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Abstract. We have recently introduced a privacy model for statistical and ma-

chine learning models called integral privacy. A model extracted from a database

or, in general, the output of a function satisfies integral privacy when the number

of generators of this model is sufficiently large and diverse. In this paper we show

how the maximal c-consensus meets problem can be used to study the databases

that generate an integrally private solution. We also introduce a definition of in-

tegral privacy based on minimal sets in terms of this maximal c-consensus meets

problem.
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1 Introduction

The output of any function computed from a database can be sensitive. It can contain

traces of the data used. A simple example is the computation of the mean of a set of

salaries. The presence in the database of a person with a high salary may affect the

mean salary so significantly that this person presence can be singled out. When the

data is sensitive, this type of disclosure can be problematic. This situation applies if we

consider an intruder accessing the mean salary of patients in the psychiatric department

of a hospital of a small town.

Data-driven models inherit the same problems. Membership attacks [6] are to infer

that a particular record has been used to train a machine learning or a statistical model.

Data privacy [7] is to provide techniques and methodologies to ensure that disclo-

sure does not take place. Privacy models are computational definitions of privacy.

Differential privacy [1] is one of the privacy models that focus on this type of at-

tacks. Informally, we say that the output of a function satisfies differential privacy when

this output value does not change significantly when we add or remove a record from
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a database. This means in our case, that the presence or absence of a particular indi-

vidual in the database cannot be singled out. That is, the presence or absence of the

person with a high salary does not change much the mean salary. To make differential

privacy possible, outputs are randomized so what needs to be similar is the probability

distribution on the possible outcomes.

We introduced [8] integral privacy as an alternative privacy model that focuses on

the privacy of the generators of the output of a function. Informally, we require that the

set of databases that can produce this output is sufficiently large and diverse. We have

developed solutions for this privacy model to compute statistics as the mean and devi-

ations [3], decision trees [5] and linear regressions [4]. Our results show that integral

privacy can provide in some scenarios solutions with good quality (i.e., good utility)

and that solutions may be better with respect to utility than those of differential privacy.

A solution from an integral privacy point of view is one that can be produced by

different databases. The more databases that can generate the solution the better, and

the more diverse these databases are, the better. Integral privacy formalises this idea.

Our original definition requires databases to be different. In this paper we propose a

formalization based on minimal sets. It permits to strengthen our privacy requirements

on the generators of the model. This new definition is proposed in Definition 4.

1.1 Model selection and integral privacy

Our definitions of integral privacy are proposed as alternatives to differential privacy.

Our goal is to select machine and statistical learning modes that are good from a privacy

point of view. Machine and statistical learning is, in short, a model selection problem

from a set of candidate ones.

When we need to select a model from candidate solutions (a data-driven model) and

we want the model to be integrally private and optimal with respect to other parameters

(e.g., accuracy, fairness, bias-free) we need to navigate among sets of records. This is

so because each candidate solution needs to be generated by at least a database, and

integrally private solutions need to be generated by several alternative databases.

For the sake of explainability we consider that it is appropriate to provide tools to

actually explore and navigate on these sets of databases. While from a formal point of

view, this is not required, and we can just define a methodology to produce integrally

private solutions, as we proceeded in [5], it is convenient to develop techniques to under-

stand the space of databases and, in particular, the databases that generate an integrally

private solution. In this paper we study how the maximal c-consensus meets [9] of a set

of records can be used for this purpose. The new definition of integral privacy is based

on the solution of maximal c-consensus meets. Solutions of this problem represent key

records for a given model.

1.2 Structure of the paper

The structure of the paper is as follows. In Section 2 we review integral privacy and in

Section 3 the maximal c-consensus meets. Then, in Section 4, we introduce a new def-

inition for integral privacy based on maximal c-consensus meets. This is the definition
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on minimal sets. In Section 5 we prove some results related to the maximal c-consensus

meets and the related definition for integral privacy. These results explain integrally pri-

vate solutions in terms of maximal c-consensus meet solutions. Section 6 describes how

we compute the solutions. The paper finishes with some conclusions and directions for

future research.

