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a b s t r a c t

Bloat is one of the most widely studied phenomena in Genetic Programming (GP), it is nor-

mally defined as the increase in mean program size without a corresponding improvement

in fitness. Several theories have been proposed in the specialized GP literature that explain

why bloat occurs. In particular, the Crossover-Bias Theory states that the cause of bloat is that

the distribution of program sizes during evolution is skewed in a way that encourages bloat

to appear, by punishing small individuals and favoring larger ones. Therefore, several bloat

control methods have been proposed that attempt to explicitly control the size distribution

of programs within the evolving population. This work proposes a new bloat control method

called neat-GP, that implicitly shapes the program size distribution during a GP run. neat-GP

is based on two key elements: (a) the NeuroEvolution of Augmenting Topologies algorithm

(NEAT), a robust heuristic that was originally developed to evolve neural networks; and (b)

the Flat Operator Equalization bloat control method, that explicitly shapes the program size

distributions toward a uniform or flat shape. Experimental results are encouraging in two do-

mains, symbolic regression and classification of real-world data. neat-GP can curtail the effects

of bloat without sacrificing performance, outperforming both standard GP and the Flat-OE

method, without incurring in the computational overhead reported by some state-of-the-art

bloat control methods.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Genetic Programming (GP) [9,10,21] is an evolutionary computation (EC) paradigm used for automatic program induction, its

general goal is to generate computer programs through an evolutionary search. In its most common form, GP can be understood

as a supervised learning algorithm that attempts to construct a syntactically valid expression using a finite set of basic functions

and input variables, guided by a domain dependent objective or cost function [21]. In its original form [9], GP is characterized by

two main features that distinguishes it from other EC techniques. Firstly, evolved solutions represent valid syntactic expressions

or programs, that might be used as models, predictors, operators or classifiers. The ability of GP to construct syntactic expres-

sions directly, without assuming a prior model, can allow it to produce highly interpretable solutions, that not only solve the
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problem but also provide insights into the problem domain. Secondly, GP uses a variable length encoding scheme, where the set

of candidate solutions contains programs of different size and shape.

EC literature contains many examples of the problem solving abilities of GP, that illustrate the flexibility of the search

paradigm [8]. Indeed, GP can be understood as a hyper-heuristic, an algorithmic approach for the automatic synthesis of heuristic

approaches, a view that has strong theoretical background and real-world applicability [19]. Despite its success, GP is still not

used as an off-the-shelf methodology [16], in the way that, for example, Support Vector Machines or Linear Regression are used.

This lack of wider acceptance stems from some important pragmatic limitations of the GP approach.

In particular, syntactic search can be inefficient, due to its poor local structure and ill-defined fitness landscape (refer to [18]

and [22] where the authors reviewed some of the main open issues in GP). Among them, one of the most studied problems is

the bloat phenomenon, which occurs when program trees tend to grow unnecessarily large, without a corresponding increase

in fitness [21,25]. In some sense, bloat seems to be an unavoidable consequence of the nature of the search space in GP and

fitness driven search [11,12]. Moreover, bloat causes several undesirable side effects, since evaluating large programs is more

time consuming, and large solutions are more difficult to interpret. Therefore, multiple approaches have been studied to deal

with bloat, ranging from modifications of the basic search operators up to investigating the use of different search spaces, such

as semantic space [6,33] and behavioral space [30].

This paper presents a novel approach toward bloat control, that leverages the insights of recent studies [23] and an algorithm

originally developed for neuroevolution [28]. Silva [23] suggests that a powerful bloat control strategy is to induce a uniform

distribution of program sizes within the evolving population. In particular, she proposed the Flat Operator Equalization bloat

control method (Flat-OE), which explicitly forces the evolving population to follow a uniform distribution of program sizes,

while the range of the distribution remains constant across all generations.

The contribution of our work is the development of a GP-based system based on the NeuroEvolution of Augmenting Topolo-

gies (NEAT) algorithm, which uses speciation to protect novel solution topologies and promote the incremental evolution of

complexity [28]. In our recent work, we showed that NEAT can run bloat free, using a careful parametrization and system config-

uration [29]. However, it was unclear if the results obtained from neuroevolution could be replicated in a traditional GP domain.

The proposed algorithm is called neat-GP and it can be understood as a stripped down version of the original NEAT algorithm,

which is adapted to the GP paradigm, designed to induce similar search dynamics as those shown by Flat-OE. Experiments

are carried out using a tree-based representation and tested on several benchmark problems for both symbolic regression and

classification. The results show that a neat-GP based search can outperform a standard GP search, based on test performance and

especially with regards to solution size and depth. These results agree with those reported in [29], with the added advantage that

the bloat control method does not incur in any additional computational cost exhibited by other state-of-the-art bloat control

methods [23,26].

The remainder of this paper proceeds as follows. Section 2 provides a comprehensive overview on both the bloat phenomenon

and the NEAT algorithm, discussing the theoretical causes of bloat, state-of-the-art bloat control methods and how bloat relates

to NEAT. The proposed neat-GP algorithm is presented in Section 3, discussing different possible variants and detailing important

algorithm features. The experimental work is presented in Section 4, discussing system setup, benchmarking and results. Finally,

a summary and concluding remarks are outlined in Section 5.

2. Background

This section presents a comprehensive discussion of the most relevant background topics related to the current research

paper.

2.1. Bloat

In what follows, the bloat phenomenon in GP is presented, focusing on theoretical aspects and state-of-the-art bloat control

methods; a more complete survey on this topic can be found in [25,26].

2.1.1. Bloat theory and bloat control methods

The most well-established explanation of bloat is the fitness-causes-bloat theory (FCBT), originally developed by Langdon and

Poli [11]. The FCBT assumes the following common features in a GP search: (a) there is a many-to-one mapping from syntactic

space to fitness space; and (b) for a particular fitness value (e.g., the optimum), there are exponentially more large programs than

there are small programs with the same fitness. Hence, if a particular fitness value is desired, there is a tendency toward larger,

or bloated, programs during a GP search, simply because there are more of them within the search space. Indeed, stating that the

search for fitness is the main cause of bloat is by now uncontroversial, since it is basically the underlying factor in all major bloat

theories [25]. Moreover, recent works suggest that a GP search that does not consider fitness explicitly can in fact avoid bloat

altogether, by searching for novelty instead of solution quality [13,30].

Currently, one of the most useful bloat theories is the crossover bias theory (CBT) [20]. Focusing on canonical GP, the CBT

states that bloat is produced by the effect that subtree crossover has on the distribution of program size. While the average size

of trees is not affected, the size distribution is skewed in a particular way, producing a large number of small trees. For most

fairly challenging problems, small trees will have a relatively low fitness. This in consequence will bias the selection operator
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toward favoring larger programs, causing an increase in the average tree size within the population, effectively bootstrapping the

bloating phenomenon.

2.1.2. Operator equalization

Given the insights provided by the CBT, Dignum and Poli [4] proposed the Operator Equalisation (OE) bloat control method,

that focuses on explicitly controlling the distribution of program sizes at each generation. OE has produced impressive results

in several benchmark and real-world problems, and has led to the development of a family of related methods [26,27]. Despite

the success of OE, there are several practical concerns with it. For instance, it relies on an expensive computational process

that generates, evaluates and in many cases rejects program trees that do not fit the desired target distribution. If we consider

that one of the main practical reasons for bloat control is to reduce the inherent computational costs in a GP search, it seems

counterproductive to use a bloat control strategy that might increase the total computational effort. Moreover, recent results

suggest that some of the underlying assumptions in OE may not be justified. We discuss these issues in the following paragraphs.

Given the shortcomings of the original OE algorithms, Silva attempted to develop a stripped down version of OE [23]. The

goal was to construct a simpler algorithm with a lower computational cost, while at the same time maintaining the bloat control

features of standard OE. In particular, Silva combined the brood recombination operator [1] and the dynamic limits survival

strategy [25]. However, experimental results showed that the proposed approximation of the OE method failed at controlling

bloat. The reason for this appears to lie in a contradiction between OE and the CBT. Since the latter suggests that small individuals

are harmful to the evolutionary process, OE methods tend to promote target size distributions that exclude such individuals

from the population. On the other hand, while OE methods are designed to promote such distributions, in practice OE does not

seem to actually fit them. In fact, Silva showed that OE tends to produce uniform or flat distributions of program sizes, with a

roughly similar proportion of trees of different sizes, from small to large [23]. Based on these results, Silva proposed the Flat-OE

method, where a flat target distribution is sought, such that the range of the distribution remains constant throughout the search.

Empirical results suggest that Flat-OE can control bloat while not compromising the quality of the evolved solutions.

Nonetheless, the original strategy developed in [23] seems promising; i.e., determine the underlying properties of OE and

develop an approximate algorithm that satisfies these properties, while at the same time reducing the computational overhead

induced by the bloat control mechanism. It seems that the proposed mechanisms failed (brood recombination and dynamic

limits), due to the fact that the underlying assumptions behind what OE does during a GP search were wrong; i.e., OE does not

eliminate small program trees from the evolving population. Therefore, the current work follows a similar general strategy and

develops an approximate version of OE by eliminating what appears to be the cause of bloat by adapting the main features of

NEAT into the GP paradigm. However, instead of attempting to reproduce the original OE algorithm, this work is inspired on the

insights gained from Flat-OE [27].

