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Abstract. In this paper, we investigate the use of an stochastic optimisation bio-
inspired algorithm, differential evolution, and proposed two fitness (cost) func-
tions that can automatically create an intelligent scheduling for a demand-side
management system so that it can use plug-in electric vehicles’s (PEVs) batteries
to partially and temporarily fulfil electricity requirements from a set of household
units. To do so, we proposed two fitness functions that aim: (a) to use the most
amount of energy from the batteries of PEVs while still guaranteeing that they
can complete a journey, and (b) to enrich the previous function to reduce peak
loads.

Keywords: Differential Evolution, Demand-side Management Systems, Plug-in
Electric Vehicles.

1 Introduction

Evolutionary Algorithms (EAs) [1, 2], also known as Evolutionary Computation sys-
tems, are influenced by the theory of evolution by natural selection. These algorithms
have been with us for some decades and are very popular due to robust theoretical
works [3–6] developed around them that have helped us to understand why they work
(e.g, representations’ properties ) and due to their successful application in a variety of
different and challenging problems, ranging from the automated design of an antenna
carried out by NASA [7], the automated optimisation of game controllers [8], the au-
tomated evolution of Java code [9], up to the automated design of combinational logic
circuits [10, 11]. EAs can be considered a “black-box”, as they do not require any spe-
cific knowledge of the fitness function. They work even when, for example, it is not
possible to define a gradient on the fitness function or to decompose the fitness function
into a sum of per-variable objective functions.
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In this work, we are interested in investigating the applicability of EAs in a dy-
namic and challenging problem in Demand-Side Management (DSM) Systems taken
from Smart Grids where, in summary, the goal is to automatically create fine-grained
solutions that indicate the amount of energy that can be taken from electric vehicles’
(PEVs) batteries to partially satisfy energy demand in residential areas and reducing
electricity peaks, whenever possible. The proposed approach and fitness functions used
in our work (described in Section 2) is not amenable to analytic solution or simple
gradient-based optimisation, hence search algorithms such as EAs are required.

DSM is normally considered as a mechanism or program, implemented by utility
companies to control the energy consumption at the customer side [12]. DSM is an
important research area in the Smart Grid (SG) community as shown by the increasing
number of publications over the years (e.g., more than 2,000 papers have been published
in this area where more than two thirds have been published since 2010 [13]).

DSM programs include different approaches (e.g., manual conservation and energy
efficiency programs [14], Residential Load Management (RLM) [15, 16]), where RLM
programs based on smart pricing are amongst the most popular methods. The idea be-
hind smart pricing is to encourage users to manage their loads, so that they can reduce
electricity prices while, at the same time, the utility companies achieve a reduction in
the peak-to-average ratio (PAR)5 in load demand by shifting consumption whenever
possible [13, 15, 17].

One of the major limitations of smart pricing is the fact that the electricity price is
proportional to the electricity demand (i.e., a high number of appliances/devices con-
nected to the grid results in having high electricity costs). To alleviate this problem, we
propose the development of a demand-side autonomous intelligent management system
that exploit plug-in electric vehicles’ (PEVs) batteries. More precisely, our system uses
the PEV’s batteries to partially and temporarily fulfil the demand of end-use consumers
instead of using only the electricity available from a substation transformer. This is
possible thanks to the vehicle to grid technology (V2G), which is described as a system
in which electric-drive vehicles can feed power to the grid with the appropriate com-
munication/connection technologies acting as mobile generators of limited output [18,
19].

The deployment of such a system implies several significant challenges, e.g. differ-
ent driving patterns resulting in the amount of energy needed at the time of departure,
amount of energy taken from the PEVs’ batteries. To tackle this problem, we use an
optimisation EA.

Thus, the main contribution of this research is a novel approach to balance the load
demand from dozens of household units using both a substation transformer and PEVs’
batteries as mobile energy storage units6 by considering the automatic generation of
solutions via the use of EAs. To this end, we are interested in maximising, in general,
the use of available energy from the PEVs’ batteries while ensuring that each of the
PEVs can complete a journey to work, where the PEVs can be charged, and in particular,

5 Peak-to-average ratio is calculated by the maximum load demand for a period of time over the
average load demand, so a lower PAR is normally preferred due to e.g. maintenance costs [16].