2 On privacy models: integral privacy

In this section we review two privacy models that focus on the privacy of individual

records in a database when this database is used to compute a function. That is, we

consider a data set X and we apply a function, a query, or an algorithm A to this database

and generate an output y. So, y = A(X). Then, we are interested in avoiding inferences

on individual records x in X from the information that we have on y.

Differential privacy [1] is one of the privacy models for this type of scenario. Its

focus is on the presence or an absence of a record in the database, and that this pres-

ence or absence cannot be inferred from y. The definition is based on a comparison

of two probability distributions on the space of outputs of A. We assume that different

executions of algorithm A may lead to different outcomes, and that the distributions

obtained from two databases that differ in only one record, say x, are similar enough.

When the distributions are similar enough we cannot infer from the distributions that

this particular record x was used.

Definition 1. A randomized algorithm A is said to be ε-differentially private, if for all

neighbouring data sets X and X ′, and for all events E ⊂ Range(A),

Pr[A(X) ∈ E]

Pr[A(X ′) ∈ E]
≤ eε .

In this definition we have that X and X ′ are neighboring data sets when they differ

in one record. We represent that X and X ′ are neighboring data sets with d(X ,X ′) = 1.

Integral privacy [8] is similar to differential privacy in that it focuses on the conse-

quences of knowing the output of a function. I.e., on the inferences that can be obtained

from this output. The original definition considered not a single database and a single

output but two databases and their corresponding outputs. Then, inferences are not only

on the databases but also on the modifications (transitions) that have been applied to

one database to transform it into another one. Here we focus on a single database.

The cornerstone of the definition of integral privacy is the concept of generator of

an output. That is, the set of databases that can generate the output. We formalize this

concept as follows.

Let P be the population in a given domain D . Let A be an algorithm that given a data

set S ⊆ P computes an output A(S) that belongs to another domain G . Then for any G

in G and some previous knowledge S∗ with S∗ ⊂ P on the generators, the set of possible

generators of G is the set defined by Gen(G,S∗) = {S′|S∗ ⊆ S′ ⊆ P,A(S′) = G}. We use

Gen∗(G,S∗) = {S′ \ S∗|S∗ ⊆ S′ ⊆ P,A(S′) = G}. When no information is known on S∗,

we use S∗ = /0. Note that previous knowledge is assumed to be a set of records present

in the database used to generate G.
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Then, integral privacy is about having a large and diverse set of generators. This is

to avoid inferences on records in the set and, in particular, avoid membership attacks.

Naturally, it is not always possible to achieve integral privacy because if the only

way to generate G from S∗ is to have S∗ ∪ {x}, previous knowldge S∗ implies that

Gen∗(G,S∗) = {{x}}. This is the case if we know all patients in the psychiatric de-

partment except the rich one. We can infer from G (the mean) that the rich is also in the

set.

Definition 2. Let P represent the data of a population, A be an algorithm to compute

functions from databases S ⊆ P into G . Let G ∈ G , let S ⊆ P be some background

knowledge S∗ on the data set used to compute G, let Gen(G,S∗) represent the possible

databases that can generate G and are consistent with the background knowledge S∗.

Then, i-integral privacy is satisfied when the set Gen(G,S∗) is large and

∩g∈Gen∗(G,S∗)g = /0.

The intersection is to avoid that all generators share a record. This would imply that

there is a record that is necessary to construct G. Following [8] we can distinguish two

definitions of large in the previous definition.

One follows k-anonymity and requires Gen(G,S∗) to have at least k elements. This

means that there are at least k different databases that can be used to build G.

The second definition considers minimal sets in Gen(G,S∗). Let us consider that

there are 10 databases that generate a model G. Then, 5 of them share the record r and

the other 5 share a record r′. Then, the model G would satisfy at least k-anonymous in-

tegral privacy for k = 2. In this paper we formalize this second approach in Definition 4.