2.2. NeuroEvolution of augmenting topologies

The goal of this paper is to naturally handle bloat by implementing a GP algorithm that can maintain a close to uniform

distribution of program sizes. In particular, the proposal is to adapt the NEAT algorithm [28] to the general GP paradigm, which

was originally developed to evolve neural networks (NN). Nonetheless, it is possible to argue that NEAT should be considered

as a specialized GP variant, since it evolves a variable length arrays (genotype) that represent NNs, a particular computational

model. However, unlike GP, NEAT does not explicitly consider a syntactic search space or symbolic representation for the evolved

solutions. Moreover, since NEAT employs a graph representation for NNs with variable topology and size, it can also be affected

by bloat. The main components in NEAT, which are reviewed next, promote diversity in both solution size and shape, which

is precisely the strategy followed in [23]. This section provides an introduction to NEAT, contextualizing it within the broader

GP paradigm, and presents experimental evidence, which suggests that NEAT can perform a bloat-free search if it is configured

properly.

2.2.1. The main components in NEAT

Stanley and Miikkulainen [28] developed NEAT as a variable length evolutionary algorithm that explicitly encodes the topol-

ogy and connection weights of a NN. The algorithm can be broken down into the following main components.

The first component is a variable length list representation that encodes graph structures. The genome is conceptually divided

into two segments: the first contains node genes that specify the set of input, output and hidden nodes of the network; while the

second segment contains the set of connection or synaptic genes, that specify the input and output node of each connection and

its respective weight. To allow search operations that are coherent between NNets of different sizes, NEAT includes a historical

marking for each synaptic connection that uniquely defines each connection introduced into the evolving population. In this way,

when crossover is performed between two parent networks, that can have different topologies, the connection genes are first

aligned based on these historical markings, allowing for the identification of the shared structure between both parents (nodes

and connections). Matching genes between two parents are randomly inherited from either parent, but any disjoint or excess

genes are inherited from the fittest parent. Moreover, the connection weights are also inherited after a crossover operation. NEAT

does not evolve the activation functions in the NNs, these are set a priori for all network nodes. Besides the crossover operation

described above, other search operators include a weight mutation, and structural mutations that can either add nodes or add

connections. This set of search operators is unusual, in the sense that they always produce offspring of equal or larger size than

their parents, a configuration that should induce code growth.
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The second component is that the initial population in NEAT only contains NNs that share the same minimal topology, in most

cases this is a fully connected feedforward network with no hidden neurons and randomly generated connection weights. This

encourages an incremental evolution of solution complexity; i.e., an incremental evolution of size and topology. Fundamentally,

NEAT assumes that the best way to start an evolutionary search is by using a simple/small network, and progressively builds

more complex networks as the search progresses. If the problem can be solved by a parsimonious network then the search might

be able to find it early on during the search, and only if it fails to achieve this, the search will progress toward larger and more

complex topologies.

Finally, NEAT incorporates a scheme that protects topological innovation during the search. Consider that at the beginning of a

run, all the individuals share the same initial (minimal) structure, while the search focuses on improving the connection weights

in the networks. The search operators progressively add structural elements (nodes and/or connections) to the base topology,

each time a new structural element is generated its weight is set randomly. This could cause a problem, because a randomly

generated connection with a randomly set weight, could have a destructive effect on fitness. However, it is reasonable to assume

that an increase in structural complexity might be required to solve difficult problems, hence the need to protect these structural

innovations so they are not discarded by selection as soon as they appear. NEAT accomplishes this by using speciation based on

topological similarities and fitness sharing [7], where the fitness of each individual is penalized based on its similarity with other

individuals within the population. The key element is the use of a problem specific distance measure, denoted by δ. In this case

it is based on the topological similarities between two networks expressed by

δ = c1 · G + c2 · D

N
+ c3 · W , (1)

where D is the number of disjoint genes, G is the number of excess genes between them, W is the average weight difference

of matching genes, N is the number of genes in the larger genome, and cx are weight coefficients. Speciation not only penalizes

the selection probability of individuals, it also serves as a constraint on parent selection for crossover, by posing an interspecies

crossover rate to a relatively low value of 5%. Thus, crossover is performed between individuals of the same species, which in

turn generates topologically similar offspring compared to their parents.

In summary, NEAT is a variable length evolutionary algorithm that evolves graph structures which represent NNs. From this

general perspective, we state that NEAT is a special form of GP, where evolved solutions express instances from a narrow class

of functions or programs, those that can be represented as NNs. However, the results obtained with NEAT can provide useful

insights to the GP paradigm as a whole [29].

2.2.2. Bloat in NEAT

It can be argued that grouping NNs based on topological structure is not the best way to promote a diverse set of functional

behaviors [31], since networks with different topologies can produce the same results, and vice versa. Nonetheless, speciation

based on topological similarities can produce a diverse population of network topologies; i.e., a diverse population of network

shapes and sizes. This is a key feature that inspired the present work, in that NEAT provides a promising approximation to

the main Flat-OE strategy. Therefore, we could expect NEAT to search without producing bloat. Indeed, it has been previously

hypothesized that NEAT may intrinsically control bloat.1

Our previous work confirmed that NEAT can be executed bloat-free, but only if it is configured appropriately [29]; the main

results are briefly summarized here. Since NEAT is a fairly complex and intricate algorithm, in our previous work [29] we used

the freely available Java implementation of NEAT2 which closely follows the original NEAT algorithm [28].3 NEAT was tested on

two standard benchmark problems, the XOR problem and the 3-bit parity problem, which are both distributed with the Java

library, executing 30 independent runs for each of these two problems. Performance is analyzed using both fitness and solution

size given by the number of network nodes.

However, a re-parametrization of NEAT referred to as bloat-free NEAT (BF-NEAT) produces more promising results in terms

of bloat, as shown in Figs. 1 and 2 for the XOR and Parity problems, respectively. BF-NEAT is configured in such a way that new

individuals have a higher probability of survival, overall elitism is increased, and all species are protected regardless of their

‘age’ or historic performance. In these experiments, BF-NEAT, which is shown in Figs. 1(b) and 2(b), is able to maintain smaller

programs during the search, the distribution is not skewed toward larger sizes, contrary to what is shown for NEAT in Figs. 1(a)

and 2(a). BF-NEAT encourages the formation of populations with different program sizes, without excluding programs based on

their size, which is consistent with the published results regarding Flat-OE. Moreover, BF-NEAT does not show any substantial

decrease in performance relative to NEAT, as discussed in detail in [29]. The important lesson to take from these results is to

confirm that the general NEAT strategy can, under certain conditions, control bloat during a search by implicitly shaping the

program size distribution.
1 To the authors’ knowledge, the only explicit, yet informal, discussion of this issue is given in the official NEAT website http://www.cs.ucf.edu/∼kstanley/neat.

html.
2 Source: http://nn.cs.utexas.edu/?jneat.
3 While there are many open implementations of NEAT available, many of them are modified or simplified variants of the original algorithm, and it is not

straightforward to determine what consequences these modifications, no matter how slight, can have on the search dynamics.

http://www.cs.ucf.edu/~kstanley/neat.html
http://nn.cs.utexas.edu/?jneat


L. Trujillo et al. / Information Sciences 333 (2016) 21–43 25

Fig. 1. Evolution of the size distribution of individuals based on number of nodes across generations on the XOR problem for: (a) NEAT and (b) BF-NEAT.

Fig. 2. Evolution of the size distribution of individuals based on number of nodes across generations on the Parity problem for: (a) NEAT and (b) BF-NEAT.
3. neat Genetic Programming

The goal of this work is to develop a bloat-free GP search, inspired by the insights of Flat-OE and built around the basic features

of NEAT, that implicitly shapes the program size distribution. The proposed method is called neat-GP, taking the two evolutionary

paradigms on which the proposed algorithm is based on and which serve as namesakes. Note that the name neat-GP should not

be taken as an acronym, since what is evolved are program trees and not network structures. The name is just intended to convey

the inspiration of the algorithm in a light-hearted manner.

The remainder of this section presents a detailed description of neat-GP, describing how the general NEAT methodology was

ported to the GP domain. The following section presents an extensive experimental evaluation of the algorithm.

3.1. Overview

It is important to note that neat-GP is not designed to be an exact reproduction of NEAT, instead only the more general and

important design principles are integrated into the canonical GP algorithm. Indeed, the goal was to identify and adopt the main

design principles in NEAT that could allow the search to run bloat-free.

Therefore, the following main aspects of NEAT are considered:

1. Initialization and Speciation: NEAT starts the search with a random population of small/simple solutions, and progressively

builds and protects solution complexity, while also maintaining and promoting diversity using speciation. To perform specia-

tion a dissimilarity measure between trees is required (see Eq. (1)) as well as a process that determines species membership.

Then, based on species membership, fitness sharing is used to penalize individuals from densely populated species.