6 In this work, we use the terms “substation transformer” and “PEV’s batteries” to differentiate
between the two sources of energy.
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helping in the reduction of peak loads at the transformer level by using the most quantity
of energy from the PEVs’ batteries during these peak periods. This problem would be
simple enough if it was not for the dynamicity associated to the problem and if we
would not care about keeping the PAR relatively low.

To achieve this, we allow the DSM system to make fine-grained decisions (i.e.,
variable amount of energy requested) by using a continuous representation instead of
using a discrete representation (i.e., turning a device/appliance on or off resulting in
feeding/getting a constant amount of energy) as normally adopted in DSM [20].

To this end, we use a form of EAs, called Differential Evolution (DE) [21], that al-
lows us to achieve this. More specifically, DE uses a vector of real-valued functions and
we use them to represent an individual (potential solution) that specifies an energy con-
sumption scheduling vector, which in turn indicates the amount of energy that should be
taken from the PEVs’ batteries aiming at fulfilling the goals previously described (e.g.,
maximising the energy consumption available from the batteries while at the same time
reducing peak loads at the transformer level with associated constraints such as guaran-
teeing that each PEV would complete a journey to work). Details on how this algorithm
works and its adoption in this research are described in Section 2.

1.1 Significance of this Research

From the 1980s, DSM has been studied extensively by the research community.
Analysing the research carried on DSM is difficult if we consider that there are more
than 2,000 scientific papers published only in the IEEE Xplore database. Inspired by the
work conducted by Poli [22], where the author analysed titles, keywords and abstract of
hundreds of papers, we also carried a similarity analysis relationship between hundred
of papers7 that discussed DSM and key terms of these papers for a quick and useful
interpretation of the research carried out in this area.

As we will see, the research conducted in DSM over the last decades has evolved
significantly, and due to space constraints, we only show the visual representation8 of
the research conducted from 1985 until 2009 (572 papers were analysed) and from 2010
until 2015 (1,841 were analysed), shown in Figure 1.

It is clear to see that some areas remain of vital importance in DSM, such as the ben-
efits that DSM can offer to both customers and utility companies. There are, however,
other areas of research emerging in DSM as shown at the bottom of Figure 1 (research
conducted over the last five years). Note, for example, the interest of investigating the
impact/integration of electric vehicles in DSM. This is shown in the very core of Fig-
ure 1 regarding the analysis from 2010 to 2015 (bottom of the figure). Other elements
worth observing are data, users, devices.

The research presented in this work deals with these elements and shows its impor-
tance to DSM. Specifically, as mentioned previously, we are interested in using PEVs’
batteries as mobile energy storage units to help the SG by designing an intelligent au-
tonomous DSM.

7 Source: IEEE Xplore database searching for “Demand-side Management”. Last accessed date:
22/01/2015.

8 Details on how these figures were produced can be found in [22].
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Fig. 1. Analysis of the publications on ‘Demand Side Management’ Systems from 1985 until
2009 (top) and from 2010 until 2015 (bottom). Only links (similarities) with strength greater than
40 in (a) and 60 (b) were passed to neato. The rest-length for repulsive forces between nodes was
set to 9.
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Energy storage units, such as pumped hydroelectric energy storage units and com-
pressed air energy storage units, have been with us around for several decades [23]
via [24] and they have been used to provide both energy and ancillary services. Their
use, however, have not been massively popular mainly because there is a cost associ-
ated with their acquisition and their corresponding installation. However, with the emer-
gence of relatively new technologies (e.g., PEVs) and their relatively “easy” integration
into the grid, it is necessary to account for autonomous and intelligent algorithms to
exploit their capabilities. This in consequence can bring substantial benefits to both
end-use consumers and to the grid (e.g., reduction of peak loads, savings in electricity
costs; see [25–27] for a more detailed discussion of energy storage units’ benefits).

The rest of this paper is organised as follows. In the following section we briefly
introduce differential evolution and present our proposed approach. In Section 3, we
present the experimental setup used in this work and Section 4 discusses the findings of
our approach. Finally, in Section 5 we draw some conclusions.

