
ar
X

iv
:2

00
6.

05
41

5v
1

 [
cs

.N
E

]
 9

 J
un

 2
02

0
1

Neuroevolution in Deep Neural Networks:

Current Trends and Future Challenges
Edgar Galván and Peter Mooney

Abstract—A variety of methods have been applied to the archi-
tectural configuration and learning or training of artificial deep
neural networks (DNN). These methods play a crucial role in the
success or failure of the DNN for most problems and applications.
Evolutionary Algorithms (EAs) are gaining momentum as a
computationally feasible method for the automated optimisation
and training of DNNs. Neuroevolution is a term which describes
these processes of automated configuration and training of
DNNs using EAs. While many works exist in the literature,
no comprehensive surveys currently exist focusing exclusively on
the strengths and limitations of using neuroevolution approaches
in DNNs. Prolonged absence of such surveys can lead to a
disjointed and fragmented field preventing DNNs researchers
potentially adopting neuroevolutionary methods in their own
research, resulting in lost opportunities for improving perfor-
mance and wider application within real-world deep learning
problems. This paper presents a comprehensive survey, discussion
and evaluation of the state-of-the-art works on using EAs for
architectural configuration and training of DNNs. Based on this
survey, the paper highlights the most pertinent current issues and
challenges in neuroevolution and identifies multiple promising
future research directions.

Index Terms—Neuroevolution, Evolutionary Algorithms, Deep
Neural Networks, Deep Learning, Machine Learning.

I. INTRODUCTION

DEEP learning algorithms [51], [59], [83], a subset of

machine learning algorithms, are inspired by deep hier-

archical structures of human perception as well as production

systems. These algorithms have achieved extraordinary results

in different exciting areas including computer vision [17],

speech recognition [52], [102], board games [128] and video

games [101], to mention a few examples. The design of

deep neural networks (DNNs) architectures (along with the

optimisation of their hyperparameters) as well as their training

plays a crucial part for their success or failure [93].

Architecture search is an area of growing interest as demon-

strated by the large number of scientific works published in

recent years. Broadly speaking these works can be classified

into one of two categories: evolution-based methods [5],

[32], sometimes referred as neuroevolution [38], [149], and

reinforcement learning (RL) methods [142]. Other methods

falling outside these two categories have also been proposed

in the specialised literature including Monte Carlo-based sim-

ulations [106], random search [11] and random search with

weights prediction [14], hill-climbing [33], grid search [150],

Bayesian optimisation [12], [68].

Edgar Galván and Peter Mooney are both with the Naturally Inspired
Computation Research Group and with the Department of Computer Sci-
ence, Maynooth University, Ireland e-mails: edgar.galvan@mu.ie and pe-
ter.mooney@mu.ie

RL architecture-search methods started gaining momentum

thanks to their impressive results [6], [16], [90], [154], [156],

[157], and more recently, EA architecture-search methods

started yielding impressive results in the automatic configura-

tion of DNNs architectures [134], [91], [34]. Moreover, it has

been reported that neuroevolution requires less computational

time compared to RL methods [101], [134], [139].

In their simplest terms a DNN is a feedforward artificial

neural network (ANN) with many hidden layers. Each of these

layers constitutes a non-linear information processing unit.

This simple description encapsulates the incredible capabilities

of DNNs. Usually having two or more hidden layers in

an ANN qualifies as a DNN. By adding more layers and

more units within a layer, a DNN can represent functions of

increasing complexity [51].

Evolutionary Algorithms (EAs) [5], [32], also known

as Evolutionary Computation systems, are nature-inspired

stochastic techniques that mimic basic principles of life. These

automatic algorithms have been with us for several decades

and are highly popular given that they have proven compet-

itive in the face of challenging problems’ features such as

discontinuities, multiple local optima, non-linear interactions

between variables, among other characteristics [31]. They have

also proven to yield competitive results in multiple real-world

problems against other Artificial Intelligent methods as well

as results achieved by human experts [75], [77].

Finding a well-performing architecture is often a very

tedious and error-prone process for Deep Learning researchers.

Indeed, Lindauer and Hutter [89] remark that there are over

300 works published in the area of Neural Architecture

Search [89]. In this work, we focus our attention exclusively

in architecture EAs-based search methods in DNNs as well

EAs-based approaches in training DNNs. Particularly, this

work considers both landmark EAs, such as Genetic Al-

gorithms [60], Evolution Strategies [13], [118] and Genetic

Programming [76]1 as well as more recent EA variants,

such as Differential Evolution [114], NeuroEvolution of Aug-

menting Topologies [133] and Grammatical Evolution [121].

Furthermore, we consider the main deep learning architectures,

as classified by Liu et al. [93], that have been used in

neuroevolution, including Autoencoders [24], Convolutional

Neural Networks [79], Deep Belief Networks [151], [152]

and Restricted Boltzmann Machines [93], [105]. Other deep

learning architectures considered in this study include Recur-

rent Neural Networks [67] and Long Short Term Memory [46].

1Evolutionary Programming [39] is another landmark EA, but to the best
of our knowledge, there are no neuroevolution works using this paradigm.

http://arxiv.org/abs/2006.05415v1

2

Previous literature reviews in the area include those con-

ducted by Floreano et al. [38] and Yao [149], carried out more

than one and two decades ago, respectively. More recent works

include Stanley et al. [132] and Darwish et al. [23]. The former

work explains the influence of modern computational power

at scale in allowing the grand ambitions of neuroevolution

and deep learning from many years ago to be achieved and

fulfilled. The latter work delivers a broader and high-level

introduction and overview of swarm intelligence and EAs

in the optimisation of the hyperparameters and architecture

for neural networks in the data analytics domain. In contrast

to these works, our paper provides a new contribution to

complement these studies by concentrating on the details

of configuration and design of neuroevolution approaches in

deep learning. We carefully consider how EAs approaches

are applied in deep learning and in particular their specific

configuration for this purpose.

The goal of our paper is to provide a timely and comprehen-

sive review in neuroevolution in DNNs. The work is aimed at

those researchers and practitioners that are either working in

the area or are eager to start working in this exciting growing

research area. The configuration and design of artificial deep

neural networks is error prone, time consuming and difficult.

Our paper will highlight the strengths of EAs as a competitive

approach to architecture design. We expect this article will

attract the attention of researchers in the DL and EA commu-

nities to further investigate effective and efficient approaches

to addressing new challenges in neuroevolution in DNNs.

Given the specific nature of this paper, an extensive litera-

ture review was undertaken. This involved searches in many

online databases using a combination of search strategies in

order for this review to be methodologically sound. This

literature review aims to outline the state-of-the-art and current

practice in the domain of neuroevolution by critically evaluat-

ing and integrating the findings of all relevant and high-quality

individual studies we have found in this area. To establish

the extent of existing research and to conduct an exhaustive

search representative of all studies that have been conducted

on our topic of interest is a major challenge. As the topic

of Neuroevolution in Deep Neural Networks straddles several

important areas of research in Computer Science: Neural

Networks, Machine Learning, and Evolutionary Algorithms

there is a need to search widely in order to capture works

which appear in one or more of these research areas. We

used searches of Google Scholar, IEEE Xplore, ACM Digital

Library, ScienceDirect, arXiv, Springer, Citeseer, the archive

of Proceedings of Neural Information Processing Systems,

and the archive of Proceedings of International Conference on

Machine Learning. We strongly believe our paper outlines our

estimation of the state-of-the-art in neuroevolution in DNNs

at this point in time.

The rest of the paper is organised as follows. Section II pro-

vides some background to DL and EAs. Section III discusses

how the architectures of DNNs can be evolved efficiently using

EA approaches. This moves onto a discussion in Section IV on

the training of DNNs with EAs. Section V sets out some of the

major challenges and fertile avenues for future work. Finally,

the paper closes with some concluding remarks in Section VI.

II. BACKGROUND

A. Deep Neural Networks

The concept of deep learning originated from the study

on artificial neural networks (ANNs). An ANN consists of

multiple, simple, connected units denominated neurons, each

producing a sequence of real-valued activations and, by care-

fully adjusting the weights, the ANNs can behave as desired.

Depending on the problems and the way the neurons are

connected, the process of training an ANN may require “long

casual chains of computational stages” [124]. Deep learning

emerged as a concept from works such as Hinton et al. [59]

and has subsequently became a very active research area [93].

A deep learning algorithm is a class of machine learning

algorithms using multiple layers to progressively extract higher

level features from the raw data input. The term deep then

refers specifically to the number of layers through which the

raw data is transformed. In deep learning, each subsequent

level attempts to learn in order to transform input data into

a progressively more abstract and composite representation.

Neuroevolution in DNNs has been applied to the development

of a wide range of ANNs including, but not limited to,

Convolutional Neural networks, Autoencoders, Deep Belief

Networks and Recurrent Neural Networks. In the next sections,

we summarise these.

1) Deep Learning Architecture: Convolutional Neural Net-

works (CNNs): CNNs have shown impressive performance in

processing data with a grid-like topology. The deep network

consists of a set of layers each containing one or more planes.

Each unit in a plane receives input from a neighbourhood in

the planes of the previous layer. This idea of connecting units

to receptive fields dates back to the 1960s with the perceptron

and the animal visual cortex organisation discovered by Hubel

and Wiesel [63]. The input, such as an image, is convolved

with trainable kernels or filters at all offsets to produce feature

maps. These filters include a layer of connection weights.

Usually, four pixels in a feature map form a group and this

is passed through a function, such as sigmoid function or

hyperbolic tangent function. These pixels produce additional

feature maps in a layer. n planes are normally used in each

layer so that n features can be detected. These layers are

called convolutional layers. Once a feature is detected, its exact

location is less important and convolutional layers are followed

by another layer in charge of performing local averaging and

sub-sampling operation. Due to the high dimensionality of the

inputs, a CNN classifier may cause overfitting. This problem is

addressed by using a pooling process, also called sub-sampling

or down-sampling, that reduces the overall size of the signal.

Normally, the CNN is trained with the usual backpropagation

gradient-descent procedure proposed by Lecun et al. [84].

The learning attractive process of a CNN is determined

by three key elements: (i) sparse interaction that reduces the

computational processing with kernels that are smaller than

the inputs, (ii) parameter sharing that refers to learn one set

of parameters instead of learning one set at each location,

and finally, (iii) equivariance representation that means that

whenever the input changes, the output changes in the same

manner [51]. CNNs were the first successful deep learning

3

architectures applied to face detection, handwriting recogni-

tion, image classification, speech recognition, natural language

processing and recommender systems.

The evolution of these CNN architectures has been slow

but remarkable. For example, LeNet [84] proposed in the late

1990s and AlexNet [79], proposed a decade later, are very

similar with two and five convolutional layers, respectively.

Moreover, they also used kernels with large receptive fields

in the layer close to the input and smaller filters closer to

the output. A major difference is that the latter used rectified

linear units as activation function, which became a standard

in neuroevolution in designing CNNs. Since 2012, the use

of novel and deeper models took off. For example, in 2014,

Simonyan and Zisserman [129] won the Imagenet challenge

with their proposed 19-layer model known as VGG19. Other

networks have been proposed that not only are deeper but

use more complex building blocks. For example, in 2015,

Szegedy et al. [143] proposed GoogLeNet, also known as

Inception, which is a 22-layer network that used inception

blocks. In 2015, the ResNet architecture, consisting of the

so-called ResNet blocks, proposed by He et al. [58] won

the ImageNet challenge. Moreover, multiple CNNs variants

have been proposed such as combining convolutions with an

autoencoder [65], using RBMs in a CNN [29], to mention a

few examples. A description of the variants of this network

can be found in [93].

2) Deep Learning Architecture: Autoencoders (AEs):

Autoencoders are simple learning circuits which are designed

to transform inputs into outputs with the minimum amount

of distortion. An autoencoder consists of a combination of an

encoder function and a decoder function. The encoder function

converts the input data into a different representation and then

the decode function converts the new representation back to

the original form. AEs attempt to preserve as much infor-

mation as possible and they provide range-bounded outputs

which make them suitable for data pre-processing and iterative

architectures such as DNNs [80]. Despite this work appearing

in 2020, the authors suggest that there is “still relatively little

work exploring the application (of evolutionary approaches to

neural architecture search) to autoencoders. In 2012 Baldi [7]

argued that while autoencoders “taken center stage in the

deep architecture approach” there was still very little theo-

retical understanding of autoencoders with deep architectures

to date. Choosing an appropriate autoencoder architecture

in order to process a specific dataset will mean that the

autoencoder is capable of learning the optimal representation

of the data [18]. Encoding autoencoders within a chromosone

representation means that such an approach could be broad

enough to consider most autoencoder variations [18]. As an

unsupervised feature learning approach, autoencoders attempt

to learn a compact representation of the input data whilst

retaining the most important information of the representation.

This representation is expected to completely reconstruct the

original input. This makes initialisation of the autoencoder

critical [61]. Whilst autoencoders can induce very helpful and

useful representations of the input data they are only capable

of handling a single sample and are not capable of modelling

the relationship between pairs of samples in the input data.

3) Deep Learning Architecture: Deep Belief Networks

(DBNs): Deep Belief Networks can be implemented in a

number of ways including Restricted Boltzmann Machines

(see Section II-A4) and Autoencoders (see Section II-A2).

DBNs are well suited to the problem of feature extraction

and have drawn “tremendous attention recently” [152]. DBNs,

like other traditional classifiers, have a very large number of

parameters and require a great deal of training time [19]. When

Restricted Boltzmann Machines (RBMs) are stacked together

they are considered to be a DBN. The fundamental building

blocks of a DBN are RBMs consisting of one visible layer

and one hidden layer. When DBNs are applied to classification

problems the feature vectors from data samples are used to set

the values of the states of the visible variables of the lower

layer of the DBN. Then the DBN is trained to generate a

probability distribution over all possible labels of the input

data. They offer a good solution to learn hierarchical feature

representations from data.

4) Deep Learning Architecture: Other network types:

In this subsection we introduce some of other popular and

well-studied network architectures namely: Recurrent Neural

Networks (RNNs), Restricted Boltzmann Machines (RBMs),

and Long Short Term Memory (LSTM).