2. Genetic Operators: NEAT uses several different search operators, specifically designed for the specialized solution represen-

tation. Moreover, NEAT enforces a strict policy for crossover, where interspecies crossover is highly discouraged, to ensure

that offspring will be able to replace their parents within the same species. Additionally, selection and survival enforce a

strong selective pressure. The general principles are included in neat-GP, with some simplifications, and a crossover operator

is proposed that is similar to the original NEAT crossover designed for NNs.
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Fig. 3. General flow diagram of the neat-GP algorithm.
Fig. 3 presents a flowchart of the basic neat-GP algorithm. In general the flowchart describes a basic EA or GP, with initial-

ization, fitness evaluation, selection and survival. However the figure presents several types of processes, denoted by different

blocks in the diagram; these are: (1) standard GP processes (in some cases with unconventional settings), shown as white blocks

with solid contours; (2) a new process based on the NEAT algorithm, shown as white blocks with dotted contours; and (3) a

standard GP process with a unique implementation based on NEAT, shown as grey blocks with solid contours. Here we give a

general description of the overall algorithm and then provide a detailed description of each block and algorithms in the following

subsections.

First, the algorithm starts with a randomly generated population, starting with small full trees (Block A of Fig. 3). Second,

speciation is performed on the entire population, based on the size of each solution, as described in Algorithm 1 (Block B). Third,

fitness evaluation is performed and fitness sharing is applied, to protect individuals within small species and to penalize those

from larger species (Blocks C and D). Fourth, if the stopping criterion has not been satisfied, then parent selection is performed

using Algorithm 2 (Block E). Fifth, offspring are generated using the parents selected in the previous step and Algorithm 3 (Block

F). Moreover, following NEAT, a new crossover operation is proposed called neat-crossover used along with standard subtree

mutation (Block G). Sixth, the offspring are inserted into the population and Algorithm 1 is used to perform speciation, while

their fitness is assigned using fitness sharing based on the current population (Blocks H, I and J). Seventh, an elitist survival
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Algorithm 1: Speciation algorithm used in neat-GP.

Data: Set of individuals P | ∃Ti ∈ P where Ti.species = NULL

Result: Set of individuals P | �Ti ∈ P where Ti.species = NULL

for ∀Ti ∈ P do

if Ti.species = NULL then

for ∀Tj ∈ P \ {Ti} do

if δT (Ti, Tj) ≤ h then

Ti.species ← Tj.species;

break;

end

end

if Ti.species = NULL then

create new species Su;

Ti.species ← Su;

end

end

end

Algorithm 2: Parent selection algorithm used in neat-GP.

Data: Set of n individuals P | �Ti ∈ P where Ti.species = NULL

Data: Average fitness of the population P: f̄ = 1

n

∑n
i=1 f (Ti)

Data: pworst % individuals to replace

Result: Set Q of parents

Q ← ∅;

Ti.descendants ← 
 f̄
f (Ti)

� ∀Ti ∈ P;

Q ← P;

for each species S j of Q do

Eliminate the pworst % individuals that belong to S j from Q;

end

Order the remaining individuals in Q based on the penalized fitness f ′
strategy is used and the algorithm in order to replace the pworst % solutions in the current population with the best offspring

(Block K). Finally, the algorithm iterates into the following generation by applying fitness sharing to the new population and

evaluating the termination criterion. In what follows each algorithm and process is described in detail, for simplicity each is

described using pseudocode with set notation and C++ style OOP instructions.

3.2. Initialization and speciation

This subsection summarizes Blocks A–D and H–J in the neat-GP flowchart presented in Fig. 3.

3.2.1. Initial population

Probably the simplest component to reproduce from the original NEAT algorithm is the minimal complexity of the initial

population. For neat-GP, this is done using the full initialization method and a small initial depth, in this work set to 3 levels,

where the root node is regarded as depth 1. In this way, all individuals in the initial population share the same shape and size,

producing only one species in the initial population, as is carried out in NEAT.

3.2.2. Tree dissimilarity measure

The NEAT measure defined in Eq. (1) is not directly applicable to a tree representation. However, the same general principles

are desired, determine the shared topological structure Si,j between two trees Ti and Tj, similar to what is done in one-point

or homologous crossover [21]; see Fig. 4. To determine the shared structure we identify the overlapping upper tree from both

trees, following the approach described in [34]. Moreover, nTx
and dTx

refer to the number of nodes and depth of a GP tree Tx,

respectively. Note that Si, j is also a tree, with a particular size nSi, j
and depth dSi, j

. Then, the dissimilarity between two trees Ti

and Tj is given by

δT (Ti, Tj) = β
Ni, j − 2nSi, j

Ni, j − 2
+ (1 − β)

Di, j − 2dSi, j

Di, j − 2
, (2)
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Algorithm 3: Genetic operators applied in neat-GP.

Data: Set Q of parents to generate k offspring

Data: Mutation and crossover probabilities (pm, pc), number of offspring n

Result: Set of offspring R of size n

R ← ∅, i ← 0;

while i < n do

e f lag ← uRandom({0, 1});

if e f lag then

T1 ← Q .best(), where Q .best() returns the first (best) individual in Q;

else

T1 ← Q .rand(), where Q .rand() returns a random individual in Q;

end

of lag ← Random(pm, pc);

if of lag = Mutation then

T ′ ← mutate(T1);

R ← R ∪ {T ′};

T1.descendants ← T1.descendants − 1;

i ← i + 1;

else

if ∃T ∈ Q | [T.species = S] ∧ [T �= T1] then

T2 ← T ∈ Q | f ′(T) ≥ f ′(Tu), ∀Tu.species = S;

else

T2 ← Q .rand();

end

T ′ ← neat-Crossover(T1, T2);

R ← R ∪ {T ′};

T1.descendants ← T1.descendants − 0.5;

T2.descendants ← T2.descendants − 0.5;

i ← i + 1;

if T2.descendants ≤ 0 then

Q ← Q \ {T};

end

end

if T1.descendants ≤ 0 then

Q ← Q \ {T};

end

end

Fig. 4. The shared topological structure Si, j between two individuals Ti and Tj , depicted by a dashed line.
where Ni, j = nTi
+ nTj

, Di, j = dTi
+ dTj

, and β ∈ [0, 1] such that δT ∈ [0, 1).4 On the right-hand side of Eq. (2), the first term

measures the difference with respect to program size, while the second term measures the difference in depth. Thus, setting

β = 0.5 gives an equal importance to program size and depth. This is similar to the original configuration reported by NEAT with

the c and c parameters, and it is also the parametrization used in our previous work with BF-NEAT [29].
1 2

4 When nTi
= nTj

= dTi
= dTj

= 1 then δT = 0.
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3.2.3. Defining species membership

neat-GP defines species membership using Algorithm 1 and Eq. (2), which is applied before fitness evaluation within the

evolutionary loop. Briefly, each individual Ti that has not been assigned to a species is compared with each individual Tj in the

current population that does belong to a species, one after another. When δT(Ti, Tj) ≤ h, with threshold h an algorithm parameter,

then Ti is assigned to the species to which Tj belongs and no more comparisons are done. Another approach would be to compare

Ti with every individual in the population, and then choose the species of the Tj that gave the minimum dissimilarity. However,

we choose to use the first approach for two reasons. First, this helps limit the number of total comparisons that are performed

on average, thus reducing computational cost. Second, it is the approach used in the original NEAT algorithm, with strong results

[28]. Moreover, if δT(Ti, Tj) > h for all j �= i, then a new species is created with Ti as its only member. In the end, this process

divides the population into several species Su, that can be understood as non-overlapping subsets of the population P, such that

P = S1 ∪ S2 ∪ . . . Sn with n is the number of species.

3.2.4. Fitness sharing

After individuals have been grouped into species, fitness sharing is used among individuals of the same species. Basically, the

fitness of a program is adjusted based on the total number of individuals in the species. For simplicity, all problems are treated

as minimization tasks (minimize the error in symbolic regression or classification). Thus for an individual tree Ti, which is a

member of species Su and with fitness f(Ti), an adjusted fitness f′ is computed by

f ′(Ti) = |Su| f (Ti) (3)

where |Su| is the number of individuals in species Su. This penalizes individuals of densely populated species, and promotes

a diverse population of program sizes. It is important to note that this strategy helps protect new program trees, produced

by crossover or mutation, that might be introducing novel tree structures into the population but also exhibiting low fitness

values. Moreover, an elitist criterion is included, such that the best individual from each species is not subject to fitness sharing,

guaranteeing that the best individuals have a better chance of surviving and producing offspring.

3.3. Search operators

Like all other evolutionary algorithms, neat-GP relies on the standard set of search operators, which include selection,

crossover and mutation. This subsection summarizes Blocks E, F and G of the neat-GP flowchart presented in Fig. 3.

3.3.1. Parent selection

This process performs the parent selection step of the evolutionary process, as described in Algorithm 2, taking as input the

current (speciated) population P, the average population fitness and algorithm parameters, and producing as output a set of

parents Q. First, the number of expected descendants of each individual Ti is computed proportional to its fitness f(Ti). In this

step, the original fitness f is used instead of the adjusted fitness f′. This is done because some individuals in the population were

not penalized by Eq. (3) (i.e., the best individual in each species). If the number of descendants was computed based on f′ instead,

the algorithm would allocate a very large number of expected offspring to the best individuals in each species, imposing a high

selective pressure and reducing diversity, possibly leading toward premature convergence.