2 PROPOSED APPROACH

2.1 Background

There are multiple EAs methods, such as Genetic Algorithms (GAs) [28], Genetic Pro-
gramming (GP) [29], Differential Evolution (DE) [21]. All these methods use evolution
as an inspiration to automatically generate potential solutions for a given problem. They
differ, mainly, in the representation used (i.e., encoding of a solution). For example, the
typical representation used in GAs is fixed bitstrings, GP’s typical representation is
tree-like structures, DE uses a vector of real-valued functions.

In this work, we use a DE algorithm given its natural representation (i.e., real-valued
functions). Other bio-inspired algorithms can also use this type of representation, how-
ever, in this work we decided to use a DE given its efficiency for global optimisation
over continuous search spaces [21]. By using this type of representation, we can have
a more fine-grained action granularity (e.g., in this work, each element in the vector
represents how much energy will be taken from the PEVs’ batteries to feed electricity
to household units), instead of using a more limited representation such as a bitstring
representation that could indicate to take a pre-defined amount of energy (i.e., on or off)
from PEVs’ batteries to partially fulfil energy consumption from household units. We
further discuss this later in this section.

The goal of DE is to evolve NP D-dimensional parameter vectors xi,G =

1, 2, · · · ,NP, so-called population, which encode the potential solutions (individuals),
i.e., xi,G = {x

1
i,G
· · · , xD

i,G
}, i = 1, · · · ,NP towards the global optimum solution (e.g.,

highest values when maximising a cost function). The initial population is randomly
generated and this should be done by spreading the points across the entire search space
(e.g., this could be achieved by distributing each parameter on an individual vector
with uniform distribution between lower and upper bounds xl

j
and xu

j
). To automatically

evolve these potential solutions over generations via the definition of a fitness function,
DE uses the most common bio-inspired operators as commonly carried out in EAs:
mutation and crossover to find the global optimum solution. Each of these operators is
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briefly explained in the following lines (refer to [21, 30] for a detailed description on
how they work).

The mutation operator generates a mutant vector following one of the following
strategies:
DE/rand/1

vi,G = xri
1,G
+ F · (xri

2,G
− xri

3,G
)

DE/best/1

vi,G = xbest,G + F · (xri
1,G
− xri

2,G
)

DE/rand-to-best/1

vi,G = xi,G + F · (xbest,G − xi,G) + F · (xri
1,G
− xi

2,G
)

DE/best/2

vi,G = xbest,G + F · (xri
1,G
− xri

2,G
) + F · (xri

3,G
− xri

4,G
)

DE/rand/2

vi,G = xri
1,G
+ F · (xri

2,G
− xri

3,G
) + F · (xri

4,G
− xri

5,G
)

where indexes r1, r2, r3, r4 ∈ {1, 2, · · · ,NP} are random and mutually different. F is a
real and constant factor ∈ [0, 2] for scaling differential vectors and xbest,G is the indi-
vidual with best fitness value (e.g., highest value for a maximisation function) in the
population at generation G.

The crossover operator increases the diversity of the mutated parameter vectors and
is defined by:

vi,G+1 = (v1i,G+1, v2i,G+1, · · · , vDi,G+1)

where:

v ji,G+1 =

{

v ji,G+1 if randb( j) ≤ CR or j = rnbr(i),
x ji,G otherwise

where j = 1, · · · ,D, randb( j) is the jth evaluation of a uniform random number gen-
erator with outcome ∈ [0, 1]. CR is the constant crossover rate ∈ [0, 1]. rnbr(i) is a
randomly chosen index ∈ 1, 2, · · · ,D which ensures that ui,G+1 receives at least one
parameter value from ui,G+1.

The performance of the DE algorithm depends on different factors, such as the val-
ues associated to the parameters (e.g., population size) as well as the variant of the
operator used (e.g., variant of the mutation operator). This, intuitively means, that some
preliminary runs would be normally required to determine which variant of an operator
performs better on a given problem. We further discuss this in the following section.
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2.2 Proposed Representation and Fitness Function

We now extend the natural DE representation to tackle the problem described through-
out the paper and proceed to define the fitness (cost) function that allows the algorithm
to automatically guide the evolutionary search.