RNNs: In the case of CNNs input is a fixed-length vector

and eventually produce a fixed-length vector as output. The

number of layers in the CNN determine the amount of com-

putational steps required. Recurrent Neural Networks (RNNs)

are more flexible and they allow operation across a sequence

of vectors. The connections between the units in the network

form a directed cycle and this creates an internal state of

the network allowing to exhibit dynamic temporal behaviour.

This internal hidden state allows the RNN to store a lot of

information about the past efficiently. RNNs are well suited

to sequential data prediction and this has seen them being

applied to areas such as statistical language modelling and

time-series prediction. However, the computational power of

RNNs make them very difficult to train. The principal reasons

for this difficulty are mainly due to the exploding and the

vanishing gradient problems [67]. In theory RNNs can make

use of information in arbitrarily long sequences but in reality

they are limited to considering look-back at only a few steps.

RBMs: A Restricted Boltzmann Machine (RBM) is a

network of symmetrically connected neuron like units which

are designed to make stochastic decisions about whether to be

on or off. They are an energy-based neural network. In a RBM

there are no connections between the hidden units and multiple

hidden layers. Learning occurs by considering the hidden

activities of a single RBM as the data for training a higher-

level RBM [122]. There is no communication or connection

between layers and this is where the restriction is introduced

to a Boltzmann machine. The RBMs are probabilistic models

using a layer of hidden binary variables or units to model the

distribution of a visible layer of variables. RBMs have been

successfully applied to problems involving high dimensional

data such as images and text [82]. As outlined by Fischer

and Igel [36], RBMs have been the subject of recent research

after being proposed as building blocks of multi-layer learn-

ing architectures or DBNs. The concept here is that hidden

4

neurons extract relevant features from the data observations.

These features can then serve as input to another RBM. By

this so-called stacking of RBMs in this fashion way, a network

can learn features from features with the goal of arriving at a

high level representation [102].

LSTM: Long-short-term memory (LSTM) networks are a

special type of recurrent neural networks capable of learning

long-term dependencies. They work incredibly well on a large

variety of problems and are currently widely used. LSTMs

are specifically designed to avoid the problem of long-term

dependencies. The basic unit within the hidden layer of an

LSTM network is called a memory block containing one or

more memory cells and a pair of adaptive, multiplicative gating

units which gate input and output to all cells in the block [46].

In LSTM networks, it was possible to circumvent the problem

of the vanishing error gradients in the network training process

by method of error back propagation. An LSTM network is

usually controlled by recurrent gates called forgetting gates.

Errors are propagated back in time through a potentially

unlimited number of virtual layers. In this way, learning takes

place in LSTM, while preserving the memory of thousands

and even millions of time intervals in the past. Network

topologies such as LSTM can be developed in accordance with

the specifics of the task. Recurrent neural networks (RNNs)

with long short-term memory (LSTM) have emerged as an

effective and scalable model for several learning problems

related to sequential data [53]. Gers and Schmidhuber [47]

showed that standard RNNs fail to learn in the presence

of time lags exceeding as few as five to ten discrete-time

steps between relevant input events and target signals. LSTM

are not affected by this problem and are capable of dealing

with minimal time lags in excess of 1000 discrete-time steps.

In studies such as those by Gers and Schmidhuber [47],

LSTM clearly outperforms previous RNNs not only on regular

language benchmarks (according to previous research) but also

on context-free languages benchmarks.

B. Evolutionary Algorithms

Evolutionary Algorithms (EAs) [5], [32] refer to a set

of stochastic optimisation bio-inspired algorithms that use

evolutionary principles to build robust adaptive systems. The

field has its origins in four landmark evolutionary methods:

Genetic Algorithms [60], [49], Evolution Strategies [119],

[125], Evolutionary Programming [39] and Genetic Program-

ming [76]. The key element of these algorithms is undoubtedly

flexibility allowing the practitioner to use elements from two

or more different EAs techniques. This is the reason why the

boundaries between these approaches are no longer distinct

allowing to have a more holistic EA framework [98] via [37].

EAs work with a population of µ-encoded potential solu-

tions to a particular problem. Each potential solution, com-

monly known as individual, represents a point in the search

space, where the optimum solution lies. The population is

evolved by means of genetic operators, over a number of

generations, to produce better results to the problem. Each

member of the population is evaluated using a fitness function

to determine how good or bad the potential solution is in

the problem at hand. The fitness value assigned to each

individual in the population probabilistically determines how

successful the individual will be at propagating (part of) its

code to further generations. Better performing solutions will be

assigned higher values (for maximisation problems) or lower

values (for minimisation problems).

The evolutionary process is carried out by using genetic

operators. Most EAs include operators that select individuals

for reproduction, generate new individuals based on the se-

lected individuals and ultimately determine the composition

of the individuals in the population at the following gen-

eration. Selection, crossover and mutation are key genetic

operators used in most EAs paradigms. The selection operator

is in charge of choosing one or more individuals from the

population based on their fitness values. Multiple selection

operators have been proposed. One of the most popular

selection operators is tournament selection for its simplicity.

The idea is to select the best individual from a pool, normally

of size = [2−7], from the population. The stochastic crossover,

also known as recombination, operator exchanges material

normally from two selected individuals. This operator is in

charge of exploiting the search space. The stochastic mutation

operator makes random changes to the genes of the individual.

This operator is in charge of exploring the search space. The

mutation operator is important to guarantee diversity in the

population as well as recovering genetic material lost during

evolution.

The evolutionary process explained before is repeated until a

condition is met. Normally, until a maximum number of gener-

ations has been executed. The population in the last generation

is the result of exploring and exploiting the search space over

a number of generations. It contains the best evolved potential

solutions to the problem and may also represent the global

optimum solution. Alg. 1 shows the general steps of a EA for

a deep CNN network design.

1) Evolutionary Algorithm: Genetic Algorithms (GAs):

This EA was introduced by Holland [60] in the 1970s and

highly popularised by Goldberg [49]. This was due to the

fact of achieving extraordinary results as well as reaching

multiple research communities including machine learning and

neural networks. GAs were frequently described as function

optimisers, but now the tendency is to consider GAs as search

algorithms able to find near-optimal solutions. Multiple forms

of GAs have been proposed in the specialised literature.

The bitstring fixed-length representation is one of the most

predominant encodings used in GAs. Crossover, as the main

genetic operator, and mutation as the secondary operator,

reproduce offspring over evolutionary search.

2) Evolutionary Algorithm: Genetic Programming (GP):

This EA is a subclass of GAs and was popularised by

Koza [76] in the 1990s. GP is a form of automated program-

ming. Individuals are randomly created by using functional

and terminal sets, that are required to solve the problem at

hand. Even though multiple types of GP have been proposed

in the specialised literature, the typical tree-like structure is

the predominant form of GP in EAs. Cartesian GP [100] is

another form of GP, which has been used in neuroevolution

in DNNs [135], [136].

5

Algorithm 1 A common EA process for network design. Adapted from [148]

1: Input: the reference dataset D, the number of generations T , the number of individuals in each generation N , the mutation

and crossover probabilities Pm and Pc;

2: Initialisation: generating a set of randomised individuals {M0, n}
N
n=1, and computing their recognition accuracies;

3: for t = 1, 2, · · · , T do

4: Selection: producing a new generation {M′

t,n}
N
n=1 with a Russian roulette process on {Mt−1,n}

N
n=1;

5: Crossover: for each pair ({Mt,2n−1,Mt,2n)}
[N/2]
n=1 , performing crossover with probability Pc;

6: Mutation: for each non-crossover individual {Mt,n}
N
n=1, performing mutation with probability Pm;

7: Fitness evaluation: computing the fitness (e.g., recognition accuracy) for each new individual {Mt,n}
N
n=1;

8: end for

9: Output: a set of individuals in the final generation {MT , n}
N
n=1 with their fitness values.

3) Evolutionary Algorithm: Evolution Strategies (ES):

These EAs were introduced in the 1960s by Rechenberg [119]

and Schwefel [125]. ES are generally applied to real-valued

representations of optimisation problems. In ES, mutation is

the main operator whereas crossover is the secondary, optional,

operator. Historically, there were two basic forms of ES,

known as the (µ, λ)-ES and the (µ + λ)-ES. µ refers to the

size of the parent population, whereas λ refers to the number

of offspring that are produced in the following generation

before selection is applied. In the former ES, the offspring

replace the parents whereas in the latter form of ES, selection

is applied to both offspring and parents to form the population

in the following generation. Nowadays, the Covariance Matrix

Adaptation-ES, proposed in the 1990s by Hansen [55], [56],

[57], is the state of the art ES that adapts the full covariance

matrix of a normal search (mutation) distribution.

4) Evolutionary Algorithm: Evolutionary Programming

(EP): These EAs were proposed in the 1960s by Fogel,

Owens and Walsh [39] and very little differences are observed

between ES and EP. The main difference, however, between

these two EAs paradigms is the lack of use of crossover in

EP whereas this genetic operator is secondary, and rarely used,

in ES. Another difference is that in EP, normally M parents

produce M offspring, whereas in ES the number of offspring

produced by genetic operators is higher than their parents.

5) Evolutionary Algorithm: Others: Multiple evolutionary-

based algorithms have been proposed in the specialised liter-

ature. Relevant to this work are Differential Evolution (DE),

Grammatical Evolution (GE) as well as NeuroEvolution of

Augmenting Topologies (NEAT).

DE: Differential Evolution (DE) was proposed by Price and

Storn [114] in the 1990s. The popularity of this EA is due to

the fact that has proven to be highly efficient in continuous

search spaces and it is often reported to be more robust

as well as achieving a faster convergence speed compared

to other optimisation methods [115]. Unlike traditional EAs,

the DE-variants perturb the population members with the

scaled differences of randomly selected and distinct population

members.

GE: Grammatical Evolution (GE) is a grammar-based EA

proposed by Ryan et al. [121] in the 1990s. A genotype-

phenotype mapping process is used to generate (genetic)

programs by using a binary string to select production rules

in a Backus-Naur form grammar definition. GE can be seen

as a special form of GP, where one of the main differences is

that unlike GP, GE does not perform the evolutionary process

on the programs themselves.

NEAT: NeuroEvolution of Augmenting Topologies (NEAT)

is a form of EA proposed by Stanley and Miikkulainen [133]

in the 2000s. NEAT is a technique for evolving neural net-

works. Three elements are crucial for NEAT to work: (i)

historical marking, that allows solutions to be crossed over,

(ii) speciation, that allows for defining niches and (iii) starting

from minimal structure, that allows to incrementally find better

solutions.

III. EVOLVING DNNS ARCHITECTURES THROUGH

EVOLUTIONARY ALGORITHMS

A. The Motivation

In recent years, there has been a surge of interest in methods

for neural architecture search. Broadly, they can be categorised

in one of two areas: evolutionary algorithms or reinforcement

learning. Recently, EAs have stated gaining momentum for

designing deep neural networks architectures [34], [38], [74],

[91], [99], [116], [117], [133], [148]. The popularity of these

algorithms is due to the fact that they are gradient-free,

population-based methods that offer a parallelised mechanism

to simultaneously explore multiple areas of the search space

while at the same time offering a mechanism to escape

from local optima. Moreover, the fact that the algorithm is

inherently suited to parallelisation means that more potential

solutions can be simultaneously computed within acceptable

wall-clock time. Steady increase in computing power, in-

cluding graphics processing units with thousands of cores,

will contribute to speed up the computational calculations of

population-based EAs.

B. The Critique

Despite the popularity of EAs for designing deep neural

network architectures, they have also been criticised in the

light of being slow learners as well as being computationally

expensive to evaluate [31]. For example, when using a small

population-based EA of 20 individuals (potential solutions)

and using a training set of 50,000 samples, one generation

alone (of hundreds, thousands or millions of generations) will

require one million evaluations through the use of a fitness

function.

6

C. Deep Learning Architecture: Convolutional Neural Net-

works

Agapitos et al. [1] used a tree-based GP system to evolve

a hierarchical feature construction as well as a classification

system with feedforward processing. Inspired by the work

carried out by Bengio et al. [10] where they empirically

demonstrated, using DBN, that greedy-unsupervised layer-

training strategy helps to optimise deep networks, Agapitos

et al. trained a new layer of CNN of image transformation

at the time with the goal to learn a stack of gradually better

representations. The authors attained good results using the

MNIST dataset. Dufourq and Bassett [30] used a GA to evolve

CNN architectures. The encoding used by the authors also

allowed them to evolve the learning rate denoting the value

which is applied during the training optimisation. They used

different operations and sizes of filters including one and two-

dimension convolution, one and two-dimension max pooling,

dropout, among others. They tested their approach in both

image classification tasks as well as in sentiment analysis

tasks. Chromosomes using two-dimensional convolution were

penalised for a text sentiment problem. The authors used a

fitness function with two aggregate elements, one denoting

the accuracy and the other the complexity of the solution

captured by the number of parameters used by a chromosome.

The authors reported competitive results compared to state-

of-the-art algorithms on the balanced-based and digit-based

EMNIST dataset as well as in the Fashion dataset. Desell [28]

proposed an algorithm based on NEAT [133] to evolve CNN

architectures. Desell carried out some modifications to the

NEAT algorithm to evolve CNN architectures through selec-

tion, crossover and mutation. Whereas all operators played

an important role to produce well-behaved CNNs, it was

interesting to see how the use of mutation, involving 7 types

of operations, seemed to be crucial to the competitive results

reported on the MNIST dataset.

Zoph et al. [157] proposed NASNet search space defined

by a predetermined outer structure depicted in Fig. 1 with

the ultimate goal of enabling transferability. This structure is

composed of convolutional cells, called normal cell (coloured

in pink in Fig. 1 (a)) and reduction cell (coloured in grey),

repeated many times. The former type of cells returns a

feature map of the same dimensions whereas the latter returns

a feature map where its height and width is reduced by a

factor of two. All cells of the same type are constraint to

have the same architecture and it was found beneficial that

architectures of normal cells were different to the architectures

of reduced cells. The goal of their architecture search process

was to discover the architectures of these two types of cells,

an example of this is denoted in Fig. 1 (b). In 2019, Real et

al. [116] proposed AmoebaNet-A to evolve an image classifier

achieving superior accuracy over hand-designed methods for

the first time. The authors used a population-based EA with

each fixed length member encoding the architecture of CNNs.

