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EC Methods (1/2)

◮ Evolutionary Computation (EC) techniques allow computer
systems to learn.

◮ EC methods (e.g., Genetic Algorithms, Genetic Programming)
are inspired by biological mechanisms of evolution.
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EC Methods (2/2)

◮ EC systems have successfully been used in a number of
problems (e.g., computer vision, data analysis, evolvable
hardware).

◮ Hummies are also a good example of the success of EC
methods.

◮ However, it is still difficult to know why some problems are so
hard for EC systems.

◮ In particular, little is known about problem difficulty in GP.
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Genetic Programming (GP)

◮ GP is a domain-independent method for getting computers to
automatically solve a problem starting from a high-level

statement of what needs to done!

Generate Population 
of Random Programs

  Run Programs and 
Evaluate Their Quality Solution!

Breed Fitter Programs
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General Steps of GP

1. Randomly create an initial population of individuals from the
available primitives.

2. Iterate the following until the termination criterion is satisfied:

2.1 Execute each program and assess its fitness.
2.2 Select one or two programs to participate in genetic operators.
2.3 Create new programs by applying genetic operators with

specified probabilities.

3. Return the best-so-far individual.
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Program Representation

◮ Programs are expressed in GP as syntax trees rather than as
lines of codes.

max(y * y, x + 10 * x)   =

max

*

y y

+

x *

10 x Terminals

Functions
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It helps to visualise evolution dynamics

◮ The concept of a fitness landscape [10] has dominated the
way geneticists think about biological evolution and has been
adopted within the EC community and many others as a way
to visualise evolution dynamics.
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Loose Definition of a Fitness Landscape

◮ A fitness landscape can be seen as a plot where each point on
the horizontal axis represents all the genes in that individual
corresponding to that point.
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Formal definition of fitness landscape

◮ More formally, a fitness landscape is normally defined as a
triplet (x , χ, f ): (a) a set x of configurations, (b) a notion χ
of neighbourhoood, distance or accessibility on x , and finally,
(c) a fitness function f .
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Locality originally studied in bitstrings Genetic Algorithm

◮ Locality, proposed by Rothlauf [9], refers to how well
neighbouring genotypes correspond to neighbouring
phenotypes.

◮ His research distinguished two forms of locality: high and low
locality.

◮ Rothlauf reported good results on locality using bitstrings.
More recently, he studied locality using grammatical evolution.
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Distance Measure for Locality

◮ The definition of locality assumes that a distance measure
exists on both genotype and phenotype spaces.

◮ Strictly speaking, in standard GP, there are no phenotypes
distinct from genotypes, so we extend the notion of locality to
the genotype-fitness mapping.
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High and Low Locality

◮ A representation is said to have high locality if all
neighbouring genotypes correspond to neighbouring
phenotypes.

◮ A representation has low locality if some neighbouring
genotypes do not correspond to neighbouring phenotypes.
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Importance of Locality

◮ Understanding how well neighbouring genotypes correspond to
neighbouring phenotypes is a key element in understanding
evolutionary search.

◮ In the abstract sense, a mapping has locality if neighbourhood
is preserved under that mapping.
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Quantitative Definition of Locality

◮ Rothlauf gives a quantitative definition of locality: “the
locality dm of a representation can be defined as

dm =
∑

dg (x ,y)=dg
min

|dp(x , y)− d
p
min| (1)

where dp(x , y) is the phenotypic distance between the
phenotypes x and y , dg (x , y) is the genotypic distance
between the corresponding genotypes, and d

p
min resp. dg

min is
the minimum distance between two (neighbouring)
phenotypes, resp. genotypes”.
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The implications of locality and non-locality

◮ Rothlauf claims that a representation that has locality will be
more efficient at evolutionary search.

◮ This, however, changes when a representation has non-locality.

◮ To explain how non-locality affects evolution, Rothlauf
considered problems in three categories, taken from the
definition of fitness distance correlation.
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Definition

◮ Fitness distance correlation (fdc) measures the hardness of a
landscape according to the correlation between the distance from
the optimum and the fitness of the solution.