Let N denote the number of household units (users), where the number of household
units is N ,| N |. For each household n ∈ N, let ltn denote the total load at time
t ∈ T , {ti, · · · , t f }. Without loss of generality, we assume that time granularity is
15 minutes. The load for household n, from ti to t f , is denoted by:

ln , [ltin , · · · , l
t f

n ] (1)

From this, we can calculate the load across all household units N at each time t ∈

[ti, t f ] as follows:

Lt ,

∑

n∈N

ltn (2)

Similarly, let M denote the number of plug-in electric vehicles available in N. For
each electric vehicle m ∈ M, let Et

m denote the energy that can be taken from the PEV
at time t ∈ T , {ti, · · · , t f }. Without loss of generality, we assume that time granularity
is again 15 minutes. The total energy taken from an PEV from ti until t f is denoted by:

Em , [Eti
m, · · · , E

t f

m] (3)

We use this as a foundation to represent an individual that specifies an energy con-
sumption scheduling vector. More specifically, an individual is represented by:

EM ,






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t f
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.
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ti
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, · · · , E

t f
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






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(4)

where each Et
m is a real value representing the quantity of energy taken from an PEV’s

battery. Each row represents the behaviour of a single PEV over the full period; each
column represents the behaviour of all PEVs at a single time-slot. An individual in the
EA is just a matrix EM , unrolled to give a vector of real-valued functions, that is:

E
ti
1 , · · · , E

t f

1 , E
ti
2 , · · · , E

t f

2 , · · · , E
ti
M
, · · · , E

t f

M
(5)

Based on these definitions, the total energy taken across all M PEVs at each t ∈

[ti, t f ] can be calculated as:

Et ,

∑

m∈M

Et
m (6)

To automatically find good energy consumption scheduling solutions, defined in
Equation 4, we need to define a fitness (cost) function that indicates the quality of our
evolved solution. First, we focus our attention in designing a cost function that tries to
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create valid solutions in terms of using the maximum allowed energy from each PEV
(i.e., guaranteeing that a minimum state of charge (SoC) is left at the time of departure
t f ).

From Equation 3, we know the amount of energy available from m ∈ M at any
given period of time t denoted by Et

m. Because each PEV can be charged at work and
the distance from home to work remains constant, it is fair to assume the knowledge of
a minimum SoC expressed in kW, denoted as mS oC , at the time of departure t f for each
m ∈ M, so that it can reach work and be recharged at a lower rate. From this, we let
the DE to assess a potential solution, denoted in Equation 4, measuring the amount of
energy taken from the PEVs. This is defined as:

fl(EM) , maximise
1

#{m ∈ M}

∑

m∈M

Em + (Em + 1)(mS oC − E
ti
m)

mS oC

(

E
ti
m − mS oC

) (7)

Equation 7 guides evolutionary search towards a local optimum solution since it
only encourages the finding of solutions that maximise the use of allowable energy
taken from PEVs’ batteries. Thus, there is a necessity to further enrich this equation,
so that a higher quantity of energy is taken from the PEVs’ batteries whenever deemed
necessary (e.g., higher consumption during high peak periods). We achieve this by using
Equations 2 and 6 that indicate the load across all household units Lt at time t and the
total energy taken across all PEVs Et at time t, respectively; and we define a degree of
importance for each time slot as tr. Putting everything together we have:

fg(EM) , fl(EM)+maximise
1

#{m ∈ M}
tr

t f
∑

t=ti

Et

Lttr
∀tr < Tr−

1
#{m ∈ M}

tr

t f
∑

t=ti

Et

Lttr
∀r ≥ Tr

(8)
where Tr is a threshold that denotes the number of time slots that are considered critical
(i.e., high peak period). In this work, as defined in this section and we discuss further
afterwards, a number of time slots is defined by ti and t f , where a third is considered
critical (Tr = 20).

3 EXPERIMENTAL SETUP

3.1 Household Units

To test the scalability of our proposed approach, we simulated the consumption of 40
and 80 household units, where each of them uses between 10 and 20 appliances. As
indicated throughout the paper, the goal is to use PEVs’ batteries in an intelligent way
to partially satisfy energy demand from the end-use consumers (recall that we work
under the assumption that the PEVs can be charged at work).