To do so, they used the NASNet search space [157]. The goal

of their EA-based approach was to discover the architectures

of the normal cells and the reductions cells as depicted in

Fig. 1 (a). Real et al. used a modified version of tournament

selection and two types of mutation as the two genetic op-

erators in charge of driving evolution. Tournament selection

(see Section II to read about how this works) was modified so

that the newest genotypes were chosen over older genotypes.

The mutation operator involved one of two operations taking

place once for each individual: the hidden state mutation and

the op mutation. To execute any of these types of mutation,

first a random cell is chosen, then a pairwise combination

is stochastically selected (see Fig. 1 (c)), and finally, one

of these two pairs is picked randomly. This hidden state is

replaced with another hidden state with the constraint that no

loop is formed. The op mutation differs only in modifying

the operation used within the selected hidden state. Fig. 1 (d)

shows how these two mutation operations work. The authors

used the CIFAR-10 dataset to test their proposed AmoebaNet-

A and compared it against a reinforcement learning-based

method and random search, achieving better accuracy results

as well as reducing the computational time required by their

algorithm compared to the other two methods. Moreover, the

authors used the fittest chromosome found by their algorithm

and retrained it using the Imagenet dataset. With this, they also

reported encouraging accuracy results compared with other

architecture search methods.

In a different constraint setting, Xie et al. [148] proposed

Genetic CNN to automatically learn the structures of CNNs

with a limited number of layers as well as limited sizes and

operations of convolutional filters, to mention a few constraints

adopted by them. The authors adopted a GA with binary fixed-

length representation to represent parts of evolved network. In

their studies, each network is composed by various stages and

each of these is composed of nodes that represent convolu-

tional operations. The binary encoding adopted by Xie et al.

represents the connection between a number of ordered nodes.

This representation allowed the authors to use crossover,

along with roulette selection and mutation. They defined a

stage as the minimal unit to apply crossover and mutation.

This allowed them to maintain the ordered nodes defined

in the genotype and produce valid potential solutions only.

Even with the restrictions adopted in their work, the authors

achieved competitive accuracy results using the CIFAR-10 and

MNIST datasets. They also demonstrated how their approach

can be generalised by using the learned architecture on the

ILSVRC2012 large-scale dataset. This was achieved because

their approach was able to produce chain-shaped networks

such as AlexNet [79], VGGNet [129], multiple-path networks

such as GoogLeNet [143] and highway networks such as Deep

ResNet [58], which have been reported to be beneficial when

applied to computer vision problems.

Real et al. [117] used an EA to automatically optimise

CNN architectures. Individual architectures are encoded as a

graph, where the vertices represent rank-3 tensors: two of these

represent the spatial coordinates of the image and the third is

the number of channels. Activation functions, such as batch-

normalisation [64] with rectified linear units (ReLus) or plain

linear units, are applied to the vertices. The authors primarily

used 11 types of mutations falling into one of three different

categories including inserting layers, removing layers as well

as using a mutation to modify layers parameters. Although

7

Normal Cell

Reduction Cell

Normal Cell

Normal Cell

Reduction Cell

Input Image

Softmax

X N

X N

X N

Normal Cell

Normal Cell

Normal Cell

Normal Cell

avg

3x3
max

3x3

+

none avg

3x3

+

00 01

02 03

sep

5x5
sep

3x3

+

04

sep

3x3
none

+

05

avg

3x3
sep

3x3

+

06

07

sep

7x7
avg

3x3

04

+

02 03

05

sep

7x7
none

04

+

02 03

05

 Op

Mutation

sep

7x7
avg

3x3

04

+

02 03

05

sep

7x7
none

04

+

02 03

05

blocks

(b) (c) (d)

H1 H2 H3 H4

hidden state set

H4

conv

1 x 1

H2

conv

3 x 3

add

H5

H1 H2 H3

hidden state set

H3

identity

H2

conv

1 x 1

concat

H4

H1 H2

hidden state set

H1

 pool

3 x 3

H2

conv

3 x 3

add

H3

(a)

Hidden State

 Mutation

Fig. 1. (a) NASNet Search Space [157]. (b) Scalable architecture for image classification consist of two repeated motifs termed Normal Cell and Reduction
Cell. Left: the full outer structure (omitting skip inputs for clarity) and Right: detailed view with the skip inputs. (c) Example of a cell, where the dotted red
circle demarcates a pairwise combination. (d) Examples of how the mutations are used. (a) and (b – d) redrawn from Zoph et al. [157] and Real et al. [116],
respectively.

they also conducted studies using three forms of crossover,

Real et al. indicated that none of these improved the results

yielded by mutation operators. The authors also indicated that

at the beginning of the search, the EA was susceptible to

becoming trapped at local optima. To this end, they applied

five mutations per reproduction and decreased this to one at a

later stage during evolution. Real et al. used back-propagation

to optimise the weights of the CNNs. Because training a

large model is incredible slow within their evolutionary set-

ting, the authors partly addressed this by allowing children

to inherit their parents’ weights when layers had matching

shapes. They also used a high-computational setting (250

computers) to carry out their experiments. In their results, the

authors reported competitive average accuracy results over five

independent runs in the CIFAR-10 and CIFAR-100 datasets

compared to state-of-the-art algorithms including ResNet [58]

and DenseNet [62].

Suganuma et al. [136] used Cartesian GP [100] (CGP)

to automatically design CNN architectures. The genotype

encodes information on the type and connections of the nodes.

Fig. 2 (a) depicts this idea. These types include ConvBlock,

ResBlock, max pooling, average pooling, summation and

concatenation. ConvBlock consists of standard convolution

processing followed by batch normalisation and ReLU [105]

whereas ResBlock is a ConvBlock followed by tensor sum-

mation. The CGP encoding scheme represents the program

as a directed acyclic graph in a two-dimensional grid of Nr

rows by Nc columns. Fig. 2 (b) provides an example of the

phenotype, obtained from Fig. 2 (a), in the case of a grid

defined by Nr = 2 by Nc = 3. The corresponding CNN

architecture is depicted in Fig. 2 (c). In their experiments, the

authors used the CIFAR-10 dataset as well as a portion of

this. As evaluating each of the CGP individuals is expensive,

they adopted a simple (1+λ) ES (see Section II). The authors’

approach achieved competitive results compared with well-

known methods including ResNet [58]. It is interesting to

see how the authors reported encouraging results using CGP

to automatically configure CNN architectures regardless of

the sample size used in their work. For example, the CNN

architecture produced by CGP for the small dataset scenario

is wider compared to the architecture yield by CGP for the

standard scenario.

Assunção et al. [3], [4] proposed DENSER, an hybrid

mechanism of GAs and (Dynamic Structured) Grammatical

Evolution (GE) [121], to evolve DNNs architectures. The

outer layer of their proposed approach is in charge of en-

coding the macro structure of the DNNs evolved by means

of GAs. Dynamic Structured GE is in charge of the inner

layer that encodes the parameters of the DNNs in a backus-

naur form. The authors used the typical genetic operators,

8

Softmax

 Conv

(32,3)

 Pool

(max)

 Conv

(64,5)

 Conv

(64,3)

Max

Pooling

+ Summation

1

3

2

4

6

Genotype

Phenotype

C0 0 2

1

P1 0 0

2

C3 1 2

3

2 2 C2 2 1

4

1 P1 2 2

5

 S 3 4

6

Out 6

7

2nd input node number

1st input node number

Function ID not expressed in the phenotype

0

sum

 conv

(32, 3)

 pool

(max)

 conv

(64, 5)

 conv

(64, 3)

 pool

(max)

outputinput

1

2

3

4

5

6

70

sum

(a) (c)

(b)

CNN Architecture

7

Fig. 2. (a) Genetic representation of a cartesian genetic programming individual encoding a CNN architecture. (b) The phenotypic representation. (c) The
CNN architecture defined by (a). Notice that the Gene No. 5, coloured with a black background in the genotype (a) is not expressed in the phenotype. The
summation node in (c), highlighted with a light yellow background, performs max pooling to the left-hand side of the input (Node no. 3) to get the same
input tensor sizes. Redrawn from Suganuma et al. [136].

including selection, two forms of crossovers (one-point and

bit-mask) and three types of mutations (add, replicate and

remove unit) in the outer GA-based layer. Furthermore, they

used three types of mutations in the inner GE-based layer.

To test their approach, the authors used multiple datasets

including CIFAR-10, CIFAR-100, MNIST, Fashion-MNIST,

SVHN and Rectangles. Similarly to the works conducted by

Miikulainen et al. [99] and Suganuma et al. [136], Assunção

et al. performed only 10 epochs to train the DNNs due to the

high computational cost associated to this. The authors ran

10 runs and reported competitive results compared to state-

of-the-art algorithms including using other automatic CNNs

designing methods. It is interesting to note that when the

authors computed the average fitness and the average number

of hidden layers across the entire population, they noticed that

these two trends were opposite. That is, as the fitness increases

over time, the number of hidden layers decreases over time.

This would suggest that these two metrics are in conflict when

optimising CNNs architectures.

Sun et al. [141] proposed the use of a population-based

GA, of a fixed-length encoding, to evolve, by means of

selection, crossover and mutation, unsupervised DNNs for

learning meaningful representations for computer vision tasks.

Their approach included two main parts (i) finding the optimal

architectures in DNNs, the desirable initialisation of weights

as well as activation functions, and (ii) fine-tuning all the

parameter values in connection weights from the desirable

initialisation. The first was primarily achieved by using an

encoding, which was inspired by the work conducted by Zhang

et al. [153], who captured all of the elements described in (i).

As one gene represents on average 1,000 parameters in this

encoding, the exploitation achieved by crossover is reduced.

To overcome this problem, Sun et al. used backpropagation in

Part (ii). By hand-crafting the various parts of their approach,

the authors demonstrated how the local search adopted in Part

(i) was necessary in order to achieve promising results.

Recently, Sun et al. [140] proposed a GA, named Evolving

Deep CNNs, to automatically discover CNN architectures

and corresponding connection weight values. Inspired by the

large computational resources reported in the work by Real

et al. [117] who used 250 high-end computers, Sun et al.

aimed to tackle the use of this resource intensive setting. They

proposed a cost-effective method to evaluate the fitness of

the individuals in the population allowing them to execute 30

independent runs, as normally adopted by the EA community,

in each of the 9 datasets used in their experiments. Moreover,

they also used the normal evolutionary operators from EAs,

including selection, mutation and crossover. The latter operator

was not used in the studies carried out by Real et al. [117].

This was a limitation in Real’s work because crossover deals

with exploiting the search space. In Sun et al.’s approach

each variable-length chromosome encodes the convolutional

layer, the pooling layer and the full connection layer. Because

hundred of thousands connection weights may exist in one

convolutional or full connection layer these should not be

directly encoded into the chromosome. Thus, Sun et al. used

two statistical measures: the standard deviation and the average

value of the connection weights. By doing so, they were able

to efficiently evaluate each chromosome in the population.

They evaluated each individual by using the classification

error as well the number of connection weights. To mitigate

the computational time required to evaluate the chromosomes

along with the normally CNN deep architectures the authors

restricted the training to a small number of epochs (≤ 10).

9

It is in the last epoch where the fitness is computed for each

of the chromosomes in the population. Crossover was applied

by using unit alignment, which basically groups parts of the

same type, cross them over, and finally, use a restoring phase

to put the units back in their corresponding positions in the

chromosome. The authors reported highly encouraging results

with many cases achieving better results compared to state-of-

the-art algorithms in the datasets commonly used by the deep

learning community.

van Wyk and Bosman [144] described and evaluated their

proposed neural architecture search (NAS) method to automate

the process of finding an optimal CNN architecture for the task

of arbitrary image restoration. Their work demonstrates the po-

tential feasibility for performing NAS under significant mem-

ory and computational time constraints. The ImageNet64x64

dataset was chosen for evaluation. The training set was used

for gradient-based optimisation of the NNs performance on

unseen data. The authors find that the human-based configured

architecture was heavily overparameterised while this was not

the case with the evolved NN which performed the tasks

with a significantly lower number of total parameters. Sun

et al. [139] proposed an encoding strategy built on the state-

of-the-art blocks namely ResNet and DenseNet. The authors

used a variable length GA that allowed them to automatically

evolve CNNs architectures of unrestricted depth. Sun et al.

used selection, crossover and mutation to evolve candidate so-

lutions. Given the nature of the variable length encoding used

in their approach, the authors employed a repair mechanism

that allowed them to produce valid CNNs. The authors used

the CIFAR-10 and the CIFAR-100 datasets and compared their

results against 9 manually designed methods, 4 semi-automatic

methods and 5 automatic methods. Interestingly their results

outperformed all hand-crafted methods as well as all semi-

automatic methods in terms of the classification error rate.

Evolutionary Multi-objective Optimisation [21], [22], [25],

explained in Section V-C, has been hardly used in the au-

tomatic configuration of DNNs networks as well as in the

optimisation of their hyperparameters. Works on the latter

include the recent approach proposed by Kim et al. [71],

where the authors used speed and accuracy as two conflicting

objectives to be optimised by means of EMO through the use

of the Nondominated Sorting Genetic Algorithm II (NSGA-

II) [26]. The authors reported interesting results using three

classification tasks, including the use of the MNIST, CIFAR-

10 and the Drowsy Behaviour Recognition datasets. Inspired

by the Kim et al. [71] study, Lu et al. [94] used the same

EMO with the same conflicting objectives. It is worth noting

that Lu et al. [94] empirically tested multiple computational

complexity metrics to measure speed including number of

active nodes, number of active connections between nodes

and floating-point operations (FLOPs), to mention some. Lu

et al. indicated that the latter metric was more accurate and

used it as a second conflicting objective for optimisation.

Moreover, the authors used an ingenious bitstring encoding

in their genetic algorithm which allowed them to use com-

mon and robust genetic operators normally adopted in GAs,

including homogeneous crossover and bit-flip mutation (at

most one change for each mutation operation). The authors

tested their EMO approach with the CIFAR-10 and CIFAR-

100 datasets achieving competitive results against state-of-

the-art algorithms, including reinforcement learning-based ap-

proaches and human expert configurations.