An important concept in privacy is plausible deniability. We can define it for integral

privacy as follows.

Definition 3. Let G,A,S∗,P, Gen(G,S∗) and Gen∗(G,S∗) as in Definition 2. Integral

privacy satisfies plausible deniability if for any record r in P such that r /∈ S∗ there is a

set σ ∈ Gen∗(G,S∗) such that r /∈ σ .

Naturally, integral privacy satisfies by definition plausible deniability for all records

not in S∗. This is so because the intersection of data sets in Gen∗(G,S∗) is the empty

set.

Differential privacy and integral privacy have fundamental differences. They are due

to the fact that the former requires a smooth function, as the addition of any record does

not change much the function (i.e., A(D) ∼ A(D⊕ x) where D⊕ x means to add the

record x to D). In contrast, integral privacy does not require smoothness as we do not

focus on neighbourhoods. We require that the output of the function for any database re-

sults always in what we call recurrent models. If f−1(G) is the set of all (real) databases

that can generate the output G, we require A−1(G) to be a large set for G. Consider the

following example of integrally private function.

Example 1. Let D be a database, let A be an algorithm that is 1 if the number of records

in D is even, and 0 if the number of records in D is odd. That is, f (D) = 1 if and only if

|D| is even.
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If this function is applied to an arbitrary subset of the population in Sweden, then the

function is integrally private and, therefore, satisfies plausible deniability. The function

is not differentially private.

Example 2. Let P= {r1 = 1000,r2 = 1200,r3 = 1400,r4 = 1200,r5 = 1000,r6 = 1000,r7 =
1200,r8 = 1400,r9 = 1800,r10 = 800} salaries of a population, let G = 1200 the mean

salary of a database extracted from P. This mean salary will be k-anonymous integral

privacy for at least k = 4 because the following databases {r1 = 1000,r2 = 1200,r3 =
1400}, {r4 = 1200}, {r5 = 1000,r8 = 1400}, and {r9 = 1800,r10 = 800} generate a

mean of 1200, and these databases do not share records.

3 Maximal c-consensus meets

In the previous section we have discussed that the same model can be obtained from dif-

ferent databases. From a privacy perspective, we are interested in these recurrent mod-

els. Nevertheless, we have also discussed that the recurrence of a model is not enough.

When all databases that generate a model share a record, the model is vulnerable to

membership attacks.

We have recently introduced [9] maximal c-consensus meets, which can be used to

study sets of databases. We show in the next section that this definition permits to define

integral privacy in terms of minimal sets.

Given a reference set, the maximal c-consensus meets problem is about finding a set

of representatives for a collection of subsets of the reference set. Using notation from

lattice theory, we are interested in finding a set of meets that are maximal, in the sense

that they have a large number of elements. The problem has similarities (see [9] for

details) with other combinatorial optimization problems. In particular, it is related to

max-k-intersect, consensus/ensemble clustering, and the minimum set cover problem.

Maximal c-consensus meets is defined in terms of a parameter c, which is the num-

ber of representatives we are looking for. It is similar to the number of clusters in clus-

tering algorithms. E.g., k in k-means, c in fuzzy c-means.

3.1 Formalization of the problem

Let X be a reference set. Let n = |X | be its cardinality, x1, . . . ,xn be the elements in X

and ℘(X) the set of all subsets of X . The subsets of X define a partially ordered set. Let

A,B ⊆ X , we use A ≤ B when A ⊆ B. Therefore, (℘(X),≤) is a partially ordered set.

I.e., this relationship satisfies reflexivity, antisymmetry and transitivity.

For a partially ordered set (L,≤), given a subset Y of L we say that u ∈ L is an upper

bound when for all y ∈ Y we have y ≤ u. Similarly, l ∈ L is a lower bound when for all

y ∈Y we have l ≤ y. In lattice theory we have the concepts of least upper bound (or join

or supremum) and greatest lower bound (or meet or infimum). Then, (L,≤) is a lattice

when each a,b ∈ L have a join and a meet. We use ∨ and ∧ to represent, respectively,

the join and the meet as usual. E.g., a∨b is the join of a and b, and a∧b is the meet of

a and b.
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Given a finite reference set X , the partially ordered set (℘(X),≤) is a lattice when

the meet is the intersection and the join is the union. This is the lattice we consider in

this paper.