Afterward, a copy of the current population P is made, we refer to it as Q. For each species Sj in Q the pworst % individuals in the

species are eliminated from Q. Then, the remaining individuals in Q are ordered based on their adjusted fitness f′. Set Q are used

as parents to generate offspring that will repopulate P.

Some notes on the parent selection algorithm are worth mentioning. First, notice that Ti.descendants sets the maximum

number of times that an individual can be used to parent offspring. Second, the parameter pworst determines the overlap between

consecutive generations.

3.3.2. Apply genetic operators and generate offspring

The process by which the genetic operators are applied is summarized in Algorithm 3, taking as input the set of parents Q

that will be used to generate a set of offspring R of size n. Basically, set Q is iterated until n individuals have been generated,

determining which genetic operator to use based on the operator probabilities.

Individual trees Ti are selected from Q based on an equiprobable random decision of either selecting: (a) the best solution in

Q or (b) a randomly chosen individual from Q. Afterward, a random decision is made to either apply mutation or crossover, based

on their respective probabilities pm and pc. If mutation is chosen then the selected tree is mutated and inserted into the offspring

set R. On the other hand, if crossover is chosen then the selected individual T1 is considered as the first parent, while the second

parent T2 is selected based on two possibilities. First, we take species S to which T1 belongs as reference, and then select T2 as the

individual that also belongs to species S and has the best fitness relative to all other individuals Tu that also belong to species S.

If, on the other hand, no other individual in Q belongs to species S, then a random individual in Q is used as the second parent T2.

After each selection event, the number of expected descendants for the selected individuals is reduced by 1 if it is used in a

mutation and by 0.5 if it is used in crossover since crossover only generates one offspring. Finally, if the number of descendants

for an individual T is equal or less then zero then T is removed from Q and cannot be chosen again as a parent.

For mutation, neat-GP uses standard subtree mutation, while for crossover two different operators are tested. Standard sub-

tree crossover and we propose a NEAT-like crossover for GP trees, depicted in Fig. 5 and referred to as NEAT-Crossover. The
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Fig. 5. The proposed NEAT-Crossover for GP, where the dotted line denotes the shared topological structure Si, j between parents Ti and Tj . (a) The swap of a

single internal node within Si, j . (b) The exchange of branches at the boundary of Si, j . (c) The resulting offspring from this example.

Table 1

Algorithms used in the experimental evaluations.

Method Description

GP Standard GP search used as a control method.

FlatOE Flat Operator Equalization method [23].

neat-GP The full neat-GP algorithm.

neat-GP-SC neat-GP subtree crossover is used instead of NEAT-Crossover.

neat-GP-Spe neat-GP without mating restrictions; the decision in block G is set to NO.

neat-GP-Sel neat-GP with tournament selection; block E uses tournament selection to construct Q.

neat-GP-FS neat-GP without fitness sharing; blocks D and J are omitted.
proposed operator is similar to the one-point crossover and homologous crossover previously used in other GP systems [21].

NEAT-Crossover first identifies the common region Si, j between two parent trees Ti and Tj. Then, genetic material is taken with

equal probability from each parent in the following way. Nodes with equal arity are taken randomly from each parent, as well as

tree branches rooted at leaf nodes of Si, j, as depicted in Fig. 5.

3.4. Survival and replacement

Finally, this section summarizes the survival and replacement strategy in Block K of the neat-GP flowchart presented in Fig. 3.

Summarizing, the initial population P was speciated with Algorithm 1, and the population is evaluated and fitness sharing is

applied. Afterward, a set of parents Q was constructed with Algorithm 2, to generate a set R of offspring using Algorithm 3. Spe-

ciation is then performed with Algorithm 1 using P ∪ R as input, to assign species membership to the newly generated offspring,

then their fitness is assigned and fitness sharing is performed. Only the best individuals in R are included into the new popu-

lation, to replace the pworst % individuals from the previous generation. Finally, fitness sharing is reapplied to the population, in

particular to the surviving individuals from the previous generation, to account for the fact that species membership has been

modified when the new offspring were inserted into the population.

4. Experimental work

4.1. Experimental setup

The proposed neat-GP algorithm is implemented using the Matlab GPLab toolbox developed by Silva and Almeida [24]. The

GPLab-based implementation is freely available at our team’s homepage http://www.tree-lab.org/,5 along with an implementa-

tion that can be run over the DEAP framework for Python [5].

Different variants of the algorithm are tested, to illustrate the effect that each component has on performance, regarding

test fitness and bloat; these variants are: the full neat-GP algorithm as described in the preceding section; neat-GP-SC that

uses standard subtree crossover instead of the proposed NEAT-Crossover; neat-GP-Spe that omits the mating restriction due to

speciation; neat-GP-Sel that uses standard tournament selection instead of the proposed selection algorithm; and finally neat-

GP-FS which does not employ fitness sharing. Additionally, a standard tree-based GP is used as a control method and the Flat-OE

method is also included for comparison; all the tested algorithms are summarized in Table 1. For clarity regarding the neat-GP

variants, Table 1 uses the flowchart of Fig. 3 as reference, and states which blocks are omitted or modified.

Two sets of problems are used to test the referred algorithms. First, nine symbolic regression problems are chosen based on

the suggestions made in [14,15,17,32,35]; they are summarized in Table 2. Second, five real-world classification problems are

used, taken from the well-known UCI machine learning repository [2]. The classification problems are summarized in Table 3.

For all problems, the search parameters for GP are given in Table 4, and all neat-GP variants use the parameters in Table 5.

It is important to note that beside the algorithmic differences between GP and neat-GP, all other shared parameter values are

the same except for the maximum depth of the initial population. As stated before, NEAT suggests that the best approach is to
5 http://www.tree-lab.org/index.php/resources-2/downloads/open-source-tools.

http://www.tree-lab.org/
http://www.tree-lab.org/index.php/resources-2/downloads/open-source-tools
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Table 2

Symbolic regression benchmark problems.

No Problem Function Fitness/test cases Function set

1 Koza-1 x4 + x3 + x2 + x 20 random ⊆ [−1, 1] Table 4

2 Nguyen-3 x5 + x4 + x3 + x2 + x 20 random ⊆ [−1, 1] Table 4

3 Nguyen-5 sin(x2) ∗ cos(x) − 1 20 random ⊆ [−1, 1] Table 4

4 Nguyen-7 ln (x + 1) + ln (x2 + 1) 20 random ⊆[0, 2] Table 4

5 Nguyen-10 2sin(x) ∗ cos(y) 100 random ⊆ [−1, 1] × [−1, 1] Table 4

6 Kei jzer-6
∑x

i
1
i

E[1, 50, 1], E[1, 120, 1] Keijzer

7 Korns-12 2 − 2.1cos(9.8x)sin(1.3w) U[−50, 50, 10000] Korns

8 V ladislavleva-1 e−(x−1)2

1.2+(y−2.5)2 U[0.3, 4, 100] V ladislavleva-B

9 Pagie-1 1
1+x−4 + 1

1+y−4 E[−5, 5, 0.4] Koza

Table 3

Real-world classification problems for standard GP and neat-GP.

Problem Classes Features Samples

UCI2 (Breast cancer Wisconsin) 2 8 441

UCI16 (Ionosphere) 2 32 350

UCI20 (Parkinson’s) 2 22 195

UCI21 (Pima Indians Diabetes) 2 8 768

UCI22 (Sonarall) 2 60 208

Table 4

Parameters used in benchmark problems with standard GP.

Parameter Description

Population size 500 for regression

200 for classification

Generations 100 generations for regression

200 for classification

Initialization Ramped Half-and-Half,

with 6 levels of maximum depth

Operator probabilities Crossover pc = 0.7, Mutation pμ = 0.3

Function set (regression) {+,−,×,÷, sin, cos, exp, log}, Keijzer, Korns, V ladislavleva-B and Koza.

Function set (classification) {+,−,×,÷, sin, cos, exp,
√

,xy, |x|, if}
Terminal set (regression) x, 1 for single variable problems and x, y for bivariable problem

Terminal set (classification) Problem features

Initial dynamic depth 6 levels

Hard maximum depth 20 levels

Selection Tournament selection of size 3

Elitism Best individual always survives

Table 5

Parameters used in benchmark problems with neat-GP.

Parameter Description

Population size 500 for regression

200 for classification

Generations 100 generations for regression

200 for classification

Initialization Full initialization,

with 3 levels of maximum depth

Operator probabilities NEAT-Crossover pc = 0.7, Mutation pμ = 0.3

Function set (regression) {+,−,×,÷, sin, cos, exp, log}, Keijzer, Korns, V ladislavleva-B and Koza.