Wang et al. [145] explored the ability of differential evo-

lution to automatically evolve the architecture and hyper-

parameters of deep CNNs. The method called DECNN uses

differential evolution where control of the evolution rate is

managed by the a differential value. The DECNN evolves

variable-length architectures for CNNs. An IP-based encoding

strategy is implemented here to use a single IP address

to represent one layer of a DNN. This IP address is then

pushed into a sequence of interfaces corresponding to the same

order as the layers in DNNs. Six of the MNIST datasets are

used for benchmark testing and the DECNN performed very

competitively with 12 state-of-the-art competitors over the six

benchmarks. Martı́n et al. [97] proposed EvoDeep which is

an EA designed to find the best architecture and optimise the

necessary parameters to train a DNN. It uses a Finite-State

Machine model in order to determine the possible transitions

between different kind of layers, allowing EvoDeep to generate

valid sequences of layers, where the output of one layer fits

the input requirements of the next layer. It is tested on the

benchmark MNIST datasets. The authors report that the high

commputational resources required to train the DNN means

that future work is needed to make the whole process more

computationally efficient.

D. Deep Learning Architecture: AutoEncoders

Suganuma et al. [135] used Cartesian Genetic Program-

ming [100], adopting an ES (1+λ) technique, and using

selection and mutation operators only, to optimise DNS archi-

tectures for image restoration. To this end, the authors used

convolutional autoencoders (CAEs) built upon convolutional

layers and skip connections. By optimising the network in

a confined search space of symmetric CAEs, the authors

achieved competitive results against other methods without

the need of using adversarial training and sophisticated loss

functions, normally employed for image restoration tasks.

So et al. [130] evolved a transformer network to be used

in sequence-to-sequence language tasks. The encoding search

space adopted by the authors was inspired by the NASNet

search space proposed by Zoph et al. [157], see Fig. 1 (a).

This was modified to express characteristics found in state-of-

the-art feed-forward seq2seq networks such as the transformer

network used in their work. The minimally tuned search

space helped them to seed the initial population using a

known transformer model. Because computing the fitness of

the population, through the use of the negative log perplexity

of the validation set, is time consuming, So et al. proposed

Progressive Dynamic Hurdles. In essence, the latter allowed

promising solutions to be trained using larger training datasets

compared to poor potential solutions. The proposed mech-

anism, using selection and mutation operators only, yielded

better results compared to transformer models in the language

tasks used in their studies. Hajewski et al. [54] describe

an efficient and scalable EA for neural network architecture

10

search with application to the evolution of deep encoders.

Lander and Shang [80] introduce EvoAE an evolutionary

algorithm for training autoencoders for DNNs. This proposed

methodology is aimed at improving the training time of

autoencoders for constructing DNNs. The EvoAE approach

searches in the network weight and network structure space of

the autoencoders simultaneously allowing for dual optimality

searching. Large datasets are decomposed into smaller batches

to improve performance. The good performance on large

datasets distributed in cloud-based systems could be a major

advantage of this approach as a population of high quality

autoencoders can be created efficiently.

Luo et al. [95] propose a novel semi-supervised autoencoder

called a discriminant autoencoder for application in fault

diagnosis. Here, the proposed discriminant autoencoder has

a different training process and loss function from traditional

autoencoders. In the case of the discriminant autoencoder it is

capable of extracting better representations from the raw data

provided. A completely different loss function is used and

the representations extracted by the discriminant autoencoder

can generate bigger differences between the sample classes.

The discriminant autoencoder makes full use of labels and

feature variables to obtain the optimal representations, based

on which the centers of the groups of samples that can be

separated as much as possible. Ashfahani et al. [2] propose

DEVDAN as a deep evolving denoising autoencoder for

application in data stream analytics. DEVDAN demonstrates

a proposal of a denoising autoencoder which is a variant

of the traditional autoencoder but focused on retrieving the

original input information from a noise pertubation. DEVDAN

features an open structure where it is capable of initiating

its own structure from the beginning without the presence

of a pre-configured network structure. DEVDAN can find

competitive network architecture compared with state-of-the-

art methods on the classification task using ten prominent

datasets (including MNIST).

E. Deep Learning Architecture: Deep Belief Networks

In the work by Chen et al. [19] the authors use DBNs to

automatically extract features from images. They propose the

EFACV (Evolutionary Function Array Classifier Voter) which

classifies features from images extracted by a DBN (composed

of stacked RBMs). An evolutionary strategy is used to train the

EFACV and is mainly used for binary classification problems.

For multi-class classification problems it is necessary to have

multiple EFACV. The EFACV shows fast computational speed

and a reduction in overall training time. Experiments are

performed on the MNIST dataset. Liu et al. [92] describe

structure learning for DNNs based on multiobjective optimisa-

tion. They propose a multiobjective optimisation evolutionary

algorithm (MOEA). The DBN and its learning procedure use

an RBM to pretain the DN layer by layer. It is necessary to

remove unimportant or unncessary connections in DNN and

move toward discovering optimal DNN connection structure

which is as sparse as possible without lost of representation.

Experiments based on the MNIST and CIFAR-10 datasets with

different training samples indicate that the MOEA approach

is effective.

Zhang et al. [151] use DBNs for a prognostic health man-

agement system in aircraft and aerospace design. DBNs offer a

promising solution as they can learn powerful hierarchical fea-

ture representations from the data provided. The authors pro-

pose MODBNE (multiobjective deep belief networks ensem-

ble) which is a powerful multiobjective evolutionary algorithm

named MOEA based on decomposition. This is integrated into

the training of DBNs to evolve multiple DBNs simultaneously

with accuracy and diversity as two conflicting objectives in the

problem. The DBN is composed of stacked RBMs which are

trained in an unsupervised manner. MODBNE is evaluated

and compared against a prominent diagnostics benchmarking

problem with the NASA turbofan engine degradation problem.

In the proposed approach the structural parameters of the

DBN are strongly dependent on the complexity of the problem

and the number of training samples available. The approach

worked outstandingly well in compassion to other existing

approaches. GPU-based implementations will be tested in

the future for MODBNE to investigate the acceleration of

computational processing speed. Zhang et al. [152] consider

the problem of cost-sensitive learning methods. The idea of

cost-sensitive learning is to assign misclassification costs for

each class appropriately. While the authors report that there are

very few studies on cost-sensitive DBNs these networks have

drawn a lot of attention by researchers recently. Imbalances

in the classes in input data is a problem. If there is a

disproportionate number of class instances this can affect

the quality of the applied learning algorithms. Zhang et al.

argue that DBNs are very well placed to handled these type

of imbalanced data problems. The ECS-DBN (Evolutionary

Cost-Sensitive Deep Belief Network) is proposed to deal with

such problems by assigning differential misclassification costs

to the data classes. The ECS-DBN is evaluated on 58 pop-

ular Knowledge Extraction-based on Evolutionary Learning

(KEEL) benchmark datasets.

F. Other networks: LSTM, RRN, RBM

Shinozaki and Watanabe [127] proposes an optimisation

strategy for DNN structure and parameters using an EA and a

GA. The DNN structure is parameterised by a directed acyclic

graph. Experiments are carried out on phoneme recognition

and spoken digit detection. All of the experiments were con-

ducted upon a massively parallel computing platform where

the experiments were ran using 62 general-purpose computing

on graphics processing units (GPGPUs). RBMs are used in the

training phase. Ororbia et al. [108] develop an evolutionary

algorithm called EXAMM (Evolutionay eXploration of Aug-

menting Models) which is designed to devolve recurrent neural

networks (RNNs) using a selection of memory structures.

RNNs are particularly well suited to the task of performing

prediction of large-scale real-world time series data. EXAMM

was design to select from a large number of memory cell

structures and this allowed the evolutionary approach to yield

the best performing RNN architecture.

In Peng et al. [110] the authors propose the LSTM (long

short-term memory) neural network which is capable of

analysing time series over long time spans in order to make

11

TABLE I
SUMMARY OF EA REPRESENTATIONS, GENETIC OPERATORS, PARAMETERS AND ITS VALUES USED IN NEUROEVOLUTION IN THE DESIGN OF DNNS

ARCHITECTURES, ALONG WITH THE DATASETS USED IN VARIOUS STUDIES WITH THEIR CORRESPONDING COMPUTATIONAL EFFORT GIVEN IN GPU
DAYS. AUTOMATIC AND SEMI-AUTO(MATIC) REFER TO WORKS WHERE THE ARCHITECTURE HAS BEEN EVOLVED AUTOMATICALLY OR BY USING A

SEMI-AUTOMATIC APPROACH, SUCH AS USING A CONSTRAINED SEARCH SPACE, RESPECTIVELY. THE DASH (–) SYMBOL INDICATES THAT THE

INFORMATION WAS NOT REPORTED OR IS NOT KNOWN TO US.

Study EA Representation Genetic Operators EAs Parameters’ values Computational Datasets GPU days Automatic/ DNNs
Method Cross Mut Selec Pop Gens Runs Resources per run Semi-auto

Agapitos et al. [1] GP Variable length 500, 1,000 100 30 – MNIST – Automatic CNN

Assunção et al. [3],
[4]

GAs, GE Fixed and vari-
able length

100 100 10 Titan X GPUs CIFAR-10, 3 MNIST
variants, Fashion, SVHN,
Rectangles, CIFAR-100

– Automatic CNN

Charte et al. [18] GAs, ES, DE Variable length 150 20 – 1 NVidia RTX 619
2080 GPU

CIFAR10, Delicious,
Fashion, Glass,
Ionosphere, MNIST,
Semeion, Sonar, Spect

Limited to
24 hours

Automatic AE

Chen et al. [19] EAs Fixed length ✕ 1 + λ,
λ=4

15000 30 – MNIST – Automatic DBN

Desell [28] NEAT-based Variable length 100 10 4,500 volunteered
PCs

MNIST – Semi-auto CNN

Goncalvez et
al. [50]

GAs Fixed length ✕ 1 + λ λ
=4

gens runs No GPUs 4 Binary Class datasets:
Cancer, Diabetes, Sonar,
Credit

– Automatic CNN

Hajewski et al. [54] EAs Variable length µ +λ = 10
(λ,µ not
specified

20 20-
40

AWS (Nvidia K80
GPU)

STL10 – Automatic AE

Kim et al. [71] EAs – – – – 50, 40, 60 – – 60 Tesla M40 GPUs MNIST, CIFAR-10,
Drowsiness Recognition

– Semi-auto CNN

Lander et al. [80] GAs Variable length 30 50 5 No GPU MINST - Automatic AE

Liu et al. [92] EAs Variable length 100 5000 30 – MINST, CIFAR-10 - Automatic AE,RBM

Lu et al. [94] GAs Fixed length 40 30 – 1 NVIDIA 1080Ti CIFAR-10, CIFAR-100 8 in both Automatic CNN

Martı́n et al. [97]
evoDeep

EAs Fixed Length λ + µ =
10 (λ,µ
=5)

20 – MNIST Automatic – CNN

Peng et al. [110] EAs Fixed length 10 20 − – Electricity price - Automatic LSTM

Real et al. [116] GAs Variable length ✕ 100 – 5 450 K40 GPUs CIFAR-10, ImageNet 3150, 3150 Semi-auto CNN

Real et al. [117] GAs Variable length ✕ 1000 – 5 250 PCs CIFAR-10, CIFAR-100 2750, 2750 Automatic CNN

Shinozaki and
Watanabe [127]

GAs, ES Fixed length 62 30 – 62 GPUs AURORA2 Spoken Digits
Corpus

2.58 Automatic RBM

So et al. [130] EAs Fixed length ✕ 100 – – 200 workers with 1
Google TPU V.2 chip

WMT En-De, WMT En-
Fr, WMT En-Cs

– Semi-auto AE

Suganuma et
al. [135]

ES Fixed length ✕ 1+λ, λ =

{1, 2, 4, 8, 16}
250 – 4 P100 GPUs Cars, CelebA, SVNH 12 (inpaint-

ing), 16 (de-
noising)

Automatic AE

Suganuma et
al. [136]

GP, ES Variable length ✕ 1+λ, λ =

2

300,
500,
1500

3 Multiple PCs, 2
GPUs: GTX 1080,
Titan X

CIFAR-10 (2 variants) 27, 27 Automatic CNN

Sun et al. [140] GAs Variable length 100 100 30 1 PC, 2 GTX 1080
GPUs

Fashion, Rectangle (2
variants), Convex Set,
MNIST (5 variants)

8 (fashion), 5
(others)

Automatic CNN

Sun et al. [139] GAs Variable length 20 20 5 3 GTX 1080 Ti GPUs CIFAR-10, CIFAR-100 27, 36 Automatic CNN

Sun et al. [140] GAs Variable length 100 100 30 2 GTX1080 GPUs Fashion, Rectangle (2
variants), Convex Set,
MNIST (5 variants)

8 (Fashion),
5 (others)

Automatic CNN

Sun et al. [141] GAs Fixed length 50 – 30 – Fashion, Rectangle (2
variants), Convex Set,
MNIST (5 variants)
CIFAR-10-BW

– Automatic CNN

van Wyk and
Bosman [144]

EAs Fixed length 20 20000 1 1 GPU (GTX 1080) ImageNet64x64 Halted after
2 hrs

Automatic CNN

Wang et al. [145] EAs Variable length 30 20 30 – MNIST (5 variants) and
Convex Set

– Automatic CNN

Xie et al. [148] GAs Fixed length 20 50 – 10 GPUs (type not
specified)

CIFAR-10, MNIST,
ILSVRC2012, SHVN

17 (CIFAR-
10), 2
(MNIST), 20
(ILSVRC2012),
– (SHNV)

Semi-auto CNN

Zhang et al. [151] EAs Variable length ✕ 20 500 10 No GPUs NASA C-MAPSS
(Aircraft Engine
Simulator Datasets)

– Automatic DBN

Zhang et al. [152] EAs Fixed Length – 30 10 1 NVIDIA GTX 980
GPU

58 Knowledge Extraction
based on Evolutionary
Learning (KEEL) datasets

– Automatic DBN

predictions and effectively tackle the vanishing gradient prob-

lem. Their study uses differential evolution (DE) to identify

the hyperparameters of the LSTM. DE approaches have been

shown to out perform other approaches such as particle swarm

optimisation and GAs. The authors claim that this is the first

time that DE has been used to choose hyperparameters for

LSTM for forecasting applications. As forecasting involves

complex continuous nonlinear functions, the DE approach is

well suited to these types of problems. Goncalvez et al. [50]

introduce a neuroevolution algorithm called the Semantic

Learning Machine (SLM) which has been shown to outperform

other similar methods in a wide range of supervised learning

problems. SLM is described as a geometric semantic hill

climber approach for NNs following a 1 + λ strategy. In

the search for the best NN architecture configuration this

allows the SLM to concentrate on the current best NN without

drawing any penalties for this. The crucial aspect of the SLM

approach is the geometric semantic mutation which takes a

parent NN and generates a child NN.