Maximal c-consensus meets [9] is defined in terms of a collection S of η subsets

of X . Let Si ⊆ X for i = 1, . . . ,η , where η is the number of these sets. Then, S =
{S1, . . . ,Sη}. The goal of the problem is to find c parts of the collection whose meets

are maximal. Let π j be a part of S, then, the size of the corresponding meet is |∩s∈π j
S|.

Let Π be the partition of S with elements π j for j = 1, . . . ,c.

Table 1 gives an example with X = {1,2,3,4,5,6,7,8,0} and sets Si ⊆ X for i =
1, . . . ,36.

When we consider that the total size of the meets of Π is ∑c
j=1 | ∩s∈π j

S| (i.e., the

addition of all sizes), we can formalize the maximal c-consensus meets problem as the

maximization of the total size of the meets as follows.

maximize
c

∑
j=1

| ∩si∈π j
Si|

subject to
c

∑
j=1

µ j(Si) = 1 for all i = 1 . . .η

µ j(Si) ∈ {0,1} for all i = 1 . . .η and all j = 1, . . . ,c

(1)

In this formulation µ defines a partition of S. This is so because of the constraints

on µ in the problem.

Solutions of the problem above do not require that all meets are large. A few large

ones (or all but one large ones) can be enough to lead to a good optimal solution. Be-

cause of that, we introduced an alternative definition that we call well-balanced maximal

c-consensus meets. In this case we consider the size of the meet with the smallest size.

The size of this meet is the one that we want to maximize. The definition follows.

maximize
c

min
j=1

| ∩si∈π j
Si|

subject to
c

∑
j=1

µ j(Si) = 1 for all i = 1 . . .η

µ j(Si) ∈ {0,1} for all i = 1 . . .η and all j = 1, . . . ,c

(2)

To solve this problem we proposed in [9] the use of a k-means like clustering algo-

rithm and the use of genetic algorithms.

4 Using maximal c-consensus meets to define integral privacy

Let P represent the data of a population, A be an algorithm to compute a model (a

statistic or a function). Then, different subsets S ⊂ P will produce models A(S) ∈ G .

Here G is the space of all possible models.

Let us focus on a particular model G ∈ G , then Gen(G,S∗) represents all databases

that can generate G. From an integral privacy perspective, we are interested in obtain-

ing information on the databases in Gen(G,S∗) that can generate G. The maximal c-

consensus meets provide information on this.
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{1, 2, 3, 4, 5, 6, 8, 0}, {1, 2, 3, 4, 5, 6, 8}, {1, 2, 3, 4, 5, 6, 0},

{1, 2, 3, 5, 6, 8, 0}, {1, 2, 4, 5, 6, 8, 0}, {2, 3, 4, 5, 6, 8, 0},

{1, 2, 3, 4, 5, 6}, {1, 2, 3, 5, 6, 8}, {1, 2, 3, 5, 6, 0}, {1, 2, 4, 5, 6, 8},

{1, 2, 4, 5, 6, 0}, {1, 2, 5, 6, 8, 0}, {1, 3, 4, 5, 8, 0},

{2, 3, 4, 5, 6, 8}, {2, 3, 4, 5, 6, 0}, {2, 3, 5, 6, 8, 0},

{2, 4, 5, 6, 8, 0}, {1, 2, 4, 5, 6}, {1, 2, 5, 6, 8}, {1, 2, 5, 6, 0},

{1, 3, 5, 8, 0}, {1, 4, 5, 8, 0}, {2, 3, 4, 5, 6}, {2, 3, 5, 6, 8},

{2, 3, 5, 6, 0}, {2, 4, 5, 6, 8}, {2, 4, 5, 6, 0}, {2, 5, 6, 8, 0},

{3, 4, 5, 8, 0}, {1, 5, 8, 0}, {2, 4, 5, 6}, {2, 5, 6, 8},

{2, 5, 6, 0}, {3, 5, 8, 0}, {4, 5, 8, 0}, {5, 8, 0}

Table 1. Set of records corresponding to the problem BC4.