◮ Given a set given a set F = {f1, f2, ..., fn} of fitness values of n
individuals and the corresponding set D = {d1, d2, ..., dn} of
distances to the nearest optimum, we compute the correlation
coefficient r ,

r =
CFD

σFσD
,

where:

CFD =
1

n

n∑

i=1

(fi − f )(di − d)
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Classification of hardness in fdc

◮ According to Jones, a problem can be classified in one of
three classes:

1. easy (r ≤ −0.15), in which fitness increases as the global
optimum approaches,

2. difficult (−0.15 < r < 0.15), for which there is no correlation
between fitness and distance, and

3. misleading (r ≥ 0.15), in which fitness tends to increase with
the distance from the global optimum.
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Categories in fdc

◮ If a given problem lies in the first category (i.e., easy), a
non-locality representation will change this situation by
making it more difficult and now, the problem will lie in the
second category.

◮ If a problem lies in the second category, a non-locality
representation does not change the difficulty of the problem.

◮ Finally, if the problem lies in the third category, a
representation with low locality will transform it so that the
problem will lie in the second category.
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Extending the Definition of Locality to the
Genotype-Fitness Mapping

◮ We have adopted the traditional GP system, where there is no
explicit genotype-phenotype mapping, so we can say that
there are no explicit phenotypes distinct from genotypes.

◮ We will regard two individuals as neighbours in the genotype
space if they are separated by a single mutation.

◮ From this we consider whether genotypic neighbours turn out
to be fitness neighbours.
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Phenotypic neighbours whose fitness are 0 and 1

◮ Recall that locality refers to how well neighbouring genotypes
correspond to neighbouring phenotypes and that a
representation that shows to preserving good neighbourhood
is preferred.

◮ This intuitively means that a minimum fitness distance is
required. For instance, for discrete values a minimum fitness
distance can be regarded as 0 or 1.

◮ The key question is whether to regard genotypic neighbours
whose fitness distances are 0 and 1 to be instances of
neutrality, locality, or non-locality.
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Def0: Difference between phenotypic neighbours = 1

◮ The most straightforward extension of Rothlauf’s definition
might regard two individuals as fitness-neighbours if the
difference of their fitness values is 1 and regard fitness-neutral
mutations as non-local. This leads to the following Def0.

dm =

∑N
i=1 |fd(xi ,m(xi ))− fdmin|

N
(2)

where fd(xi ,m(xi )) = |f (xi )− f (m(xi ))| is the fitness distance
between a randomly-sampled individual xi and the mutated
individual m(xi ), fdmin = 1 is the minimum fitness distance
between two individuals, and N is the sample size.
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Def1: Difference between phenotypic neighbours = 0

◮ It might be preferable to redefine the minimum distance in the
fitness space as zero, giving the same locality definition as
before but with fdmin = 0.
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Def2: Difference between phenotypic neighbours ≥ 2

◮ Finally, it might be better to treat only true divergence of
fitness as indicating poor locality. Therefore we might say that
fitness divergence occurs only when the fitness distance
between the pair of individuals is 2 or greater: otherwise the
individuals are regarded as neighbours in the fitness space.
This leads to the following definition:

dm =

∑N
i=1:fd(xi ,m(xi ))≥2 fd(xi ,m(xi ))

N
(3)
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Generalisation of Genotype-Fitness Locality to
Continuous-Valued Fitness

◮ Several aspects of Rothlauf’s definition and the extensions to
it given before assume that phenotypic and fitness distances
are discrete-valued. In particular, it is assumed that a
minimum distance exists. For GP problems of
continuous-valued fitness it is necessary to generalise the
previous definitions.
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Def0 on Continuous-Values Fitness

◮ Under the first definition (Def0), the idea is that mutations
should create fitness distances of 1: lesser fitness distances
are non-local, as are greater ones. In the continuous case we
set up bounds, α and β, and say that mutations should create
fitness distances α < fd < β. When fd < α, we add α− fd to
dm, penalising an overly-neutral mutation; when fd > β, we
add fd − β to dm, penalising a highly non-local mutation.
Each of these conditions reflects a similar action in the
discrete case.
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Def1 on Continuous-Values Fitness

◮ Under the second definition (Def1), the quantity being
calculated is simply the mean fitness distance. This idea
carries over directly to the continuous case.
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Def2 on Continuous-Values Fitness

◮ Under the third definition (Def2), both neutral and small
non-zero fitness distances are regarded as local; only large
fitness distances contribute to dm. Thus, in the continuous
case, only when fd > β do we add a quantity (fd − β) to dm,
penalising mutations of relatively large fitness distances.
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Boolean Even-n-Parity Problems (n={3,4})

◮ The goal is to evolve a function that returns true if an even
number of the inputs evaluate to true, and false otherwise.
The maximum fitness for this type of problem is 2n. The
terminal set is the set of inputs.