12

G. Final Comments

The use of evolution-based method in designing deep neural

networks is already a reality as discussed in this section. Dif-

ferent EAs methods with different representations have been

used, ranging from landmark evolutionary methods includ-

ing Genetic Algorithms, Genetic Programming and Evolution

Strategies up to using hybrids combining, for example, the

use of Genetic Algorithms and Grammatical Evolution. In a

short period of time, we have observed both ingenious repre-

sentations and interesting approaches achieving extraordinary

results against human-based design networks [116] as well as

state-of-the-art approaches, in some case employing hundred

of computers [117] to using just a few GPUs [140]. We have

also learnt that most of the neuroevolution studies has focused

their attention in designing deep CNNs. Other networks have

also been considered including AE, RBM, RNN, LSTM and

DBM, although there are just a few neuroevolution works

considering the use of these types of networks.

Table I contains extracted information from almost 30
selected papers in neuroevolution. We selected these papers

in our own ad-hoc way in order to find a selection of papers

which succinctly demonstrated the use of neuroevolution in

deep neural networks. The table is order in alphabetically

order of the lead-author surname and summarises: the EA

representation used, the representation of individuals, which

genetic operators are used, and the EA parameters. The table

also outlines the computational resources used in the corre-

sponding study by attempting to outline the number of GPUs

used. A calculation of the GPU days per run is approximated

in the same way as Sun et al. [139]. The table states which

benchmark datasets are used in the experimental analysis.

Finally, the table indicates if the neural network architecture

has been evolved automatically or by using a semi-automated

approach whilst also indicating the target DNN architecture.

Every selected paper does not report the same information

which some papers omitting details about the computation

resources used and others omitting information about the

number of runs performed. One of the very interesting outputs

from this table is that there are numerous differences between

the approaches used by all of the papers listed in the table.

We see crossover being omitted from several studies mostly

due to encoding adopted by various researchers. Population

size and selection strategies for the EAs change between

studies. While MNIST and CIFAR are clearly the most popular

benchmark datasets we can see many examples of studies

using benchmark datasets from specific application domains.

IV. TRAINING DEEP NEURAL NETWORKS THROUGH

EVOLUTIONARY ALGORITHMS

A. Motivation

Backpropagation has been one of the most successful and

dominant methods used in the training of ANNs over the past

number of decades [120]. This simple, effective and elegant

method applies Stochastic Gradient Descent (SGD) to the

weights of the ANN where the goal is to keep the overall

error as low as possible. However, as remarked by Morse

and Stanley [104] the widely held belief, up to around 2006,

was that backpropagation would suffer loss of its gradient

within DNNs. This turned out to be a false assumption and

it has subsequently been proved that backpropagation and

SGD are effective at optimising DNNs even when there

are millions of connections. Both backpropagation and SGD

benefit from the availability of sufficient training data and the

availability of computational power. In a problem space with

so many dimensions the success of using SGD in DNNs is

still surprising. Practically speaking, SGD should be highly

susceptible to local optima [104]. EAs perform very well in

the presence of saddle points as was discussed in Section II.

B. The critique

As there are no guarantees of convergence the solutions

computed using EAs are usually classified as near optimal.

Population-based EAs are in effect an approximation of

the gradient as this is estimated from the individuals in a

population and their corresponding objectives. On the other

hand, SGD computes the exact gradient. As a result some

researchers may consider EAs unsuitable for DL tasks for

this reason. However, it has been demonstrated that the exact

approximation obtained by SGD is not absolutely critical in

the overall success of DNNs using this approach. Lillicrap

et al. [88] demonstrated that breaking the precision of the

gradient calculation has no negative or detrimental effect on

learning. Indeed, Morse and Stanley [104] speculated that the

reason for the lack of research focus on using evolutionary

computation in DNNs was not entirely related to concerns

around the gradient. It more than likely resulted from the belief

that new approaches to DNN could emerge from outside of

SGD.

C. Deep Learning Architecture: Convolutional Neural Net-

works

Such et al. [134] proposed a gradient-free method to evolve

the weights of convolutional DNNs by using a simple GA,

with a population of chromosomes of fixed length. The pro-

posed mechanism successfully evolved networks with over

four million free parameters. Some key elements in the study

conducted by Such et al. to successfully evolve these large

neural networks include (i) the use of the selection and

mutation genetic operators only (excluding the use of the

crossover operator), (ii) the use of a novel method to store

large parameter vectors compactly by representing each of

these as an initialisation seed plus the list of the random

seeds that produces the series of mutations that produced each

parameter vector, (iii) the use of a state-of-the-art computa-

tional setting, including one modern computer with 4 GPUs

and 48 CPU cores as well as 720 CPU cores across dozens

of computers. Instead of using a reward-based optimisation

techniques by means of a fitness function, Such et al. used

novelty search [86] that rewards new behaviours of individuals.

The authors used reinforcement learning benchmark problems

including atari 2600 [9], [101], hard maze [87] and humanoid

locomotion [15]. They demonstrated how their proposed ap-

proach is competitive with state-of-the-art algorithms in these

13

problems including DQN [101], policy-gradient methods [126]

and ES [123].

Pawelczyk et al. [109] focused their attention in encoding

CNNs with random weights using a GA, with the main goal to

let the EA to learn the number of gradient learning iterations

necessary to achieve a high accuracy error using the MNIST

dataset. It was interesting to observe that their EA-based

approach reported the best results with around 450 gradient

learnt iterations compared to 400 constant iterations which

yielded the best overall results.

D. Deep Learning Architecture: Autoencoders

David and Greental [24] used a GA of fixed length to evolve

the weight values of an autoencoder DNN. Each chromosome

was evaluated by using the root mean squared error for the

training samples. In their experiments, the authors used only

10 individuals with a 50% elitism-policy. The weights of

these individuals were updated using backpropagation and

the other half of the population were randomly generated in

each generation. They tested their approach with the well-

known CIFAR-10 dataset. They compared their approach vs.

the traditional autoencoder using SVM, reporting a better clas-

sification error when using their proposed GA-assisted method

for the autocoder DNN (1.44% vs. 1.85%). In their studies, the

authors indicated that the reason why their method produced

better results was because gradient descent methods such as

backpropagation are highly susceptible to being trapped at

local optima and their GA method helped to prevent this.

Fernando et al. [35] introduced a differentiable version of

the Compositional Pattern Producing Network (CPPN) called

the Differentiable Pattern Producing Network (DPPN). The

DPPN approach attemps to combine the advantages and results

of gradient-based learning in NN with the optimisation capa-

bilities of evolutionary approaches. The DPPN has demon-

strated superior results for the benchmark dataset MNIST.

A generic evolutionary algorithm is used in the optimisation

algorithm of DPPN. The results indicate that the DPPNs

and their associated learning algorithms have the ability to

dramatically reduce the number of parameters of larger neural

networks. The authors argue that this integration of evolu-

tionary and gradient-based learning allows the optimisation to

avoid becoming stuck in local optima points or saddle points.

E. Other Relevant Works

Morse and Stanley [104] proposed an approached called

limited evaluation evolutionary algorithm (LEEA), that ef-

fectively used a population-based GA of fixed length rep-

resentation to evolve, by means of crossover and mutation,

1000 weights of a fixed-architecture network. The authors

took inspiration from SGD that can compute an error gradient

from a single (or small batch of) instance of the training

set. Thus, instead of computing the fitness of each individual

in the population using the whole training set, the fitness

is computed using a small fraction. This results in an EA

that computationally similar to SGD. However, using such

approach is also one of the weakness in LEAA because it

does not generalise to whole training sample. To mitigate

this, the authors proposed two approaches: (i) the use of a

small batch of instances and (ii) the use of a fitness function

that consider both the performance on the current mini-batch

and the performance of individuals’ ancestors against their

mini-batches. To test their idea, the authors used a function

approximation task, a time series prediction task and a house

price prediction task and compared the results yield by their

approach against SGD and RMSProp. They showed how their

LEEA approach was competitive against the other approaches.

Even when the authors do not use DNNs, but a small artificial

NN, it is interesting to note how this can be used in a DNN

setting.

Khadka and Tumer [70] remark that Deep Reinforcement

Learning methods are “notoriously sensitive to the choice

of their hyperparamaters and often have brittle convergence

properties”. These methods are also challenged by long time

horizons where there are sparse rewards. EAs can respond

very positively to these challenges where the use of fitness

metrics allows EAs to tolerate the sparse reward distribution

and endure long time horizons. However, EAs can struggle

to perform well when optimisation of a large number of pa-

rameters is required. The authors introduce their Evolutionary

Reinforcement Learning (ERL) algorithm. The EA is used to

evolve diverse experiences to train an RL agent. These agents

are then subjected to mutation and crossover operators to

create the next generation of agents. From the results outlined

in the paper this ERL can be described as a “population-driven

guide” that guides or biases exploration towards states with

higher and better long-term returns, promoting diversity of

explored policies, and introduces redundancies for stability.

Recurrent Neural Networks (RNNs) (see Section II-A4)

incorporate memory into an NN by storing information from

the past within the hidden states network. In [69], Kahdka et

al. introduce a new memory-augmented network architecture

called the Modular Memory Unit (MMU). This MMU discon-

nects the memory and central computation operations without

requiring costly memory management strategies. Neuroevo-

lutionary methods are used to train the MMU architecture.

The performance of the MMU approach with both gradient

descent and neuroevolution are examined in the paper. The

authors find that neuroevolution is more repeatable and gener-

alizable across tasks. The MMU NN is designed to be highly

configurable and this characteristic is exploited by the the

neuroevolutionary algorithm to evolve the network. Population

size is set to 100 with a fraction of elites set at 0.1. In

the fully differentiable version of the MMU gradient descent

performs better for Sequence Recall tasks than neuroevolution.

However, neuroevolution performs significantly better than

gradient descent in Sequence Classification tasks.

F. Final Comments

In the early years of neuroevolution, it was thought that

evolution-based methods might exceed the capabilities of

backpropagation [149]. As ANNs, in general, and as DNNs, in

particular, increasingly adopted the use of stochastic gradient

descent and backpropagation, the idea of using EAs for

training DNNs instead has been almost abandoned by the

14

TABLE II
SUMMARY ON EA REPRESENTATIONS, GENETIC OPERATORS, PARAMETERS AND ITS VALUES USED IN NEUROEVOLUTION IN THE TRAINING OF DNNS,
ALONG WITH THE DATASETS USED IN VARIOUS STUDIES WITH THEIR CORRESPONDING COMPUTATIONAL EFFORT GIVEN IN GPU DAYS. THE DASH (–)

SYMBOL INDICATES THAT THE INFORMATION WAS NOT REPORTED OR IS NOT KNOWN TO US.

Study EA Representation Genetic Operators EAs Parameters’ values Computational Datasets GPU days DNN
Method Cross Mut Selec Pop Gens Runs Resources per run

David and Green-
tal [24]

GAs Fixed length 10 – – MNIST – AE

Dufourq and Bas-
sett [30]

GAs Variable length ✕ 100 10 5 1 GTX1070 GPU CIFAR-10, MNIST, EM-
NIST (Balanced & Dig-
its), Fashion, IMDB, Elec-
tronics

– CNN

Fernando et
al. [35]

GAs – 50 – – – MNIST, Omniglot – AE

Khadka and
Tumer [70]

EAs Variable length 10 ∞ 5 – 6 Mujoco (continuous
control) datasets

– Read text

Khadka et al. [69] EAs Fixed length ✕ 100 1000
10000
15000

– GPU used but not
specified

Sequence Recall,
Sequence Classification

– Read text

Morse and Stan-
ley [104]

GAs Fixed length 1,000 – 10 – Function Approximation,
Time Series, California
Housing

– Read text

Pawelczyk et
al. [109]

GAs Fixed length 10 – – 1 GPU (Intel Core i7
7800X, 64GB RAM)

MNIST – CNN

Such et al. [134] GAs Fixed length ✕ 1,000 (A),
12,500 (H),
20,000 (I)

– 5 (A),
10 (I)

1 PC (4 GPUs, 48
CPUs) and 720 CPUs
across dozens of PCs

Atari 2600, Image Hard
maze, Humanoid locomo-
tion

0.6 (Atari, 1
PC), 0.16 (Atari,
dozens of PCs)

CNN

DNN research community. EAs are a “genuinely different

paradigm for specifying a search problem” [104] and provide

exciting opportunities for learning in DNNs. When comparing

neuroevolutionary approaches to other approaches such as gra-

dient descent, authors such as Khadka et al. [69] urge caution.

A generation in neuroevolution is not readily comparable to a

gradient descent epoch.

Despite the fact that it has been argued that EAs can

compete with gradient-based search in small problems as

well as using neural networks with a non-differentiable ac-

tivation function [96], the encouraging results achieved in

the 1990s [48], [103], [113] have inspired recently some

researchers to carry out research in training DNNs including

the works conducted by David and Greental [24] and Fernando

et al. [35] both works using deep AE as well as the works

carried out by Pawelczyk et al. [109] and Such et al. [134],

both studies using deep CNNs.

Table II is structured in a similar way to Table I. As

with Table I, we selected these papers in our own ad-hoc

way in order to find a selection of papers which succinctly

demonstrated the use of EAs in the training of DNNs. As

before we see mutation and selection used by all of the selected

works with crossover omitted in certain situations. We see

greater diversity in the types of benchmark datasets used with

a greater focus on domain-specific datasets and problems.

V. FUTURE WORK ON NEUROEVOLUTION IN DEEP

NEURAL NETWORKS

A. Surrogate-assisted EAs in DNNs

EAs have successfully been used in automatically design-

ing artificial DNNs, as described throughout the paper, and

multiple state-of-the-art algorithms have been proposed in

recent years including genetic CNN [148], large-scale evo-

lution [117], evolving deep CNN [140], hierarchical evolu-

tion [91], to mention but a few successful examples. Despite

their success in automatically configuring DNNs architectures,

a common limitation in all these methods is the training

time needed, ranging from days to weeks in order to achieve

competitive results. Surrogate-assisted, or meta-model based,

evolutionary computation uses efficient models, also known as

meta-models or surrogates, for estimating the fitness values in

evolutionary algorithms [66]. Hence, a well-posed surrogate-

assisted EC considerably speeds up the evolutionary search by

reducing the number of fitness evaluations while at the same

time correctly estimating the fitness values of some potential

solutions.