Observe that with respect to maximal c-consensus meets it is irrelevant whether

we consider Gen(G,S∗) or Gen∗(G,S∗) as the difference of the corresponding two opti-

mization problems will be the same and the objective functions only differ on a constant.

Observe that Table 1 can be seen from this perspective. Let us consider that the ref-

erence set X = {1,2,3,4,5,6,7,8,0} represents the individuals of the whole population

P and each set in Table 1 represents a database. For the sake of illustration we consider

here that when we apply algorithm A to all these databases we obtain the same output.

Then, the maximal c-consensus meets permits us to find clusters of databases that

share a large number of records. We will use this perspective to formalize the second

definition of integral privacy sketched above. The one that is based on minimal sets in

Gen(G,S∗).
Observe that given a set of databases Gen(G,S∗), when we find the optimal partition

Π of these databases (in terms of the maximal c-consensus meets) for given a value c,

the partition permits us to compute the set of common records ∩si∈π j
Si for each π j ∈ Π .

Let m j represent this set of common records. Then, from a privacy perspective, a good

model G is the one that mi ∩m j = /0. That is, any pair of meets mi and m j share no

elements.

This permits to formalize meet-based integral privacy as follows. The definition is

based on the parameter c. The larger the c, the larger the privacy. Naturally, if we require

a very large c (say 10 or 100) this means that we need to be able to generate the same

output with a large number of databases that do not share any record.

Definition 4. Let P represent the data of a population, A be an algorithm that computes

a function from databases S⊆ P in the set G . Let G∈ G , let S∗ ⊆ P be some background

knowledge on the data set used to compute G, let Gen(G,S∗) represent the possible

databases that can generate G and are consistent with the background knowledge S∗,

and Gen∗(G,S∗) the same set removing S∗ (see definitions above).

Then, G satisfies c-meets-based integral privacy if there is a solution Π of the

maximal c-consensus meets for Gen∗(G,S∗) according to Equation 2 such that for all

πi 6= π j ∈ Π satisfies

mi ∩m j = /0

with mi = ∩S∈πi
S and m j = ∩S∈π j

S.
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Note that there may be several solutions Π of the optimization problem with the

same objective function. We require only that one of them satisfies mi ∩m j = /0 for all

πi 6= π j ∈ Π .

This definition implies that a solution G is c-meets based integral privacy if for each

x 6= S∗ there are at least c− 1 databases in Gen∗(G,S∗) such that x is not there.

We illustrate this definition with the following example.

Example 3. Note that for c = 4, the 4 generators of Example 2 above will satisfy the

constraint mi ∩m j = /0 as we have m1 = S1, m2 = S2, m3 = S3, and m4 = S4.

5 On the effects of the parameter c

Both the maximal c-consensus meets and the definition of integral privacy based on

these meets depend on the parameter c. We can study how different parameters c in-

fluence the solutions of the optimization problem and the effects on the definition of

integral privacy. We first prove results on the objective functions of both optimization

problems.

Proposition 1. For the problem based on addition (Equation 1), the objective function

(OF) is strictly monotonic (increasing) with respect to increasing c. We have OF1 =
| ∩η

i=1 Si| for c = 1, and OFη = ∑
η
i=1 |Si| for c = η .

Proof. When c = 1, there is a single π1, and therefore all sets are assigned to it (i.e.,

π1 = S). Therefore, the corresponding meet will be the intersection of all S1, . . . ,Sη and,

thus, OF = | ∩η
i=1 Si|.

When c = η , the optimal assignment is to assign each Si to a different part. I.e.,

πi = {Si}. In this case, OF = ∑
η
i=1 |Si|.