◮ These problems require the combination of several XOR
functions, and are difficult if no bias favorable to their
induction is added in any part of the algorithm.
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Artificial Ant Problem

Starting Point (0,0) Food pellet Gap

◮ The ant must eat all the food pellets (normally in 600 steps) scattered
along a twisted track that has single, double and triple gaps along it. The
terminal set used for this problem is T = {Move,Right, Left}.
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Real-Valued Symbolic Regression problems

◮ The goal of this type of problem is to find a program whose
output is equal to the values of functions. In this case we used
functions F1 = x4 + x3 + x2 + x and F2 = 2sin(x)2cos(y).

◮ Thus, the fitness of an individual reflects how close the output
of an individual comes to the target.

◮ It is common to define the fitness as the sum of absolute
errors measured at different values of the independent variable
x , in this case in the range [-1.0,1.0].

◮ We have defined an arbitrary threshold of 0.01 to indicate
that an individual with a fitness less than the threshold is
regarded as a correct solution, i.e. a “hit”.
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Even-n-Parity problem

◮ The terminal set used for this problem is the set of inputs,
often called T = {D0,D1, · · · ,Dn−1}.

◮ The standard function set is FE3 = {NOT ,OR ,AND}.

◮ An alternative function set for comparison:
FE4 = {AND,OR ,NAND,NOR}.
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Artificial ant problem

◮ The terminal set used is T = {Move,Right, Left}.

◮ The standard function set is FA3 = { If,P2,P3}.

◮ An alternative function set for comparison:
FA4 = { If,P2,P3,P4}. The only difference is the addition of
an extra sequencing function, P4, which runs each of its four
subtree arguments in order.
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Real-Valued Symbolic Regression problems

◮ The terminal set is defined by the variables used in the
function (e.g., T = {x}).

◮ The standard function set FS6 = {+,−, ∗,%, Sin,Cos}.

◮ An alternative function set for comparison purposes:
FS4 = {+,−, ∗,%}.

Edgar Galván-López Locality as a Problem Hardness Measure in Genetic Programming



Experimental Setup
Results

Conclusions
Bibliography

Benchmark Problems
Alternative Function Sets
Uniform Genetic Programming
Mutation Operators

Dummy arguments

◮ It is called uniform [6] because all internal nodes are of the
same arity.

P2

P2 P3

M M R If M

R M

P2

P23 P3

M M R If3 M

R M L

If3

R R M

Figure : A typical GP individual (left) and the same individual with uniform
arity 3 (right). Dashed lines indicate dummy arguments.
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Function sets for Uniform GP

◮ We defined three function sets:
◮ FE3∗ = {AND,OR ,NOT2} for the Even-n-Parity (n = {3, 4}),
◮ FA3∗ = {If 3,P23,P3} for the Artificial Ant and
◮ FS6∗ = {+,−, ∗,%, Sin2,Cos2} for the Symbolic Regression

problems.

◮ NOT2, If 3,P23, Sin2,Cos2 allow the addition of dummy
arguments as explained previously.
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Function Sets

Table : Function sets used on all the problems.

Problem Function Sets

FE3 = {AND,OR ,NOT}
Even-n-Parity FE4 = {AND,OR ,NAND,NOR}

FE3∗ = {AND,OR ,NOT2}

FA3 = {IF ,P2,P3}
Artificial Ant FA4 = {IF ,P2,P3,P4}

FA3∗ = {IF3,P23,P3}

FS6 = {+,−, ∗,%, Sin,Cos}
Symbolic Regression FF4 = {+,−, ∗,%}

FS6∗ = {+,−, ∗,%, Sin2,Cos2}
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Six different mutation operators

◮ One-Point mutation replaces a node by a new node.
◮ Subtree mutation replaces a randomly selected subtree with

another randomly created subtree.
◮ Permutation mutation creates a new individual by selecting

randomly an internal node and then randomly permuting its
arguments.