The adoption of this surrogate-assisted EA is limited in

the research discussed in this paper and is dealt with in a

few limited exceptions. For example, in a recent work, Sun

et al. [137] demonstrated how meta-models, using ensemble

members, can be successfully used to correctly estimate the

accuracy of CNNs. They were able to considerably reduce the

training time, e.g., from 33 GPU days to 10 GPU days, while

still achieving competitive accuracy results compared to state-

of-the-art algorithms. A limitation in Sun et al.’s approach

is the unknown number of training runs that is necessary to

achieve a good prediction performance.

B. Mutations and the neutral theory

We have seen that numerous studies have used selection

and mutation only to drive evolution in automatically finding

a suitable DNN architecture (Section III) or to train a DNN

(Section IV). Tables I and II present a summary of the

genetic operators used by various researchers. Interestingly, a

good number of researchers have reported highly encouraging

results when using these two genetic operators, including the

works conducted by Real et al. [116], [117] using GAs and

hundreds of GPUs as well as the work carried out by Sug-

anuma et al. [136] employing Cartesian Genetic Programming

and a using a few GPUs.

Kimura’s neutral theory of molecular evolution [72], [73]

states that the majority of evolutionary changes at molecular

level are the result of random fixation of selectively neutral

mutations. A mutation from one gene to another is neutral

if it does not affect the phenotype. Thus, most mutations

that take place in natural evolution are neither advantageous

15

nor disadvantageous for the survival of individuals. It is then

reasonable to extrapolate that, if this is how evolution has

managed to produce the amazing complexity and adaptations

seen in nature, then neutrality should aid also EAs. However,

whether neutrality helps or hinders the search in EAs is

ill-posed and cannot be answered in general: one can only

answer this question within the context of a specific class of

problems, (neutral) representation and set of operators [40],

[41], [42], [43], [44], [45], [111], [112]. We are not aware

of any works in neuroevolution in DNN on neutrality, but

there are some interesting encodings adopted by researchers

including Suganuma’s work [136] (see Fig. 2) that allow the

measurement of the level of neutrality present in evolutionary

search and indicate whether its presence is beneficial or not in

certain problems and DNNs. If neutrality is beneficial, taking

into consideration specific class of problems, representations

and genetic operators, this can also have an immediate positive

impact in the training time needed because the evaluation of

potential EA candidate solutions will not be necessary.

C. Multi-objective Optimisation

The vast majority of works reviewed in this paper have

focused their attention in the direct or indirect optimisation of

one objective only. For example, when training a CNN in a

computer vision supervised classification task, the classifica-

tion error is normally adopted as a metric of performance for

this type of network. Perhaps, one of the reasons why taking

into account one objective has been the norm in the specialised

literature is because the optimisation of one objective has

been enough to yield extraordinary results (for example in

the application domain of route optimisation [8]). Another

potential reason could be due to the fact that two or more

objectives can be conflicting with each other making the

(optimisation) task very difficult to accomplished [21], [22],

[25].

Multi-objective optimisation (MO) is concerned with the

simultaneous optimisation of more than one objective function.

When such functions are in conflict, a set of trade-off solutions

among the objectives is sought as no single global optimum

exists. The optimal trade-offs are those solutions for which no

objective can be further improved without degrading one of the

others. This idea is captured in the Pareto dominance relation:

a solution x in the search space is said to Pareto-dominate

another solution y if x is at least as good as y on all objectives

and strictly better on at least one objective. This is an important

aspect in EMO (Evolutionary MO) [21], [22], [25] because it

allows solutions to be ranked according to their performance

on all objectives with respect to all solutions in the population.

EMO is one of the most active research areas in EAs. Yet it is

surprising to see that EMO approaches have been scarcely used

for the automatic configuration of artificial DNNs architectures

or learning in DNNs. Often, the configuration of these artificial

DNNs require simultaneously satisfying multiple objectives

such as reducing the computational calculation of these on

the training dataset while attaining high accuracy. EMO offers

an elegant and efficient framework to handle these conflicting

objectives. We are aware of only a few works in the area

e.g., [71], [92], [94], [151], as summarised in Section III.

D. Fitness Landscape Analysis of DNNs and Well-posed Ge-

netic Operators

As we have seen throughout the paper, all of the works

in neuroevolution in DNNs have used core genetic operators

including selection and mutation. Crossover has also been used

in most of these works. The use of these operators are sum-

marised in Tables I and II. The use of crossover, sometimes

referred as recombination, can sometimes be difficult to adopt

depending on the encoding used and some variants have been

proposed such as in the study carried out in [140]. Other

studies have adopted standard crossover operators such as

those discussed in [71]. There are, however, no works carried

out in the area of neuroevolution in DNNs that have focused

their attention in explaining why the adoption of a particular

genetic operator is well-suited for that particular problem.

The notion of fitness landscape [146] has been with us for

several decades. It is a non-mathematical aid that has proven

to be very powerful in understanding evolutionary search.

Viewing the search space, defined by the set of all potential

solutions, as as landscape, a heuristic algorithm such as an

EA, can be thought of as navigating through it to find the best

solution (essentially the highest peak in the landscape). The

height of a point in this search space, represents in an abstract

way, the fitness of the solution associated with that point.

The landscape is therefore a knowledge interface between the

problem and the heuristic-based EA. This can help researchers

and practitioners to define well-behaved genetic operators, in-

cluding mutation and crossover, over the connectivity structure

of the landscape.

E. Standardised Scientific Neuroevolution Studies in DNNs

As described in Section II, multiple DNNs architectures

have been proposed in the specialised literature including

CNNs, DBNs, RBMs and AEs. Each of these DNNs considers

multiple elements such as the activation function, type of

learning, to mention a few examples. As indicated previously,

EAs are incredible flexible allowing researchers to use ele-

ments from two or more different EAs methods. Moreover,

multiple variants from each of these elements exists such as

having multiple options from where to chose to exploit and

explore the search space. Many of the research works reviewed

in this paper have compared their results with those yield by

neuroevolution-based state-of-the-art algorithms. However, it

is unclear why some techniques are better than others. Is it

because of the type of operators used? Is it because of the

representation adopted in these studies or is it because of the

type of learning employed during training? Due to the lack of

standardised studies in neuroevolution on DNNs, it is difficult

to draw final conclusions that help us to identify what elements

are promising in DNNs.

F. Diversifying the use of benchmark problems and DNNs

There is little argument that the availability of new and

large datasets combined with ever increasingly powerful com-

putational resources have allowed DNNs to tackle and solve

hard problems in domains such as image classification, speech

16

TABLE III
COMMON DATASETS USED IN NEUROEVOLUTION IN DEEP NEURAL

NETWORKS.

Data set Number of examples Input RGB, B&W, No. of
Training Testing Size Grayscale classes

MNIST [85] 60,000 10,000 28×28 Grayscale 10
MNIST variants [81] 12,000 50,000 28×28 Grayscale 10
CIFAR-10 [78] 50,000 10,000 32×32 RGB 10
CIFAR-100 [78] 50,000 10,000 32×32 RGB 100
Fashion [147] 60,000 10,000 28×28 Grayscale 10
SVHN [107] 73,257 26,032 32×32 RGB 10
Rectangle [81] 1,000 50,000 28 × 28 B&W 2
Rectangle images [81] 10,000 50,000 28 ×28 Grayscale 2
Convex set [81] 6,000 50,000 28 × 28 B&W 2
ILSVRC2012 [27] 1.3M 150,000 224 × 224 RGB 1,000
GERMAN Traffic Sign Recognition [131] 50,000 12,500 32×32 Grayscale 43
CelebFaces [138] – – 39 × 31 RGB 2
(No. of images of CelebFaces: 87,628)
Number of examples for the validation set is omitted from this table given that it is well-known in the ML community
that this is randomly split from the training data with the proportion of 1

5
.

processing and many others. Image classification is certainly

considered as the primary benchmark against which to evaluate

DNNs [155]. These benchmark datasets (many of which are

outlined in Table III) are used as a means of comparing

the computational results of experimental setups created by

different research groups. We believe that the success of DNNs

coupled with the need to tackle complex problems in other

domains sees a growing need for DNNs to expand to other

domains. In order to assess how successful DNNs are in

other domains and with other practical problems robust and

comprehensive benchmark datasets will be required. Indeed

we believe that without such benchmarks it may be difficult

to make convincing arguments for the success and suitability

of DNNs for problems in other domains beyond image clas-

sification, machine translation, and problems involving object

recognition.

It is critical that benchmark datasets are available freely and

as open-data. Stallkamp et al. [131] argue that in a niche area

such as traffic sign recognition it can be difficult to compare

published work because studies are based on different data or

consider classification in different ways. The use of proprietary

data in some cases, which is not publicly available, makes

comparison of results difficult. Authors such as Zhang et

al. [151] access data from a prognostic benchmarking problem

related to NASA and Aero-Propulsion systems. Specific prob-

lem domains outside of those of vision, speech recognition and

language also have benchmark datasets available but may be

less well-known. Zhang et al. [152] use datasets from KEEL

(Knowledge Extraction based on Evolutionary Learning) but

also use a real-world dataset from a manufacturing drilling

machine in order to obtain a practical evaluation. Chen and

Li [20] comment that as we see data getting bigger (so

called Big Data) deep learning will continue to play an ever

increasingly important role in providing big data predictive an-

alytics solutions, particularly with the availability of increased

processing power and the advances in graphics processors.

However, while the potential of Big Data is without doubt,

new ways of thinking and novel algorithmic approaches will

be required to deal with the technical challenges. Algorithms

that can learn from massive amounts of data are needed [20]

and this may make it difficult to define benchmark datasets

within the Big Data domain.

VI. CONCLUSIONS

This paper has provided a comprehensive survey of neu-

roevolution approaches in Deep Neural Networks (DNNs) and

has discussed the most important aspects of application of

Evolutionary Algorithms (EAs) in deep learning. The target

audience of this paper is a broad spectrum of researchers

and practitioners from both the Evolutionary Computation and

Deep Learning (DL) communities. The paper highlights where

EAs are being used in DL and how DL is benefiting from this.

Readers with a background in EAs will find this survey very

useful in determining the state-of-the-art in neural architecture

search methods in general. Additionally, readers from the DL

community will be encouraged to consider the application of

EAs approaches in their DNN work. Configuration of DNNs

is not a trivial problem. Poorly or incorrectly configured

networks can lead to the failure or under-utilisation of DNNs

for many problems and applications. Finding well-performing

architectures is often a very tedious and error-prone process.

EAs have been shown to be a competitive and successful

means of automatically creating and configuring such net-

works. Consequently, neuroevolution has great potential to

provide a strong and robust toolkit for the DL community in

future. The article has also outlined and discussed important

issues and challenges in this area.

REFERENCES

[1] A. Agapitos, M. O’Neill, M. Nicolau, D. Fagan, A. Kattan,
A. Brabazon, and K. Curran. Deep evolution of image representations
for handwritten digit recognition. In IEEE Congress on Evolutionary

Computation, CEC 2015, Sendai, Japan, May 25-28, 2015, pages
2452–2459. IEEE, 2015.

[2] A. Ashfahani, M. Pratama, E. Lughofer, and Y.-S. Ong. Devdan:
Deep evolving denoising autoencoder. Neurocomputing, 390:297 – 314,
2020.

[3] F. Assunção, N. Lourenço, P. Machado, and B. Ribeiro. Evolving
the topology of large scale deep neural networks. In M. Castelli,
L. Sekanina, M. Zhang, S. Cagnoni, and P. Garcı́a-Sánchez, editors,
Genetic Programming, pages 19–34, Cham, 2018. Springer Interna-
tional Publishing.

[4] F. Assunção, N. Lourenço, P. Machado, and B. Ribeiro. DENSER: deep
evolutionary network structured representation. Genetic Programming

and Evolvable Machines, 20(1):5–35, 2019.

[5] T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution

Strategies, Evolutionary Programming, Genetic Algorithms. Oxford
University Press, Oxford, UK, 1996.

[6] B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neural network
architectures using reinforcement learning. CoRR, abs/1611.02167,
2016.

[7] P. Baldi. Autoencoders, unsupervised learning, and deep architectures.
In I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver, editors,
Proceedings of ICML Workshop on Unsupervised and Transfer Learn-

ing, volume 27 of Proceedings of Machine Learning Research, pages
37–49, Bellevue, Washington, USA, 02 Jul 2012. PMLR.

[8] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor,
P. Sanders, D. Wagner, and R. F. Werneck. Route Planning in Trans-
portation Networks, pages 19–80. Springer International Publishing,
Cham, 2016.

[9] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade
learning environment: An evaluation platform for general agents.
CoRR, abs/1207.4708, 2012.

[10] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy
layer-wise training of deep networks. In B. Schölkopf, J. C. Platt,
and T. Hoffman, editors, Advances in Neural Information Processing

Systems 19, pages 153–160. MIT Press, 2007.

[11] J. Bergstra and Y. Bengio. Random search for hyper-parameter
optimization. J. Mach. Learn. Res., 13:281–305, 2012.

17

[12] J. Bergstra, D. Yamins, and D. D. Cox. Making a science of
model search: Hyperparameter optimization in hundreds of dimensions
for vision architectures. In Proceedings of the 30th International

Conference on International Conference on Machine Learning - Volume

28, ICML13, page I115I123. JMLR.org, 2013.

[13] H.-G. Beyer and H.-P. Schwefel. Evolution strategies a comprehensive
introduction. Natural Computing: An International Journal, 1(1):352,
May 2002.

[14] A. Brock, T. Lim, J. M. Ritchie, and N. Weston. SMASH:
one-shot model architecture search through hypernetworks. CoRR,
abs/1708.05344, 2017.

[15] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba. Openai gym, 2016. cite arxiv:1606.01540.