Then, to prove that it is strictly monotonic consider a given c and a given partition

Π = {π1, . . . ,πc} with c < η with its corresponding objective function OFi. Let us

consider a part πi with at least two S j and Sk assigned to it. As c < η such part exists.

Then, let define π ′
i as πi without S j and π ′′

i as just S j (i.e., π ′
i = πi \{S j} and π ′′

i = {S j}).

Finally define a new partition with c+ 1 parts as the previous one replacing πi by the

two new sets π ′
i and π ′′

i . That is, Π ′ = {π1, . . . ,πc}\{πi}∪{π ′
i ,π

′′
i }. The cardinality of

the meets of π ′
i and π ′′

i is at least as the same as the cardinality of πi. Therefore as we

add these numbers, the objective function will be larger. ⊓⊔

Proposition 2. For the problem based on the minimum (Equation 1), the objective

function (OF) is monotonic (increasing) with respect to increasing c. We have OF1 =
| ∩

η
i=1 Si| for c = 1, and OFη = min

η
i=1 |Si| for c = η .

Proof. The proof of this proposition is similar to the previous one. We can prove the

monotonicity of the objective function using the same sets. Nevertheless, as when we

build π ′
i and π ′′

i from πi and we include them in the objective function, this objective

function just takes the min of the cardinality, the objective function may not strictly

increase. E.g., if we have πi = {{1,2,3},{1,2,3,4},{1,2,3,5}} and we define π ′′
i =

{1,2,3} and π ′
i = {{1,2,3,4},{1,2,3,5}}, the objective function will not increase. ⊓⊔

These two results show that the larger the number of parameters, we have, in gen-

eral, a larger value of the objective function.
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Fig. 1. Values of the objective function for the problem BC4. The figure on left corresponds to the

maximal c-consensus meets and the one on the right corresponds to the well-balanced maximal c-

consensus meets. Minimum, mean and maximum values of the objective function in each iteration

are displayed.

5.1 Open research questions

With respect to the definition for integral privacy, it is clear that the larger the c, the more

difficult will be to have a model that is compliant with the definition. Nevertheless, an

open question is whether a model G that is integrally private for c is also integrally

private for any c′ such that c′ < c.

Another open question is whether when a model G with generators Gen(G,S∗) is

integrally private for a parameter c, the model is also integrally private when another

database is added into the set. That is, if we have two sets of generators Gen(G,S∗) and

Gen(G′,S′∗) such that Gen(G,S∗)⊆ Gen(G′,S′∗), if integral privacy for Gen(G,S∗) en-

sures integral privacy for Gen(G′,S′∗). We can show with an example that the objective

function can decrease when a database is added. It is left as an open problem if this can

cause that there is no integrally private solution.

Example 4. Let A1 = {a1,a2,a3}, A2 = {a1,a2,a3,a4}, B1 = {b1,b2,b3}, B2 = {b1,

b2, b3, b4}, C1 = {c1,c2,c3,b1,b2}, and C2 = {c1,c2,c3,a1,a2}. An optimal solution

for this problem with c = 3 is π1 = {A1,A2}, π2 = {B1,B2}, π3 = {C1,C2}. Therefore,

|π1|= |π2|= |π3|= 3 and the objective function is 3.

If we consider S′ = {a1,a2,b1,b2,c1,c2} we have that we cannot reach an objective

function equal to 3. The assignment π1 = {A1,A2,C2}, π2 = {B1,B2,C1}, π3 = {S′}
results into an objective function equal to 2.
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Fig. 2. Values of the objective function for another problem consisting on computing an integrally

private mean of a file with 1080 records by means of rounding and sampling (following [3]).

6 Solutions using genetic algorithms

In [9] we proposed the use of genetic algorithms to find solutions for the optimization

problem described above. We illustrate here the solutions obtained for different values

of c. We show the performance of our solution using genetic algorithms when compared

with the theoretical results obtained in the previous section. We show that when the

objective function uses addition, we obtain results that are consistent with the theoretical

ones, but that this is not the case when the objective function uses minimum.