◮ Hoist mutation creates a new individual. The resulting
offspring is a copy of a randomly chosen subtree of the parent.

◮ Size-fair subtree mutation has two variants: (a) the size of
the new individual is given by the size s of a subtree chosen at
random within the parent. Size s is then used for creating a
new individual randomly; (b) the size of the replacement
subree is chosen uniformly in the range [l/2, 3l/2] (where l is
the size of the subtree being replaced).
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Sampling Method

◮ To have sufficient statistical data, we created 1,250,000
individuals for each of the six mutation operators described
previously.

◮ These samplings were created using the traditional ramped
half-and-half initialisation method using depths = [3, 8].
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Even-3-Parity using 6 mutations and 3 function sets.
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Figure : Standard function set (left), alternative function set (centre) and
a function set for Uniform GP (right).

◮ Notice that when using the permutation mutation operator and using FE3 and
FE4 on the Even-n-Parity problem, the fd is always 0 because all of the
operators in these function sets are symmetric.
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Even-4-Parity using 6 mutations and 3 function sets.
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Figure : Standard function set (left), alternative function set (centre) and
a function set for Uniform GP (right).
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Artificial Ant Problem using 6 mutations and 3 function
sets.
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Figure : Standard function set (left), alternative function set (centre) and
a function set for Uniform GP (right).
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Symbolic Regression F1 using 6 mutations and 3 function
sets.
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Figure : Standard function set (left), alternative function set (centre) and
a function set for Uniform GP (right).
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Symbolic Regression F2 using 6 mutations and 3 function
sets.

< 0.01 < 0.02 < 0.03 < 0.04 < 0.05 < 0.06 < 0.07 < 0.08 < 0.09 < 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Symbolic Regression F2 (FS6)

Fitness distance

F
re

qu
en

cy

 

 

OnePoint Mutation
Subtree Mutation
Permutation Mutation
Hoist Mutation
Size Fair
Size Fair*

< 0.01 < 0.02 < 0.03 < 0.04 < 0.05 < 0.06 < 0.07 < 0.08 < 0.09 < 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Symbolic Regression F2 (FS4)

Fitness distance

F
re

qu
en

cy

 

 

OnePoint Mutation
Subtree Mutation
Permutation Mutation
Hoist Mutation
Size Fair
Size Fair*

< 0.01 < 0.02 < 0.03 < 0.04 < 0.05 < 0.06 < 0.07 < 0.08 < 0.09 < 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Symbolic Regression F2 (FS6*)

Fitness distance

F
re

qu
en

cy

 

 

OnePoint Mutation
Subtree Mutation
Permutation Mutation
Hoist Mutation
Size Fair
Size Fair*

Figure : Standard function set (left), alternative function set (centre) and
a function set for Uniform GP (right).
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Parameters

Table : Parameters used to conduct our experiments.

Selection Tournament (size 7)
Initial Population Ramped half and half (depth 3 to 8)
Population size 200, 250, 500
Generations 125, 100, 50 (25,000 divided by population size)
Runs 100
Mutations One Point, Subtree, Permutation, Hoist

Size-Fair & Size-Fair Range
Mutation rate One single mutation per individual
Termination Maximum number of generations

◮ we performed 100 ∗ 45 ∗ 6 runs in total1.

1100 independent runs, 45 different settings (i.e., three different
combinations of population sizes and number of generations, five different
problems and three different function sets for each of the problems - 3 ∗ 5 ∗ 3),
and 6 different mutation operators.
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Locality and Performance on the Even-3-Parity Problem

Table : Locality values. Lower is better.

Mutation Def0 Def11 Cond.(Def21)
Operators FE3 FE4 FE3∗ FE3 FE4 FE3∗ FE3 FE4 FE3∗

One Point 0.1125 0.1727 0.1059 0.9057 0.8699 0.9145 0.0091 0.0213 0.0102
Subtree 0.1599 0.1638 0.1026 0.8562 0.8541 0.9064 0.0081 0.0089 0.0045

Permutation 0 0 0.0154 1 1 0.9859 0 0 0.0006
Hoist 0.1902 0.2497 0.1932 0.8376 0.7936 0.8304 0.0139 0.0217 0.0118

Size Fair 0.2046 0.2710 0.2063 0.8173 0.7707 0.8150 0.0109 0.0209 0.0106
Size Fair* 0.1993 0.2641 0.2017 0.8207 0.7742 0.8179 0.0100 0.0191 0.0098

Table : Performance (measured in terms of average of the best fitness values over all runs). Numbers within
parentheses indicate number of runs able to find the global optimum. Higher is better.

