, and different studies have added
neutrality to problems in radically different ways,

– very often studies focused their attention on particular properties of neu-
trality without properly defining them,

– the features of a problems landscape change when neutrality is artificially
added, but rarely has an effort been made to understand in exactly what
ways.
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Langdon, Erick Cantú-Paz, Keith E. Mathias, Rajkumar Roy, David Davis, Riccardo
Poli, Karthik Balakrishnan, Vasant Honavar, Günter Rudolph, Joachim Wegener,
Larry Bull, Mitchell A. Potter, Alan C. Schultz, Julian F. Miller, Edmund K. Burke,
and Natasa Jonoska, editors, Proceedings of the Genetic and Evolutionary Computa-
tion Conference, GECCO 2002, pages 724–732, New York, 9-13 July 2002. Morgan
Kaufmann Publishers.

12. M. Collins. Finding Needles in Haystacks is Harder with Neutrality. In Hans-Georg
Beyer, Una-May O’Reilly, Dirk V. Arnold, Wolfgang Banzhaf, Christian Blum, Eric W.
Bonabeau, Erick Cantu-Paz, Dipankar Dasgupta, Kalyanmoy Deb, James A. Foster,
Edwin D. de Jong, Hod Lipson, Xavier Llora, Spiros Mancoridis, Martin Pelikan, Guen-
ther R. Raidl, Terence Soule, Andy M. Tyrrell, Jean-Paul Watson, and Eckart Zitzler,
editors, GECCO 2005: Proceedings of the 2005 Conference on Genetic and Evolution-
ary Computation, volume 2, pages 1613–1618, Washington DC, USA, 25-29 June 2005.
ACM Press.

13. Pietro Corsi. The Age of Lamarck Evolutionary Theories in France. University of
California Press, USA, 1988.

14. Charles Darwin. On The Origin of Species by Means of Natural Selection. John
Murray, 1859.



28

15. Dipankar Dasgupta and Douglas R. McGregor. Nonstationary Function Optimization
using the Structured Genetic Algorithm. In R. Manner and B. Manderick, editors,
PPSN II: Proceedings of the 2nd International Conference on Parallel Problem Solving
from Nature, pages 145–154, Brussels, Belgium, 1992. Elsevier.

16. Benjamin Doerr, Michael Gnewuch, Nils Hebbinghaus, and Frank Neumann. A rig-
orous view on neutrality. In IEEE Congress on Evolutionary Computation, pages
2591–2597. IEEE, 2007.

17. R. M. Downing. Evolving Binary Decision Diagrams Using Implicit Neutrality. In
Proceedings of Congress on Evolutionary Computation (CEC 2005), volume 3, pages
2107–2113, Edinburgh, Scotland, 2005. IEEE Press.

18. M. Ebner. On the search space of genetic programming and its relation to nature’s
search space. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999
Congress on, 1999.

19. Marc Ebner, Patrick Langguth, Jurgen Albert, Mark Shackleton, and Rob Shipman.
On Neutral Networks and Evolvability. In Proceedings of the 2001 IEEE Congress on
Evolutionary Computation, pages 1–8. IEEE Press, 27-30May 2001.

20. Marc Ebner, Mark Shackleton, and Rob Shipman. How Neutral Networks Influence
Evolvability. Complexity, 7(2):19–33, 2001.

21. A. E. Eiben, Robert Hinterding, and Zbigniew Michalewicz. Parameter control in
evolutionary algorithms. IEEE Trans. Evolutionary Computation, 3(2):124–141, 1999.

22. Agoston E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer
Verlag, 2003.

23. R. A. Fisher. On the Dominance Ratio. In Proceedings of the Royal Society of Edin-
burgh, volume 42, pages 321–341, 1922.

24. Carlos Fonseca and Marisol Correia. Developing Redudant Binary Representations for
Genetic Search. In Proceedings of the 2005 IEEE Congress on Evolutionary Compu-
tation (CEC 2005), pages 372–379, Edinburgh, 2-4 September 2005. IEEE.

25. W. Fontana and P Schuster. Continuity in Evolution: On the Nature of Transitions.
Science, 280:1431–1452, 1998.
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