Function set (classification) {+,−,×,÷, sin, cos, exp,
√

,xy, |x|, if}
Terminal set (regression) x, 1 for single variable problems and x, y for bivariable problem

Terminal set (classification) problem features

Initial dynamic depth 3 levels

Hard maximum depth 20 levels

Selection Eliminate the worst individuals of each species by the factor of pworst %

Elitism Do not penalize the best individual of each species

Survival threshold 0.5

Specie threshold value h = 0.15 with α = 0.5
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Fig. 6. Box plots for symbolic regression problems, that show: Test Fitness (first column), Nodes (second column) and Depth (third column). Each row is for a

different problem: (a) Koza-1, (b) Nguyen-3 and (c) Nguyen-5.
start with small or simple solutions in the initial population, while most GP works use an initial depth between 5 and 7 levels. In

this work, several exploratory experiments for GP were carried out using a maximum of 3-levels for initial depth, this produced

poor performance, worse for GP on all the problems reported here while bloat was also not reduced. For these reasons, and to

maintain the results as concise as possible, results are only presented for the configurations given in Tables 4 and 5.

Flat-OE is implemented based on the Dynamic OE algorithm [26], using the same parameters specified in Table 4, however

tournament size is set to 10 for best performance, and the bin size is 1 (used to force the flat distribution). In Flat-OE much of

the computation time is used to generate individuals of a particular size such that the flat distribution is maintained. Therefore,

instead of using a fixed number of generations we set a maximum number of individuals generated by the search. To maintain a

fair comparison, after performing 30 runs of neat-GP on each problem we took the largest number of total individuals generated

by the search in any run of each problem domain. For regression problems the largest number was 50,000 and for classification

it was 40,000, after rounding to the nearest thousand. These values are used to determine the maximum number of evaluated

individuals for Flat-OE in each domain.

For symbolic regression fitness is computed as the root mean square error between predicted and expected outputs, and for

classification the total error is used. Thirty independent runs are performed for each problem, with random training and testing

sets in each run. The algorithms are compared based on the test error of the best solution found, the average size and the average

depth of the individuals in the population, and the size of the best solution found. Results are presented as median values over
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Fig. 7. Box plots for symbolic regression problems, that show: Test Fitness (first column), Nodes (second column) and Depth (third column). Each row is for a

different problem: (a) Nguyen-7, (b) Nguyen-10 and (c) Keijzer-6.
all runs. Statistical comparisons are carried out using a 1 × N formulation, where a single control method (GP) is compared with

N algorithms. We use the Friedman test and the Bonferroni–Dunn correction of the p-values for each comparison, as suggested

by Derrac et al. [3]. For each problem domain two tables are used to summarize the median performance values and the p-values

resultant from the statistical tests.

4.2. Results: symbolic regression

Figs. 6–8 show the results for the nine symbolic regression benchmarks, showing box plots for all thirty runs measuring

performance based on: (1) value of test fitness for the best solution;6 (2) average population size based on number of nodes; and

(3) average depth. Table 6 presents the comparison based on the median performance of each algorithm, and Table 7 presents

the p-values of the statistical tests.

The results show some clear trends. Regarding fitness, it is reasonable to state that the goal of a bloat control method is to

reduce the average size of the evolving population without incurring in a performance decrease. All neat-GP variants produce

significantly smaller average tree sizes than GP, based on total nodes and tree depth. However, only neat-GP-SC achieves equal

or better performance than GP on all problems based on test fitness. On the other hand, Flat-OE exhibits a larger performance
6 Note that some boxplots show skewed distributions, where the minimum, first quartile and median are all 0; this is possible since the minimum possible

error is always 0.
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Fig. 8. Box plots for symbolic regression problems, that show: Test Fitness (first column), Nodes (second column) and Depth (third column). Each row is for a

different problem: (a) Korns-12, (b) Vladislavleva-1 and (c) Pagie-1.
variant, in two cases outperforming GP (Korns-12 and Vladislavleva-1) and in two cases performing significantly worse (Koza-1

and Nguyen-3).

One of the main reasons for performing bloat control, is to help the search find good solutions that are also small and inter-

pretable. Based on the size of the best solutions found we can see that neat-GP variants also produce smaller solutions. Focusing

on neat-GP-SC that achieved the best test performance, it produces significantly smaller solutions than GP in 4 problems, and

consistently outperforms Flat-OE. In some cases these differences are quite large, such as in Vladislavleva-1, Nguyen-5, Nguyen-

10 and Pagie-1.

4.2.1. Search dynamics

To illustrate the search dynamics of the neat-GP algorithm, Figs. 9–13 show the program size distribution over all of the

generations for five of the problems (Nguyen-3, Nguyen-5, Nguyen-7, Nguyen-10 and Vladislavleva-12). The plots are averages

over all 30 runs, where the grayscale used is linearly proportional to the total number of programs of a particular size that are

present at each generation, such that darker regions represent the presence of a large number of trees and lighter regions show

a small number of trees.

Figs. 9 (a)–13(a) show that the behavior of GP is similar in all problems. The size of the programs quickly increases at the

beginning of the search and it progressively moves toward larger trees as the search progresses. In most cases the search seems to

generate multimodal distributions of program sizes at the end of the run. At some instances during the search the population does
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Table 6

Comparison of the median values for each performance criterion on symbolic regression problems. Bold indicates the best

(lowest) value and an asterisk (∗) indicates that the null hypothesis is rejected at the α = 0.05 confidence level.

Method GP Flat-OE neat-GP neat-GP-SC neat-GP-Spe neat-GP-Sel neat-GP-FS

Koza-1

Test 0.0 0.0185∗ 0.0779 0.0 0.0183 0.0418∗ 0.0753∗

AVG size 104.1 67.7 21.2∗ 25.0∗ 22.8∗ 37.2∗ 61.3∗

AVG level 17.6 14.8 8.2∗ 9.6∗ 8.3∗ 12.1∗ 15.3

Best size 19.0 90.5 30.5 21.5 27.0 43.0 65.0

Nguyen-3

Test 0.0063 0.03988∗ 0.0576∗ 0.0 0.0461∗ 0.0320 0.0586∗

AVG size 97.6 89.7 30.1∗ 38.0∗ 34.8∗ 41.8∗ 62.7∗

AVG level 17.9 18.2 9.4∗ 12.6∗ 10.2∗ 11.2∗ 15.0

Best size 75.0 119.0∗ 50.0 36.0 39.0 48.0 65.5

Nguyen-5

Test 0.0050 0.0046 0.0065 0.0017 0.0078 0.0080 0.0111∗

AVG size 117.2 90.0 20.0∗ 47.1∗ 18.2∗ 24.1∗ 24.5∗

AVG level 18.6 21.7 9.1∗ 16.8∗ 8.0∗ 10.1∗ 11.0∗

Best size 100.5 133.5 23.5∗ 41.5∗ 20.0∗ 25.5∗ 24.5∗

Nguyen-7

Test 0.0103 0.0094 0.0253∗ 0.0052 0.0245∗ 0.0285∗ 0.0793∗

AVG size 97.8 137.1 23.1∗ 49.8∗ 20.9∗ 26.2∗ 29.1∗

AVG level 18.7 28.0∗ 9.4∗ 17.5∗ 8.6∗ 11.0∗ 12.5∗

Best size 111.0 155.0 28.0∗ 71.0 25.5∗ 32.0∗ 30.0∗

Nguyen-10

Test 0.0037 0.0 0.0023 0.0 0.0 0.0124 0.0124

AVG size 71.2 29.3 9.2∗ 13.9∗ 9.0∗ 9.0∗ 12.0∗

AVG level 17.3 10.9 5.2∗ 6.0∗ 5.0∗ 5.4∗ 6.0∗

Best size 45.5 26.5 12.0∗ 12.5 9.0∗ 9.0 12.0

Keijzer-6

Test 0.2301 0.1963 0.2855 0.1680 0.3306∗ 0.3676∗ 0.5234∗

AVG size 119.5 123.8 24.6∗ 51.7∗ 38.2∗ 60.3∗ 48.8∗

AVG level 19.1 26.2∗ 11.1∗ 16.9∗ 13.1∗ 15.5∗ 16.0∗

Best size 125.5 192.0 38.0∗ 75.5∗ 42.5∗ 78.0∗ 51.0∗

Korns-12

Test 1.0627 1.0467∗ 1.0541∗ 1.0585∗ 1.0533∗ 1.0582∗ 1.0565

AVG size 44.0 42.0 14.6∗ 32.9 10.9∗ 13.0∗ 23.0∗

AVG level 18.1 24.4 9.3∗ 17.2 8.0∗ 9.4∗ 13.0∗

Best size 55.0 58.5 18.0∗ 40.0 11.5∗ 15.5∗ 22.5∗

Pagie-1

Test 0.0692 0.0947 0.1498∗ 0.0692 0.1498∗ 0.1498∗ 0.1498∗

AVG size 84.3 130.8∗ 8.3∗ 42.3∗ 7.2∗ 7.3∗ 7.0∗

AVG level 18.5 23.0 4.6∗ 15.8∗ 4.1∗ 4.1∗ 4.0∗

Best size 85.0 151.0∗ 10.0∗ 40.5∗ 7.0∗ 7.0∗ 7.0∗

Vladislavleva-1

Test 0.0935 0.0042∗ 0.1202 0.0918 0.1277 0.1160 0.1297

AVG size 134.5 161.5 18.5∗ 58.0∗ 19.3∗ 29.7∗ 50.0∗

AVG level 19.0 40.1∗ 8.3∗ 16.4∗ 8.1∗ 10.9∗ 15.0∗

Best size 136.0 181.0 25.0∗ 67.0∗ 24.5∗ 37.5∗ 53.0∗
not contain programs of some sizes, as indicated by the light gray or white regions in the plots, particularly some intermediate

sizes between the largest and smallest programs in the population. Such a distribution will bias the search toward the largest

trees, as expected by the CBT (crossover-bias theory).