[16] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang. Efficient archi-
tecture search by network transformation. In S. A. McIlraith and
K. Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI

Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI

Symposium on Educational Advances in Artificial Intelligence (EAAI-

18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 2787–
2794. AAAI Press, 2018.

[17] T. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma. Pcanet: A simple
deep learning baseline for image classification? IEEE Transactions on

Image Processing, 24(12):5017–5032, 2015.

[18] F. Charte, A. J. Rivera, F. Martnez, and M. J. del Jesus. Evoaaa: An
evolutionary methodology for automated neural autoencoder architec-
ture search. Integrated Computer-Aided Engineering, Pre-press(Pre-
press):1–21, 2020.

[19] S. Chen, G. Liu, C. Wu, Z. Jiang, and J. Chen. Image classification
with stacked restricted boltzmann machines and evolutionary function
array classification voter. In 2016 IEEE Congress on Evolutionary

Computation (CEC), pages 4599–4606, 2016.

[20] X. Chen and X. Lin. Big data deep learning: Challenges and
perspectives. IEEE Access, 2(1):514–525, 2014.

[21] C. A. C. Coello. Evolutionary multi-objective optimization: a historical
view of the field. IEEE Computational Intelligence Magazine, 1(1):28–
36, Feb 2006.

[22] C. A. Coello Coello. A comprehensive survey of evolutionary-based
multiobjective optimization techniques. Knowledge and Information

Systems, 1(3):269–308, 1999.

[23] A. Darwish, A. E. Hassanien, and S. Das. A survey of swarm
and evolutionary computing approaches for deep learning. Artificial

Intelligence Review, pages 1–46, 2019.

[24] O. E. David and I. Greental. Genetic algorithms for evolving deep
neural networks. In Proceedings of the Companion Publication of the

2014 Annual Conference on Genetic and Evolutionary Computation,
GECCO Comp 14, page 14511452, New York, NY, USA, 2014.
Association for Computing Machinery.

[25] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms.
John Wiley & Sons, Inc., New York, NY, USA, 2001.

[26] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and
elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions

on Evolutionary Computation, 6:182–197, 2002.

[27] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pages 248–255, 2009.

[28] T. Desell. Large scale evolution of convolutional neural networks
using volunteer computing. In P. A. N. Bosman, editor, Genetic and
Evolutionary Computation Conference, Berlin, Germany, July 15-19,

2017, Companion Material Proceedings, pages 127–128. ACM, 2017.

[29] G. Desjardins and Y. Bengio. Empirical evaluation of convolutional
rbms for vision. Technical Report 1327, Département d’Informatique
et de Recherche Opérationnelle, Université de Montréal, 2008.

[30] E. Dufourq and B. A. Bassett. Eden: Evolutionary deep networks for
efficient machine learning. In 2017 Pattern Recognition Association

of South Africa and Robotics and Mechatronics (PRASA-RobMech),
pages 110–115, 2017.

[31] A. E. Eiben and J. Smith. From evolutionary computation to the
evolution of things. Nature, 521:476–482, 28 May 2015.

[32] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.
Springer Verlag, 2003.

[33] T. Elsken, J.-H. Metzen, and F. Hutter. Simple and efficient architecture
search for convolutional neural networks, 2017.

[34] T. Elsken, J. H. Metzen, and F. Hutter. Neural Architecture Search,
pages 63–77. Springer International Publishing, Cham, 2019.

[35] C. Fernando, D. Banarse, M. Reynolds, F. Besse, D. Pfau, M. Jaderberg,
M. Lanctot, and D. Wierstra. Convolution by evolution: Differentiable
pattern producing networks. In Proceedings of the Genetic and

Evolutionary Computation Conference 2016, GECCO 16, page 109116,
New York, NY, USA, 2016. Association for Computing Machinery.

[36] A. Fischer and C. Igel. An introduction to restricted boltzmann
machines. In L. Alvarez, M. Mejail, L. Gomez, and J. Jacobo, editors,
Progress in Pattern Recognition, Image Analysis, Computer Vision, and
Applications, pages 14–36, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[37] P. Fleming and R. Purshouse. Evolutionary algorithms in control sys-
tems engineering: a survey. Control Engineering Practice, 10(11):1223
– 1241, 2002.

[38] D. Floreano, P. Dürr, and C. Mattiussi. Neuroevolution: from architec-
tures to learning. Evolutionary Intelligence, 1(1):47–62, 2008.

[39] L. Fogel, A. Owens, and M. Walsh. Artificial intelligence through

simulated evolution. Wiley, Chichester, WS, UK, 1966.

[40] E. Galván-López. An analysis of the effects of neutrality on problem

hardness for evolutionary algorithms. PhD thesis, University of Essex,
Colchester, UK, 2009.

[41] E. Galván-López, S. Dignum, and R. Poli. The effects of constant
neutrality on performance and problem hardness in GP. In M. O’Neill,
L. Vanneschi, S. M. Gustafson, A. Esparcia-Alcázar, I. D. Falco,
A. D. Cioppa, and E. Tarantino, editors, Genetic Programming, 11th

European Conference, EuroGP 2008, Naples, Italy, March 26-28, 2008.
Proceedings, volume 4971 of Lecture Notes in Computer Science,
pages 312–324. Springer, 2008.

[42] E. Galván-López and R. Poli. An empirical investigation of how and
why neutrality affects evolutionary search. In M. Cattolico, editor,
Genetic and Evolutionary Computation Conference, GECCO 2006,
Proceedings, Seattle, Washington, USA, July 8-12, 2006, pages 1149–
1156. ACM, 2006.

[43] E. Galván-López and R. Poli. Some steps towards understanding how
neutrality affects evolutionary search. In T. P. Runarsson, H. Beyer,
E. K. Burke, J. J. Merelo Guerv’os, L. D. Whitley, and X. Yao, editors,
Parallel Problem Solving from Nature - PPSN IX, 9th International
Conference, Reykjavik, Iceland, September 9-13, 2006, Procedings,
volume 4193, pages 778–787. Springer, 2006.

[44] E. Galván-López and R. Poli. An empirical investigation of how degree
neutrality affects GP search. In A. H. Aguirre, R. M. Borja, and
C. A. R. Garcı́a, editors, MICAI 2009: Advances in Artificial Intelli-

gence, 8th Mexican International Conference on Artificial Intelligence,
Guanajuato, Mexico, November 9-13, 2009. Proceedings, volume 5845
of Lecture Notes in Computer Science, pages 728–739. Springer, 2009.

[45] E. Galván-López, R. Poli, A. Kattan, M. O’Neill, and A. Brabazon.
Neutrality in evolutionary algorithms... what do we know? Evolving

Systems, 2(3):145–163, 2011.

[46] F. Gers. Learning to forget: continual prediction with lstm. IET

Conference Proceedings, pages 850–855(5), January 1999.

[47] F. A. Gers and E. Schmidhuber. Lstm recurrent networks learn simple
context-free and context-sensitive languages. IEEE Transactions on
Neural Networks, 12(6):1333–1340, 2001.

[48] C. Goerick and T. Rodemann. Evolution strategies: An alternative to
gradient based learning.

[49] D. E. Goldberg. Genetic Algorithms in Search Optimization and
Machine Learning. Addison-Wesley, 1989.

[50] I. Gonçalves, M. Seca, and M. Castelli. Explorations of the Semantic
Learning Machine Neuroevolution Algorithm: Dynamic Training Data

Use, Ensemble Construction Methods, and Deep Learning Perspectives,
pages 39–62. Springer International Publishing, Cham, 2020.

[51] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT
Press, 2016.

[52] A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep
recurrent neural networks. In 2013 IEEE International Conference on

Acoustics, Speech and Signal Processing, pages 6645–6649, 2013.

[53] K. Greff, R. K. Srivastava, J. Koutnk, B. R. Steunebrink, and J. Schmid-
huber. Lstm: A search space odyssey. IEEE Transactions on Neural
Networks and Learning Systems, 28(10):2222–2232, 2017.

[54] J. Hajewski, S. Oliveira, and X. Xing. Distributed evolution of deep
autoencoders, 2020.

[55] N. Hansen, S. D. Mller, and P. Koumoutsakos. Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (cma-es). Evolutionary Computation, 11(1):1–18,
2003.

[56] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation
distributions in evolution strategies: the covariance matrix adaptation.

18

In Proceedings of IEEE International Conference on Evolutionary

Computation, pages 312–317, 1996.
[57] N. Hansen and A. Ostermeier. Completely derandomized self-

adaptation in evolution strategies. Evol. Comput., 9(2):159195, June
2001.

[58] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages
770–778. IEEE Computer Society, 2016.

[59] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm
for deep belief nets. Neural Comput., 18(7):15271554, July 2006.

[60] J. H. Holland. Adaptation in Natural and Artificial Systems: An Intro-

ductory Analysis with Applications to Biology, Control and Artificial
Intelligence. MIT Press, Cambridge, MA, USA, 1992.

[61] C. Hong, J. Yu, J. Wan, D. Tao, and M. Wang. Multimodal deep
autoencoder for human pose recovery. IEEE Transactions on Image

Processing, 24(12):5659–5670, 2015.
[62] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely

connected convolutional networks. In 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 2261–2269,
2017.

[63] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. The Journal of

Physiology, 160(1):106–154, 1962.
[64] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In F. R. Bach and
D. M. Blei, editors, Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings, pages
448–456. JMLR.org, 2015.

[65] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the
best multi-stage architecture for object recognition? In 2009 IEEE 12th

International Conference on Computer Vision, pages 2146–2153, 2009.
[66] Y. Jin. Surrogate-assisted evolutionary computation: Recent advances

and future challenges. Swarm and Evolutionary Computation, 1(2):61
– 70, 2011.

[67] R. Józefowicz, W. Zaremba, and I. Sutskever. An empirical exploration
of recurrent network architectures. In F. R. Bach and D. M. Blei,
editors, Proceedings of the 32nd International Conference on Machine

Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37
of JMLR Workshop and Conference Proceedings, pages 2342–2350.
JMLR.org, 2015.

[68] K. Kandasamy, W. Neiswanger, J. Schneider, B. Póczos, and E. P.
Xing. Neural architecture search with bayesian optimisation and
optimal transport. In S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances

in Neural Information Processing Systems 31: Annual Conference

on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8

December 2018, Montréal, Canada, pages 2020–2029, 2018.
[69] S. Khadka, J. J. Chung, and K. Tumer. Neuroevolution of a modular

memory-augmented neural network for deep memory problems. Evol.

Comput., 27(4):639–664, 2019.
[70] S. Khadka and K. Tumer. Evolution-guided policy gradient in

reinforcement learning. In Proceedings of the 32nd International

Conference on Neural Information Processing Systems, NIPS18, page
11961208, Red Hook, NY, USA, 2018. Curran Associates Inc.

[71] Y.-H. Kim, B. Reddy, S. Yun, and C. Seo. Nemo : Neuro-evolution
with multiobjective optimization of deep neural network for speed and
accuracy. 2017.

[72] M. Kimura. Evolutionary rate at the molecular level. Nature, 217:624–
626, 1968.

[73] M. Kimura. The Neutral Theory of Molecular Evolution. Cambridge
University Press, 1983.

[74] H. Kitano. Designing neural networks using genetic algorithms with
graph generation system. Complex Systems, 4, 1990.

[75] J. Koza, M. Keane, M. Streeter, W. Mydlowec, J. Yu, and G. Lanza.
Genetic programming iv: Routine human-competitive machine intelli-
gence. 01 2003.

[76] J. R. Koza. Genetic Programming: On the Programming of Computers

by Means of Natural Selection. MIT Press, Cambridge, MA, USA,
1992.

[77] J. R. Koza. Human-competitive results produced by genetic program-
ming. Genetic Programming and Evolvable Machines, 11(3/4):251–
284, Sept. 2010. Tenth Anniversary Issue: Progress in Genetic
Programming and Evolvable Machines.

[78] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian institute for
advanced research).

[79] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. Commun. ACM, 60(6):8490,
May 2017.

[80] S. Lander and Y. Shang. Evoae – a new evolutionary method for
training autoencoders for deep learning networks. In 2015 IEEE 39th

Annual Computer Software and Applications Conference, volume 2,
pages 790–795, 2015.

[81] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An
empirical evaluation of deep architectures on problems with many fac-
tors of variation. In Proceedings of the 24th International Conference

on Machine Learning, ICML 07, page 473480, New York, NY, USA,
2007. Association for Computing Machinery.

[82] H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio. Learning
algorithms for the classification restricted boltzmann machine. Journal

of Machine Learning Research, 13(22):643–669, 2012.
[83] Y. LeCun, Y. Bengio, and G. E. Hinton. Deep learning. Nature,

521(7553):436–444, 2015.
[84] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning

applied to document recognition. In Proceedings of the IEEE, pages
2278–2324, 1998.

[85] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[86] J. Lehman and K. Stanley. Novelty Search and the Problem with
Objectives, pages 37–56. 11 2011.

[87] J. Lehman and K. O. Stanley. Abandoning objectives: Evolution
through the search for novelty alone. Evol. Comput., 19(2):189223,
June 2011.

[88] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman. Random
feedback weights support learning in deep neural networks. arXiv

preprint arXiv:1411.0247, 2014.
[89] M. Lindauer and F. Hutter. Best practices for scientific research on

neural architecture search, 2019.
[90] C. Liu, B. Zoph, J. Shlens, W. Hua, L. Li, L. Fei-Fei, A. L. Yuille,

J. Huang, and K. Murphy. Progressive neural architecture search.
CoRR, abs/1712.00559, 2017.

[91] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu.
Hierarchical representations for efficient architecture search. In 6th
International Conference on Learning Representations, ICLR 2018,

Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track

Proceedings. OpenReview.net, 2018.
[92] J. Liu, M. Gong, Q. Miao, X. Wang, and H. Li. Structure learning

for deep neural networks based on multiobjective optimization. IEEE

Transactions on Neural Networks and Learning Systems, 29(6):2450–
2463, 2018.

[93] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi. A
survey of deep neural network architectures and their applications.
Neurocomputing, 234:11 – 26, 2017.

[94] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and
W. Banzhaf. Nsga-net: Neural architecture search using multi-objective
genetic algorithm. In Proceedings of the Genetic and Evolutionary

Computation Conference, GECCO 19, page 419427, New York, NY,
USA, 2019. Association for Computing Machinery.