Mutation P = 500, G = 50 P = 250, G = 100 P = 200, G = 125
Operators FE3 FE4 FE3∗ FE3 FE4 FE3∗ FE3 FE4 FE3∗

OnePoint 6.97 7.77 7.51 6.99 7.87 7.13 6.52 7.75 7.00
(81) (64) (88) (28) (81) (18)

Subtree 7.41 7.76 7.63 7.28 7.85 7.15 6.86 7.66 7.09
(42) (80) (69) (30) (86) (29) (1) (79) (21)

Permutation 5.94 4.95 5.88 5.94 4.95 4.98 4.95 5.94 5.41
Hoist 6.00 5.15 5.03 6.00 5.06 5.00 5.16 6.00 4.00
Size Fair 6.00 5.03 5.00 5.99 5.03 5.00 4.98 6.00 4.98
Size Fair* 6.00 5.03 5.00 5.99 5.02 5.00 4.99 6.00 5.00
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Number of correct predictions of good locality on
performance for all the problems.

One Subtree Permut. Hoist Size Size Total
Point Fair Fair*

Even-3-Parity
Def0 0 0 - 2 2 2 6
Def1 3 3 - 1 1 1 9

Def2 0 0 - 0 0 0 0

Even-4-Parity
Def0 1 1 - 1 0 1 4
Def1 1 1 - 3 3 3 11

Def2 0 1 - 0 0 0 1

Artificial Ant
Def0 0 0 3 0 3 3 9
Def1 0 0 3 0 3 3 9
Def2 0 0 3 0 3 3 9

Symbolic Regression F1
Def0 2 2 0 0 0 0 4
Def1 0 0 0 3 3 3 9

Def2 2 2 0 0 0 0 4

Symbolic Regression F2
Def0 1 1 2 1 1 0 6
Def1 3 1 2 1 1 1 9

Def2 1 1 1 1 1 1 6
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Number of correct predictions of all locality values on
performance for all the problems

FE3, FA3, FS6 FE4, FA4, FS4 FE3∗ , FA3∗ , FS6∗ Total

Even-3-Parity
Def0 7 0 2 9
Def1 3 9 3 15

Def2 3 0 3 6

Even-4-Parity
Def0 8 2 0 10
Def1 5 7 11 23

Def2 6 2 1 9

Artificial Ant
Def0 7 12 9 28
Def1 7 12 9 28
Def2 7 12 9 28

Symbolic Regression F1
Def0 6 4 12 22
Def1 10 16 12 38

Def2 5 0 4 9

Symbolic Regression F2
Def0 3 3 7 13
Def1 10 2 4 16

Def2 4 2 5 11

Edgar Galván-López Locality as a Problem Hardness Measure in Genetic Programming



Experimental Setup
Results

Conclusions
Bibliography

Extending Locality to the Genotype-Fitness Mapping

◮ It has been argued that locality is a key element in performing
effective evolutionary search of landscapes.

◮ In this talk, I have shown how it is possible to extend the
original genotype-phenotype definition of locality to the
genotype-fitness mapping, considering three different scenarios
of fitness neighbourhood.

◮ This has been supported by developing a mathematical
framework and performing extensive EC runs.
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Locality VS. Non-Locality

◮ The results presented in this talk are consistent with those
shown by Rothlauf in his original studies.

◮ For a particular problem, there is an agreement between the
three definitions of locality and the performance achieved by
the GP system.

◮ Def1 (neighbours = 0) seems to be more accurate than the
other two definitions of locality.
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Limitations & Future Work

◮ A natural step to take from here is by considering the use of
crossover.

◮ To fully complete the study of locality in “non-traditional” GP,
it is necessary to study the genotype-phenotype-fitness space.

Edgar Galván-López Locality as a Problem Hardness Measure in Genetic Programming



Experimental Setup
Results

Conclusions
Bibliography

More on Locality

Details of this presentation can be found in [4]. Other revelant
readings: [1, 5, 3, 2, 7, 8].
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