Most neat-GP variants show a different trend, they seem to concentrate the search within a particular range of program sizes,

depicted by the regions that are consistently dark across all generations. In the initial generations all programs are small given

the minimal initialization suggested by NEAT, then the search explores programs of a larger size, but after a small number of

generations the runs tend to focus on what appears to be a problem-dependent range of sizes. In almost all plots of neat-GP

variants the distribution of program sizes hits a limit after which growth no longer occurs. The only neat-GP variant that shows a

consistent pattern of growth over most problems is neat-GP-FS, but at a smaller rate than GP. Moreover, in most neat-GP variants

small program sizes are maintained throughout the search, this is particularly true for neat-GP-Spe and neat-GP-Sel. Probably the

most restrictive variants are neat-GP-Sel and neat-GP-Spe, producing very small increases in program size, but these restrictions

in growth are surely too severe given that these variants produce worse solutions than GP. Conversely, neat-GP-SC seems to

consistently eliminate very small trees from the population in some problems, such as Nguyen-5, Nguyen-7 and Vladislavleva-1.

It appears that small programs are eliminated given their poor performance, since neat-GP-SC achieved the best test fitness on
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Table 7

Statistical results on symbolic regression problems, reporting the p-values of the Friedman test with

Bonferroni–Dunn correction. An asterisk (∗) confirms that the null hypothesis is rejected at the α = 0.05

confidence level.

Method Flat-OE neat-GP neat-GP-SC neat-GP-Spe neat-GP-Sel neat-GP-FS

Koza-1

Test 2.3623 0.0005∗ 3.7024 0.2972 0.0024∗ 0.0000∗

AVG size 0.1707 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗

AVG level 0.8647 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.1707

Best size 0.4073 0.4073 3.3822 1.6399 1.6399 0.1707

Nguyen-3

Test 0.0025∗ 0.0003∗ 3.1896 0.0095∗ 0.0635 0.0060∗

AVG size 2.7912 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0060∗

AVG level 6.0000 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0635

Best size 0.0095∗ 1.5410 2.1189 1.6399 1.6399 6.0000

Nguyen-5

Test 4.2900 2.7912 0.1707 3.4648 2.7912 0.0209∗

AVG size 4.2900 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗

AVG level 1.6399 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗

Best size 0.4073 0.0000∗ 0.0003∗ 0.0000∗ 0.0000∗ 0.0000∗

Nguyen-7

Test 4.2900 0.0209∗ 0.8647 0.0060∗ 0.0060∗ 0.0000∗

AVG size 0.1707 0.0000∗ 0.0003∗ 0.0000∗ 0.0000∗ 0.0000∗

AVG level 0.0060∗ 0.0000∗ 0.0209∗ 0.0000∗ 0.0000∗ 0.0000∗

Best size 0.1707 0.0000∗ 0.0635 0.0000∗ 0.0000∗ 0.0000∗

Nguyen-10

Test 1.3240 5.0089 0.1308 3.2310 1.4358 0.7834

AVG size 0.1707 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗

AVG level 0.4073 0.0000∗ 0.0015∗ 0.0000∗ 0.0000∗ 0.0000∗

Best size 4.1693 0.0233∗ 0.1668 0.0040∗ 0.0741 0.1400

Keijzer-6

Test 4.2900 0.8647 2.7912 0.0209∗ 0.0015∗ 0.0209∗

AVG size 1.6399 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗

AVG level 0.0003∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0015∗

Best size 0.1707 0.0000∗ 0.0000∗ 0.0000∗ 0.0015∗ 0.0000∗

Korns-12

Test 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0003∗ 0.8647

AVG size 4.2900 0.0000∗ 0.8647 0.0000∗ 0.0000∗ 0.0003∗

AVG level 1.6399 0.0000∗ 0.8647 0.0000∗ 0.0000∗ 0.0000

Best size 4.2900 0.0000∗ 0.8647 0.0000∗ 0.0000∗ 0.0000∗

Pagie-1

Test 0.0635 0.0000∗ 2.7912 0.0000∗ 0.0000∗ 0.0000∗

AVG size 0.0060∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗

AVG level 0.0635 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗

Best size 0.0015∗ 0.0000∗ 0.0003∗ 0.0000∗ 0.0000∗ 0.0000∗

Vladislavleva-1

Test 0.0000∗ 0.1707 2.7912 0.8647 1.6399 0.8647

AVG size 4.2900 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗

AVG level 0.0003∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0003∗

Best size 0.8647 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗ 0.0000∗
most problems. The best compromise is achieved by neat-GP-SC, given its good bloat control performance and strong results

compared with GP and Flat-OE.

4.3. Results: classification

Given the better test performance of neat-GP and neat-GP-SC relative to all other neat-GP tested in symbolic regression,

only these two methods are compared with GP and Flat-OE on the real world classification problems. Fig. 14 shows a box plot

comparison using the same performance measures as before, except that test performance is given by the total classification

error (percentage of misclassified samples). The numerical comparisons are presented in Table 8 and the p-values produced by

the statistical tests are given in Table 9. For these problems neat-GP-SC achieves basically the same test error as GP, but it is

surprisingly worse based on program size. This trend is also apparent for Flat-OE. It is reasonable to state that neither neat-GP-

SC or Flat-OE can control bloat in this domain. On the other hand, the full neat-GP method also achieves equivalent test error

relative to standard GP, but also induces a significant reduction in average program size and size of the best solution. Indeed,

in all problems neat-GP produces the smallest solutions, and in some cases the differences are very large (UCI20 and UCI22).
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Fig. 9. Program size distribution averaged over all 30 runs for the Nguyen-3 benchmark.
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Fig. 10. Program size distribution averaged over all 30 runs for the Nguyen-5 benchmark.
neat-GP shows a much better test error than neat-GP-SC, which is equivalent to standard GP, while substantially outperforming

both methods in terms of program size and tree depth, effectively controlling bloat in all test problems. Flat-OE is very similar to

standard GP, both in terms of classification error, size and depth, an unexpected result.
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Fig. 11. Program size distribution averaged over all 30 runs for the Nguyen-7 benchmark.
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Fig. 12. Program size distribution averaged over all 30 runs for the Nguyen-10 benchmark.
In fact, the bloat control of neat-GP is more clearly seen if we only consider the size of the best program found in each run;

these results are summarized in Table 8. The decrease in program size is quite large in some cases, with median size decreasing

from between 46% to as much as 88%, when compared with GP.
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Fig. 13. Program size distribution averaged over all 30 runs for the Vladislavleva-1 benchmark.
4.4. Computational efficiency

Finally, to assess the comparative computational costs of each method, we compare the methods based on a speedup ratio

given by TneatGP/TGP, where TneatGP represents the median run time of each neat-GP experiment, and TGP is the median run time

for GP. These tests were performed under equal conditions using an Intel dual-core PC with 4 GB of RAM and disabling all non-

essential OS services before running Matlab without a GUI. In this test, neat-GP gives a 20 × speedup compared to standard GP,

while the less efficient neat-GP-SC gives a 2 × speedup. Therefore, it can be said that neat-GP provides a substantial efficiency

improvement with respect to a standard search, with no performance loss in classification tasks. While neat-GP-SC gives the

same performance as GP on symbolic regression, with reduced bloating and no extra computational cost. This result is important,

when compared with a state-of-the-art method such as OE or Flat-OE. It is reasonable to assume that the performance speedups

are largely due to the total reduction in program sizes, since at each generation neat-GP has to process a substantially smaller

number of total nodes, given the average program size relative to the standard GP search.

4.5. Discussion

The experimental results presented in the preceding subsection are clear, neat-GP is able to reduce code growth without

decreasing GP performance and in some cases improving the quality of the evolved solutions. Moreover, the neat-GP variants

tend to generate a distribution of program sizes that is consistent with Flat-OE. Indeed, we observe that some of the neat-GP

variants, particularly neat-GP and neat-GP-SC can control code growth and focus the search within an almost constant range of

program sizes. The range of program sizes varies with each problem and is not defined a priori, suggesting that neat-GP is able

to automatically focus the search on promising regions of the search space.

The experimental work also considered the contribution made by each of the main components within neat-GP. In general,

the most crucial components seem to be the selection mechanism, fitness sharing and mating restrictions based on species

membership. In all three cases, tested by neat-GP-Sel, neat-GP-FS and neat-GP-Spe, when a component is removed and a standard

approach is used instead, the quality of the solutions is compromised. While bloat can in fact be controlled by each variant, the

performance on test data is reduced significantly, particularly for neat-GP-FS. These results suggest that all three mechanisms

help improve search performance.