[95] X. Luo, X. Li, Z. Wang, and J. Liang. Discriminant autoencoder for
feature extraction in fault diagnosis. Chemometrics and Intelligent

Laboratory Systems, 192:103814, 2019.
[96] M. Mandischer. A comparison of evolution strategies and backpropa-

gation for neural network training. Neurocomputing, 42(1):87 – 117,
2002. Evolutionary neural systems.

[97] A. Martn, R. Lara-Cabrera, F. Fuentes-Hurtado, V. Naranjo, and D. Ca-
macho. Evodeep: A new evolutionary approach for automatic deep
neural networks parametrisation. Journal of Parallel and Distributed

Computing, 117:180 – 191, 2018.
[98] Z. Michalewicz. How to Solve It: Modern Heuristics 2e. Springer-

Verlag, Berlin, Heidelberg, 2010.
[99] R. Miikkulainen, J. Z. Liang, E. Meyerson, A. Rawal, D. Fink,

O. Francon, B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, and
B. Hodjat. Evolving deep neural networks. CoRR, abs/1703.00548,
2017.

[100] J. F. Miller. Cartesian Genetic Programming, pages 17–34. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

[101] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller. Playing atari with deep reinforce-
ment learning. CoRR, abs/1312.5602, 2013.

[102] A. Mohamed, T. N. Sainath, G. Dahl, B. Ramabhadran, G. E. Hinton,
and M. A. Picheny. Deep belief networks using discriminative features
for phone recognition. In 2011 IEEE International Conference on

19

Acoustics, Speech and Signal Processing (ICASSP), pages 5060–5063,
2011.

[103] D. J. Montana and L. Davis. Training feedforward neural networks
using genetic algorithms. In Proceedings of the 11th International

Joint Conference on Artificial Intelligence - Volume 1, IJCAI89, page
762767, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers
Inc.

[104] G. Morse and K. O. Stanley. Simple evolutionary optimization can rival
stochastic gradient descent in neural networks. In Proceedings of the
Genetic and Evolutionary Computation Conference 2016, GECCO 16,
page 477484, New York, NY, USA, 2016. Association for Computing
Machinery.

[105] V. Nair and G. E. Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th International Con-

ference on International Conference on Machine Learning, ICML10,
page 807814, Madison, WI, USA, 2010. Omnipress.

[106] R. Negrinho and G. Gordon. Deeparchitect: Automatically designing
and training deep architectures, 2017.

[107] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng. Reading
digits in natural images with unsupervised feature learning. NIPS, 01
2011.

[108] A. Ororbia, A. ElSaid, and T. Desell. Investigating recurrent neural
network memory structures using neuro-evolution. In Proceedings of

the Genetic and Evolutionary Computation Conference, GECCO 19,
page 446455, New York, NY, USA, 2019. Association for Computing
Machinery.

[109] K. Pawełczyk, M. Kawulok, and J. Nalepa. Genetically-trained deep
neural networks. In Proceedings of the Genetic and Evolutionary

Computation Conference Companion, GECCO 18, page 6364, New
York, NY, USA, 2018. Association for Computing Machinery.

[110] L. Peng, S. Liu, R. Liu, and L. Wang. Effective long short-term memory
with differential evolution algorithm for electricity price prediction.
Energy, 162:1301 – 1314, 2018.

[111] R. Poli and E. Galván-López. On the effects of bit-wise neutrality
on fitness distance correlation, phenotypic mutation rates and problem
hardness. In C. R. Stephens, M. Toussaint, D. Whitley, and P. F. Stadler,
editors, Foundations of Genetic Algorithms, pages 138–164, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[112] R. Poli and E. Galván-López. The effects of constant and bit-
wise neutrality on problem hardness, fitness distance correlation and
phenotypic mutation rates. IEEE Trans. Evolutionary Computation,
16(2):279–300, 2012.

[113] V. W. Porto, D. B. Fogel, and L. J. Fogel. Alternative neural
network training methods. IEEE Expert: Intelligent Systems and Their

Applications, 10(3):1622, June 1995.
[114] K. Price, R. Storn, and J. Lampinen. Differential Evolution-A Practical

Approach to Global Optimization, volume 141. 01 2005.
[115] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama. Opposition-

based differential evolution. IEEE Transactions on Evolutionary
Computation, 12(1):64–79, 2008.

[116] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evo-
lution for image classifier architecture search. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-

First Innovative Applications of Artificial Intelligence Conference,

IAAI 2019, The Ninth AAAI Symposium on Educational Advances in

Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27
- February 1, 2019, pages 4780–4789. AAAI Press, 2019.

[117] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V.
Le, and A. Kurakin. Large-scale evolution of image classifiers. In
Proceedings of the 34th International Conference on Machine Learning

- Volume 70, ICML17, page 29022911. JMLR.org, 2017.
[118] I. Rechenberg. Evolutionsstrategien. In B. Schneider and U. Ranft,

editors, Simulationsmethoden in der Medizin und Biologie, pages 83–
114, Berlin, Heidelberg, 1978. Springer Berlin Heidelberg.

[119] I. Rechenberg. Evolution strategy: Nature’s way of optimization. In
H. W. Bergmann, editor, Optimization: Methods and Applications,
Possibilities and Limitations, pages 106–126, Berlin, Heidelberg, 1989.
Springer Berlin Heidelberg.

[120] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal

Representations by Error Propagation, page 318362. MIT Press,
Cambridge, MA, USA, 1986.

[121] C. Ryan, J. Collins, and M. O. Neill. Grammatical evolution: Evolving
programs for an arbitrary language. In W. Banzhaf, R. Poli, M. Schoe-
nauer, and T. C. Fogarty, editors, Genetic Programming, pages 83–96,
Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[122] R. Salakhutdinov and G. Hinton. Deep boltzmann machines. In
D. van Dyk and M. Welling, editors, Proceedings of the Twelth Inter-

national Conference on Artificial Intelligence and Statistics, volume 5
of Proceedings of Machine Learning Research, pages 448–455, Hilton
Clearwater Beach Resort, Clearwater Beach, Florida USA, 16–18 Apr
2009. PMLR.

[123] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution
strategies as a scalable alternative to reinforcement learning, 2017.

[124] J. Schmidhuber. Deep learning in neural networks: An overview.
Neural Networks, 61:85 – 117, 2015.

[125] H.-P. Schwefel. Numerical Optimization of Computer Models. John
Wiley & Sons, Inc., USA, 1981.

[126] F. Sehnke, C. Osendorfer, T. Rckstie, A. Graves, J. Peters, and
J. Schmidhuber. Parameter-exploring policy gradients. Neural Net-

works, 23(4):551 – 559, 2010. The 18th International Conference on
Artificial Neural Networks, ICANN 2008.

[127] T. Shinozaki and S. Watanabe. Structure discovery of deep neural
network based on evolutionary algorithms. In 2015 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 4979–4983, 2015.

[128] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484–489, Jan. 2016.

[129] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. In Y. Bengio and Y. LeCun, editors,
3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.

[130] D. R. So, Q. V. Le, and C. Liang. The evolved transformer. In
K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June

2019, Long Beach, California, USA, volume 97 of Proceedings of

Machine Learning Research, pages 5877–5886. PMLR, 2019.
[131] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer:

Benchmarking machine learning algorithms for traffic sign recognition.
Neural Networks, 32:323 – 332, 2012. Selected Papers from IJCNN
2011.

[132] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen. Designing
neural networks through neuroevolution. Nature Machine Intelligence,
1:24–35, 2019.

[133] K. O. Stanley and R. Miikkulainen. Evolving neural networks through
augmenting topologies. Evol. Comput., 10(2):99127, June 2002.

[134] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune. Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning.
ArXiv, abs/1712.06567, 2017.

[135] M. Suganuma, M. Ozay, and T. Okatani. Exploiting the potential of
standard convolutional autoencoders for image restoration by evolu-
tionary search. In J. G. Dy and A. Krause, editors, Proceedings of

the 35th International Conference on Machine Learning, ICML 2018,

Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of
Proceedings of Machine Learning Research, pages 4778–4787. PMLR,
2018.

[136] M. Suganuma, S. Shirakawa, and T. Nagao. A genetic programming
approach to designing convolutional neural network architectures. In
Proceedings of the Twenty-Seventh International Joint Conference on

Artificial Intelligence, IJCAI-18, pages 5369–5373. International Joint
Conferences on Artificial Intelligence Organization, 7 2018.

[137] Y. Sun, H. Wang, B. Xue, Y. Jin, G. G. Yen, and M. Zhang. Surrogate-
assisted evolutionary deep learning using an end-to-end random forest-
based performance predictor. IEEE Transactions on Evolutionary

Computation, 24(2):350–364, 2020.
[138] Y. Sun, X. Wang, and X. Tang. Hybrid deep learning for face

verification. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 38(10):1997–2009, 2016.
[139] Y. Sun, B. Xue, M. Zhang, and G. G. Yen. Completely automated

cnn architecture design based on blocks. IEEE Transactions on Neural

Networks and Learning Systems, 31(4):1242–1254, 2020.
[140] Y. Sun, B. Xue, M. Zhang, and G. G. Yen. Evolving deep convolutional

neural networks for image classification. IEEE Transactions on

Evolutionary Computation, 24(2):394–407, 2020.
[141] Y. Sun, G. G. Yen, and Z. Yi. Evolving unsupervised deep neural

networks for learning meaningful representations. IEEE Trans. Evolu-
tionary Computation, 23(1):89–103, 2019.

[142] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
A Bradford Book, Cambridge, MA, USA, 2018.

20

[143] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with
convolutions. In IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages
1–9. IEEE Computer Society, 2015.

[144] G. J. van Wyk and A. S. Bosman. Evolutionary neural architecture
search for image restoration. In 2019 International Joint Conference

on Neural Networks (IJCNN), pages 1–8, 2019.
[145] B. Wang, Y. Sun, B. Xue, and M. Zhang. A hybrid differential evolution

approach to designing deep convolutional neural networks for image
classification. In T. Mitrovic, B. Xue, and X. Li, editors, AI 2018:

Advances in Artificial Intelligence - 31st Australasian Joint Conference,

Wellington, New Zealand, December 11-14, 2018, Proceedings, volume
11320 of Lecture Notes in Computer Science, pages 237–250. Springer,
2018.

[146] S. Wright. The role of mutation, inbreeding, crossbreeding and
selection in evolution. In Proceedings of the Sixth International
Congress on Genetics, volume 1, page 356366, 1932.

[147] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel im-
age dataset for benchmarking machine learning algorithms. CoRR,
abs/1708.07747, 2017.

[148] L. Xie and A. Yuille. Genetic cnn. In 2017 IEEE International

Conference on Computer Vision (ICCV), pages 1388–1397, 2017.
[149] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE,

87(9):1423–1447, 1999.
[150] S. Zagoruyko and N. Komodakis. Wide residual networks. In R. C.

Wilson, E. R. Hancock, and W. A. P. Smith, editors, Proceedings of
the British Machine Vision Conference 2016, BMVC 2016, York, UK,

September 19-22, 2016. BMVA Press, 2016.
[151] C. Zhang, P. Lim, A. K. Qin, and K. C. Tan. Multiobjective deep

belief networks ensemble for remaining useful life estimation in
prognostics. IEEE Transactions on Neural Networks and Learning

Systems, 28(10):2306–2318, 2017.
[152] C. Zhang, K. C. Tan, H. Li, and G. S. Hong. A cost-sensitive deep belief

network for imbalanced classification. IEEE Trans. Neural Networks

Learn. Syst., 30(1):109–122, 2019.
[153] Q. Zhao, D. Zhang, and H. Lu. A direct evolutionary feature extraction

algorithm for classifying high dimensional data. In Proceedings of
the 21st National Conference on Artificial Intelligence - Volume 1,
AAAI06, page 561566. AAAI Press, 2006.

[154] Z. Zhong, J. Yan, and C. Liu. Practical network blocks design with
q-learning. CoRR, abs/1708.05552, 2017.

[155] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Jayarajan, A. Phan-
ishayee, B. Schroeder, and G. Pekhimenko. Benchmarking and
analyzing deep neural network training. In 2018 IEEE International
Symposium on Workload Characterization (IISWC), pages 88–100,
2018.

[156] B. Zoph and Q. V. Le. Neural architecture search with reinforcement
learning. CoRR, abs/1611.01578, 2016.

[157] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable
architectures for scalable image recognition. CoRR, abs/1707.07012,
2018.

	I Introduction
	II Background
	II-A Deep Neural Networks
	II-A1 Deep Learning Architecture: Convolutional Neural Networks (CNNs)
	II-A2 Deep Learning Architecture: Autoencoders (AEs)
	II-A3 Deep Learning Architecture: Deep Belief Networks (DBNs)
	II-A4 Deep Learning Architecture: Other network types

	II-B Evolutionary Algorithms
	II-B1 Evolutionary Algorithm: Genetic Algorithms (GAs)
	II-B2 Evolutionary Algorithm: Genetic Programming (GP)
	II-B3 Evolutionary Algorithm: Evolution Strategies (ES)
	II-B4 Evolutionary Algorithm: Evolutionary Programming (EP)
	II-B5 Evolutionary Algorithm: Others

	III Evolving DNNs Architectures Through Evolutionary Algorithms
	III-A The Motivation
	III-B The Critique
	III-C Deep Learning Architecture: Convolutional Neural Networks
	III-D Deep Learning Architecture: AutoEncoders
	III-E Deep Learning Architecture: Deep Belief Networks
	III-F Other networks: LSTM, RRN, RBM
	III-G Final Comments

	IV Training Deep Neural Networks Through Evolutionary Algorithms
	IV-A Motivation
	IV-B The critique
	IV-C Deep Learning Architecture: Convolutional Neural Networks
	IV-D Deep Learning Architecture: Autoencoders
	IV-E Other Relevant Works
	IV-F Final Comments

	V Future Work on Neuroevolution in Deep Neural Networks
	V-A Surrogate-assisted EAs in DNNs
	V-B Mutations and the neutral theory
	V-C Multi-objective Optimisation
	V-D Fitness Landscape Analysis of DNNs and Well-posed Genetic Operators
	V-E Standardised Scientific Neuroevolution Studies in DNNs
	V-F Diversifying the use of benchmark problems and DNNs

	VI Conclusions
	References