We have considered the solutions obtained for different values of c for the same

problems BC1-BC9 considered in [9]. We describe in detail the results of problem BC4.

This problem consists of the sets of records listed in Table 1. There are 36 sets with at

most 9 elements.

We have used 60 iterations with 20 chromosomes each, with a probability of 0.4 for

structural mutation and 0.4 for structural crossover. We have used a c that ranges from

1 to η , where η is the number of sets. For BC4 we have η = 36. Each problem is solved

10 times and the minimum, mean, and maximum values of the objective function are

recorded. These results for BC4 are displayed in Figure 1.

It is important to note that while the results above apply for the optimal solutions,

solutions found by genetics algorithms are not necessarily optimal. Therefore they do

not necessarily satisfy monotonicity. In particular, it is possible that due to structural

mutation and structural crossover some of the parts of S are empty, which affects dras-

tically the value of the objective function. Figure 1 gives (left) the results for the first

formulation (i.e., Equation 1) and (right) the results for the second formulation (i.e.,

Equation 2).

It can be seen the genetic algorithm is able to obtain results that follow the results

in Proposition 1 for the first formulation. That is, the objective function is monotonic



Explaining recurrent machine learning models: integral privacy revisited 11

{1 2 3 5 6 } {} {2 5 6 8 } {0 4 5 8 } {0 3 5 8 }
{} {2 5 6 8 } {0 1 2 4 5 6 } {2 4 5 6 } {0 2 5 6 }
{0 2 3 4 5 6 8 } {0 1 3 5 8 } {0 5 } {1 2 4 5 6 8 }
{5 8 } {} {0 4 5 }{2 5 6 }{0 1 2 5 6 8 }{2 3 5 6 }

{1 5 }{1 2 4 5 6 }{2 3 4 5 6 }

Table 2. Optimal solution found for c = 23 with the problem BC4.

with respect to the number of clusters c (except for a few cases). In contrast, our im-

plementation with genetic algorithms does not lead to solutions fully consistent with

Proposition 2 for the second formulation. For c > 15 the genetic algorithms are not

always able to find the optimal, and for c > 25 the genetic algorithms are never able

to find the optimal. The second objective function is quite sensitive to parts that are

empty and they lead to an objective function with a value equal to zero. Recall that the

objective function is the size of the smallest set. In fact, when the number of parts is

relatively large there are several parts with no sets associated to them. In addition, the

meets of the other parts are still rather small. See e.g., for c = 23 we have that the best

solution has objective function because there are three parts with zero sets assigned to

it, and in addition, even removing these parts the minimum meet is of size only 2. Such

optimal solution is given in Table 2.

Figure 2 shows another example based on the results explained in [3]. There are

33 sets each consisting of up to 1080 records. These sets are obtained from the com-

putation of an integrally private mean of the file by means of rounding and sampling.

The details on the file and the computation are found in [3]. We can observe that the

results obtained by the algorithms are similar for both problems. In the case of using

the objective function with the minimum, the optimal is not achieved for c larger than

20.

7 Conclusions and future work

In this paper we have shown how the maximal c-consensus meets can be used in the

context of integral privacy to find the common records of sets of databases that can

produce the same solution. We have proven some results related to the monotonicity of

the optimal value of the objective function with respect to the number of parts. We have

also seen that our approach based on genetic algorithms for solving the optimization

problem is not successful for large values of c.

For understanding sets of databases, a smaller c is preferable. How to select a small

c with a high objective function is an open problem. We plan to use multiobjetive opti-

mization for this problem.

The maximal c-consensus meets have also been used to formalize a definition for

integral privacy. We plan to develop methods to find integrally private models (e.g.,

decision trees) and statistics (e.g., means and variances) using the new definition. These

solutions need to be evaluated with respect to their utility. Our definition is based on
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intruder’s background knowledge, represented by means of S∗. Further work is needed

to analyse what kind of background knowledge can be available.
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