However, crossover, often considered as the main search operator, seems to be domain dependent. On the one hand, standard

crossover seems to enhance performance on symbolic regression problems, as evidenced by the neat-GP-SC variant that out-

performs both GP and Flat-OE. On the other hand, for classification problems the full neat-GP method clearly achieves the best

results, matching GP performance based on test error and controlling bloat better than neat-GP-SC and Flat-OE. Hence, it seems

that each crossover operator has a clear domain of competence, when combined with the proposed neat-GP search.
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Fig. 14. Box plots for the classification problems, that show: Test Fitness (first column), Nodes (second column) and Depth (third column). Each row is for a

different problem: (a) Breast cancer, (b) Ionosphere, (c) Parkinson’s, (d) Pima and (e) Sonarall.
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Table 8

Statistical results on classification problems, reporting the p-values of

the Friedman test with Bonferroni–Dunn correction. Bold indicates the

best (lowest) value and an asterisk confirms that the null hypothesis is

rejected at the α = 0.05 confidence level.

Method GP Flat-OE neat-GP neat-GP-SC

UCI2 (Breast cancer Wisconsin)

Test 0.0577 0.0795∗ 0.0909∗ 0.0681∗

AVG size 32.0 31.3 12.5∗ 45.4∗

AVG level 12.0 10.7 6.0∗ 15.0∗

Best size 41.5 49.0 17.5∗ 61.5∗

UCI16 (Ionosphere)

Test 0.1142 0.1142 0.1333 0.1047

AVG size 56.7 43.0 12.2∗ 56.1

AVG level 11.9 12.8 5.2∗ 14.9∗

Best size 59.0 56.0 14.0∗ 68.0

UCI20 (Parkinson’s)

Test 0.1538 0.1465 0.1724 0.1551

AVG size 15.2 28.1 6.2∗ 36.1∗

AVG level 6.2 9.4 3.9∗ 14.3∗

Best size 22.0 32.5 9.0∗ 48.0∗

UCI21 (Pima Indians Diabetes)

Test 0.2629 0.2565 0.2608 0.2608

AVG size 34.7 51.8 11.1∗ 60.0∗

AVG level 10.3 12.8∗ 5.0∗ 14.6∗

Best size 42.5 75.0 19.0∗ 73.5∗

UCI22 (Sonarall)

Test 0.2976 0.3064 0.2741 0.2822

AVG size 42.6 32.8 4.9∗ 54.7

AVG level 11.7 9.6 3.2∗ 15.6∗

Best size 50.0 43.5 6.0∗ 74.5

Table 9

Comparison of the median values for each performance criterion

on classification problems. An asterisk (∗) indicates that the null

hypothesis is rejected at the α = 0.05 confidence level.

Method Flat-OE neat-GP neat-GP-SC

UCI2 (Breast cancer Wisconsin)

Test 0.0317∗ 0.0007∗ 0.0104∗

AVG size 3.0 0.0000∗ 0.0104∗

AVG level 3.0 0.0000∗ 0.0030∗

Best size 0.2336 0.0000∗ 0.0001∗

UCI16 (Ionosphere)

Test 1.7324 0.1232 1.7324

AVG size 1.3956 0.0000∗ 1.3956

AVG level 2.1450 0.0000∗ 0.0030∗

Best size 3.0 0.0000∗ 0.1232

UCI20 (Parkinson’s)

Test 0.8199 1.3956 0.2036

AVG size 0.0853 0.0104∗ 0.0030∗

AVG level 0.0853 0.0317∗ 0.0001∗

Best size 1.7324 0.0000∗ 0.0007∗

UCI21 (Pima Indians Diabetes)

Test 2.1450 3.0 0.8199

AVG size 0.2036 0.0000∗ 0.0030∗

AVG level 0.0104∗ 0.0000∗ 0.0030∗

Best size 0.0853 0.0000∗ 0.0030∗

UCI22 (Sonarall)

Test 2.1450 0.4323 1.3956

AVG size 1.3956 0.0000∗ 0.8199

AVG level 1.3956 0.0000∗ 0.0007∗

Best size 3.0 0.0000∗ 0.0853
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5. Conclusions and future work

This paper presents a new GP algorithm called neat-GP, that incorporates some of the main features of the NEAT algorithm

and is able to implicitly shape the program size distribution during the search process. The method is loosely based on two well-

known methods in evolutionary computation, Flat-OE and NEAT. It uses a similar overall strategy as the one proposed in Flat-OE,

maintaining a diverse population of programs in terms of size throughout the search. However, while Flat-OE explicitly forces a

flat distribution, neat-GP accomplishes this implicitly. To achieve this, neat-GP is partially implemented as a simplified version of

the NEAT algorithm, which was originally developed for neuroevolution applications. Its main components are: (1) to seed the

initial population only using simple and/or small individuals; (2) enforce diversity within the population through fitness sharing;

and (3) to restrict the mating process based on speciation. Experimental results show strong performance for neat-GP on a total

of 14 different problems, including nine symbolic regression benchmarks and five real-world classification tasks. neat-GP search

can significantly reduce code growth, based on both average program size and size of the best solution, while basically matching

or improving test fitness relative to standard GP. Indeed, neat-GP not only outperforms standard GP, but also achieves better

performance and bloat control results than the original Flat-OE method.

An important result is the effect of crossover on neat-GP performance in each of the two problem domains considered in this

work. For symbolic regression, it is clear that while all neat-GP variants can eliminate bloat, only when standard subtree crossover

is used, performance does not degrade relative to standard GP. Moreover, neat-GP with subtree crossover improves performance

on some problems. On the other hand, for classification the full neat-GP method, using the specialized NEAT-based crossover,

achieves the best performance, considering both test error and the size of the evolved programs. Therefore, while neat-GP seems

to be a good alternative for bloat control, the proper search operators should be chosen based on the problem domain.

An additional advantage of neat-GP is that it does not generate any additional computational overhead when compared with

standard GP. In particular, for classification the same results are obtained with a 20 × speedup in total run time and a 2 ×
speedup in symbolic regression. This result is noteworthy, given that some of the most popular state-of-the-art methods can be

more computationally costly compared to a standard GP search.

Several intriguing questions should be explored as future work related to neat-GP. It is of interest to test if the speciation

process can be carried out in other ways. For instance, considering program syntax explicitly, or maybe considering semantic

space [6,33] or behavioral space [30]. Another approach is to evaluate if diversity could be encouraged by other means, by using

other popular methods such as the crowding distance or possibly incorporating the more unorthodox novelty search algorithm

[13,30]. Finally, given the small solution size achieved by neat-GP, this could lead to more efficient implementations of memetic

GP algorithms that incorporate local search strategies [36] that can become unreliable or inefficient when they are applied to

extremely large trees.

Acknowledgments

Funding for this work was provided by CONACYT (Mexico) Basic Science Research Project no. 178323, DGEST (Mexico) Re-

search Projects 5414.14-P and 5621.15-P, and FP7-PEOPLE-2013-IRSES project ACOBSEC financed by the European Commission

with contract no. 612689. First author was supported by CONACYT scholarship no. 372126. The third author acknowledges fund-

ing provided by an ELEVATE Fellowship, the Irish Research Council’s Career Development Fellowship co-funded by Marie Curie

Actions, and thanks the TAO group at INRIA Saclay & LRI - Univ. Paris-Sud and CNRS, Orsay, France for hosting him during the

outgoing phase of the ELEVATE Fellowship. The fourth author also acknowledges the support provided for this work by FCT funds

(Portugal) under contract UID/Multi/04046/2013 and projects PTDC/EEI-CTP/2975/2012 (MaSSGP), PTDC/DTPFTO/1747/2012 (In-

teleGen) and EXPL/EMS-SIS/1954/2013 (CancerSys). Special thanks are also given to Perla S. Juárez-Smith, masters student at

the Instituto Tecnológico de Tijuana, for her support in implementing the Python version of the neat-GP algorithm. Finally, the

authors would like to thank all the reviewers for their useful comments that helped us to significantly improve our work.

References

[1] L. Altenberg, The evolution of evolvability in genetic programming, in: K.E. Kinnear (Ed.), Advances in Genetic Programming, MIT Press, Cambridge, MA,
USA, 1994, pp. 47–74.

[2] K. Bache, M. Lichman, UCI machine learning repository, 2013, http://archive.ics.uci.edu/ml.
[3] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and

swarm intelligence algorithms, Swarm Evol. Comput. 1 (1) (2011) 3–18.

[4] S. Dignum, R. Poli, Operator equalisation and bloat free GP, in: Proceedings of the 11th European Conference on Genetic Programming, EuroGP’08, Springer-
Verlag, Berlin, Heidelberg, 2008, pp. 110–121.

[5] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, C. Gagné, DEAP: evolutionary algorithms made easy, J. Mach. Learn. Res. 13 (1) (2012) 2171–
2175.

[6] E. Galvan-Lopez, B. Cody-Kenny, L. Trujillo, A. Kattan, Using semantics in the selection mechanism in genetic programming: a simple method for promoting
semantic diversity, 2013 IEEE Congress on Evolutionary Computation (CEC) (2013) 2972–2979.

[7] D.E. Goldberg, J. Richardson, Genetic algorithms with sharing for multimodal function optimization, in: Proceedings of the Second International Conference

on Genetic Algorithms on Genetic algorithms and their application, L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1987, pp. 41–49.
[8] J. Koza, Human-competitive results produced by genetic programming, Gen. Prog. Evol. Mach. 11 (3) (2010) 251–284.

[9] J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, MA, USA, 1992.
[10] W. Langdon, R. Poli, Foundations of Genetic Programming, Springer-Verlag New York, Inc., New York, NY, USA, 2002.

[11] W.B. Langdon, R. Poli, Fitness causes bloat, in: Proceedings of the Second On-line World Conference on Soft Computing in Engineering Design and Manufac-
turing, Springer-Verlag, 1997, pp. 13–22.

http://dx.doi.org/10.13039/501100003141
http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/501100003141
http://dx.doi.org/10.13039/501100001871
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0001
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0001
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0002
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0002
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0002
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0002
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0002
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0003
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0003
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0003
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0004
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0004
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0004
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0004
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0004
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0004
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0005
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0005
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0005
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0005
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0005
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0006
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0006
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0006
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0007
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0007
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0008
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0008
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0009
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0009
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0009
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0010
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0010
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0010


L. Trujillo et al. / Information Sciences 333 (2016) 21–43 43
[12] W.B. Langdon, R. Poli, Fitness causes bloat: mutation, in: Proceedings of the First European Workshop on Genetic Programming, EuroGP ’98, Springer-Verlag,
London, UK, UK, 1998, pp. 37–48.

[13] J. Lehman, K.O. Stanley, Abandoning objectives: evolution through the search for novelty alone, Evol. Comput. 19 (2) (2011) 189–223.
[14] Y. Martínez, E. Naredo, L. Trujillo, E.G. López, Searching for novel regression functions, in: Proceedings of the 2013 IEEE Congress on Evolutionary Computa-

tion (CEC), IEEE Press, 2013, pp. 16–23.
[15] Y. Martínez, L. Trujillo, E. Naredo, P. Legrand, A comparison of fitness-case sampling methods for symbolic regression with genetic programming, in: EVOLVE

– A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V, Springer International Publishing, 2014, pp. 201–212.

[16] T. McConaghy, FFX: fast, scalable, deterministic symbolic regression technology, in: R. Riolo, E. Vladislavleva, J.H. Moore (Eds.), Genetic Programming Theory
and Practice IX. Genetic and Evolutionary Computation, Springer, Ann Arbor, USA, 2011, pp. 235–260.

[17] J. McDermott, D.R. White, S. Luke, L. Manzoni, M. Castelli, L. Vanneschi, W. Jaskowski, K. Krawiec, R. Harper, K. De Jong, U.-M. O’Reilly, Genetic programming
needs better benchmarks, in: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference, GECCO ’12,

ACM, New York, NY, USA, 2012, pp. 791–798.
[18] M. O’Neill, L. Vanneschi, S. Gustafson, W. Banzhaf, Open issues in genetic programming, Gen. Prog. Evol. Mach. 11 (3–4) (2010) 339–363.

[19] R. Poli, M. Graff, N.F. McPhee, Free lunches for function and program induction, in: I.I. Garibay (Ed.), Proceedings of the Tenth ACM SIGEVO Workshop on
Foundations of Genetic Algorithms (FOGA), ACM, 2009, pp. 183–194.

[20] R. Poli, W.B. Langdon, S. Dignum, On the limiting distribution of program sizes in tree-based genetic programming, in: Proceedings of the 10th European

Conference on Genetic Programming, EuroGP’07, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 193–204.
[21] R. Poli, W.B. Langdon, N.F. McPhee, A Field Guide to Genetic Programming, Lulu Enterprises, UK Ltd., 2008.

[22] R. Poli, L. Vanneschi, W.B. Langdon, N.F. Mcphee, Theoretical results in genetic programming: the next ten years? Gen. Prog. Evol. Mach. 11 (3–4) (2010)
285–320.

[23] S. Silva, Reassembling operator equalisation: a secret revealed, in: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’11, ACM, New York, NY, USA, 2011, pp. 1395–1402.

[24] S. Silva, J. Almeida, GPLAB–a genetic programming toolbox for MATLAB, in: L. Gregersen (Ed.), Proceedings of the Nordic MATLAB Conference, 2003, pp. 273–

278.
[25] S. Silva, E. Costa, Dynamic limits for bloat control in genetic programming and a review of past and current bloat theories, Gene. Prog. Evol. Mach. 10 (2)

(2009) 141–179.
[26] S. Silva, S. Dignum, L. Vanneschi, Operator equalisation for bloat free genetic programming and a survey of bloat control methods, Gen. Prog. Evol. Mach. 13

(2) (2012) 197–238.
[27] S. Silva, L. Vanneschi, The importance of being flat – studying the program length distributions of operator equalisation, in: R. Riolo, E. Vladislavleva,

J.H. Moore (Eds.), Genetic Programming Theory and Practice IX. Genetic and Evolutionary Computation, Springer, New York, 2011, pp. 211–233.

[28] K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies, Evol. Comput. 10 (2) (2002) 99–127.
[29] L. Trujillo, L. Munoz, E. Naredo, Y. Martinez, NEAT, there’s no bloat, in: M. Nicolau (Ed.), 17th European Conference on Genetic Programming, LNCS, 8599,

Springer, 2014, pp. 174–185.
[30] L. Trujillo, E. Naredo, Y. Martínez, Preliminary study of bloat in genetic programming with behavior-based search, in: M. Emmerich (Ed.), EVOLVE - A Bridge

between Probability, Set Oriented Numerics, and Evolutionary Computation IV, Advances in Intelligent Systems and Computing, 227, Springer International
Publishing, 2013, pp. 293–305.

[31] L. Trujillo, G. Olague, E. Lutton, F. Fernndez de Vega, L. Dozal, E. Clemente, Speciation in behavioral space for evolutionary robotics, J. Intell. Rob. Syst. 64

(3–4) (2011) 323–351.
[32] N.Q. Uy, N.X. Hoai, M. O’Neill, R.I. Mckay, E. Galván-López, Semantically-based crossover in genetic programming: application to real-valued symbolic

regression, Gen. Prog. Evol. Mach. 12 (2) (2011) 91–119.
[33] L. Vanneschi, M. Castelli, S. Silva, A survey of semantic methods in genetic programming, Gen. Prog. Evol. Mach. 15 (2) (2014) 195–214.

[34] L. Vanneschi, M. Tomassini, P. Collard, M. Clergue, Fitness distance correlation in structural mutation genetic programming, in: Proceedings of the 6th
European Conference on Genetic Programming, EuroGP’03, Springer-Verlag, Berlin, Heidelberg, 2003, pp. 455–464.

[35] D.R. White, J. McDermott, M. Castelli, L. Manzoni, B.W. Goldman, G. Kronberger, W. Jaskowski, U.-M. O’Reilly, S. Luke, Better GP benchmarks: community

survey results and proposals, Gen. Prog. Evol. Mach. 14 (1) (2013) 3–29.
[36] E. Z-Flores, L. Trujillo, O. Schutze, P. Legrand, Evaluating the effects of local search in genetic programming, in: A.-A. Tantar (Ed.), EVOLVE – A Bridge

between Probability, Set Oriented Numerics, and Evolutionary Computation V, Advances in Intelligent Systems and Computing, 288, Springer International
Publishing, 2014, pp. 213–228.

http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0011
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0011
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0011
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0012
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0012
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0012
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0013
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0013
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0013
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0013
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0013
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0014
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0014
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0014
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0014
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0014
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0015
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0015
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0016
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0017
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0017
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0017
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0017
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0017
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0018
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0018
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0018
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0018
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0019
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0019
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0019
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0019
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0020
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0020
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0020
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0020
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0021
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0021
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0021
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0021
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0021
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0022
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0022
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0023
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0023
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0023
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0024
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0024
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0024
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0025
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0025
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0025
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0025
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0026
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0026
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0026
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0027
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0027
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0027
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0028
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0028
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0028
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0028
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0028
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0029
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0029
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0029
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0029
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0030
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0030
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0030
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0030
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0030
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0030
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0030
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0031
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0031
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0031
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0031
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0031
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0031
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0032
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0032
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0032
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0032
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0033
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0033
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0033
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0033
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0033
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0034
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0034
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0034
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0034
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0034
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0034
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0034
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0034
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0034
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0034
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0035
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0035
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0035
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0035
http://refhub.elsevier.com/S0020-0255(15)00803-8/sbref0035

	neat Genetic Programming: Controlling bloat naturally
	1 Introduction
	2 Background
	2.1 Bloat
	2.1.1 Bloat theory and bloat control methods
	2.1.2 Operator equalization

	2.2 NeuroEvolution of augmenting topologies
	2.2.1 The main components in NEAT
	2.2.2 Bloat in NEAT


	3 neat Genetic Programming
	3.1 Overview
	3.2 Initialization and speciation
	3.2.1 Initial population
	3.2.2 Tree dissimilarity measure
	3.2.3 Defining species membership
	3.2.4 Fitness sharing

	3.3 Search operators
	3.3.1 Parent selection
	3.3.2 Apply genetic operators and generate offspring

	3.4 Survival and replacement

	4 Experimental work
	4.1 Experimental setup
	4.2 Results: symbolic regression
	4.2.1 Search dynamics

	4.3 Results: classification
	4.4 Computational efficiency
	4.5 Discussion

	5 Conclusions and future work
	 Acknowledgments
	 References