To this end, we simulated that around 20% of household units account for an PEV.
To make this problem dynamic, we allowed the patterns of arrival (ti), departure (t f ) and
initial State of Charge (S oC) for each of the PEVs to vary for each of the 30 simulated
working days. More specifically, the arrival and departure time for each of the PEVs
have a 90-minute time frame starting at ti =17:00 and t f =6:30, respectively (i.e., arrival
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Fig. 2. Average of best fitness values of 30 independent runs for each of the five types of muta-
tion operators tested in this work (see Section 2), using 500 individuals and 200 generations, to
maximise energy consumption from electric vehicles’ batteries (Equation 7). Higher values are
preferred.

time could be between 17:00 and 18:30, whereas departure time could be between 6:30
and 8:00). The initial S oCti for each of the PEVs for each of the simulated days is set
between 48% and 60% and the final SoCt f

is set between 30% and 35% to allow each
PEV to reach work. Table 1 summarises the parameters used to simulate our scenario.
We ran our simulations for a period of 30 days of simulated time.

3.2 Scenarios

As indicated in Section 2, we defined a bottom-up approach, where we defined, first,
a fitness function that tries to maximise the energy that can be taken from the PEVs’
batteries while ensuring that each of them reaches work, described in Equation 7. We
then enriched the fitness function by trying to also reduce the highest load demands at
the substation transformer, described in Equation 8 (i.e., use the most amount of energy
from the batteries at high-peak time while at the same time ensuring the PAR remains
low). We tested both fitness functions for 40 and 80 household units, resulting in four
different scenarios.

3.3 Differential Evolution

As mentioned in Section 2, differential evolution’s performance, as any other evolution-
based algorithm, depends, among other things, on the values associated to the parame-
ters that need to be specified for the algorithm (e.g., population size, number of gener-
ations), in general, and in the type of operator used, in particular.

No a priori knowledge is available to presume which mutation operator will per-
form better in the previously defined problem. To this end, we executed 30 indepen-
dent runs of our proposed approach for each of the mutation variants, e.g., DE/rand/1,
DE/best/1 (1509 independent runs in total to find only the best mutation strategy) using

9 30 independent runs * 5 variants of the mutation operator.
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Parameter Value

Number of household
40, 80

units
Number of appliances Uniform in [10,20]

Number of PEVs
≈ 20% of houses
have one PEV

Arrival and departure time
ti =[17:00,18:30]
t f =[6:30,8:00]

Frequency of making
15 minutes

a decision
Number of times slots T 60
State of Charge at ti Uniform in [48, 60]
State of Charge at t f Uniform in [30, 35]
Table 1. Summary of parameters used for
our smart grid system.

Parameter Value

Population size 500
Length of the

T (see Table 1)
individual
Height of the Number of PEVs
individual (see Table 1)
Generations 200
Crossover rate 0.5
Mutation strategy DE/rand/2
Elitism 1 individual

Termination criterion
Maximum number
of generations

Independent runs 30
Table 2. Summary of parameters used for
our evolutionary algorithm.

the first proposed fitness function (Equation 7) which maximises the energy taken from
11 PEVs’ batteries to complement the energy consumption of 40 household units aver-
aged over 30 days. Figure 2 shows the performance by measuring the average of best
fitness per generation for each of the five mutation variants, using a population size of
500 individuals and 200 generations.

Clearly, the mutation strategy DE/rand/2 achieved the best performance and we
used it to run our experiments to automatically find a (nearly) optimal solution. To
obtain meaningful results, we performed 30 independent runs for each of the scenarios
explained in the previous paragraphs (we executed 30 * 4 runs in total10). Runs were
stopped when the maximum number of generations was reached.

As mentioned in Section 2, every element of the DE vector represents how much
energy can be taken from the batteries of the PEVs. We make a decision every 15
minutes. Thus, the length of the individual that represent the solution is the number
of time slots defined between 17:00 and 8:00am, whereas the height is defined by the
number of electric vehicles used, as defined in Equation 4. The parameters used in our
experiments are summarised in Table 2.

4 RESULTS

In the following paragraphs, we will analyse: (a) how the PEVs’ batteries were used
to partially satisfy the demand of a set of household units, (b) when the highest con-
sumption from PEVs’ batteries occurred, and finally, (c) the implications of the new
consumption model via the analysis of the peak-to-average-ratio.

10 30 independent runs, 4 different scenarios (i.e., 40 and 80 household units, trying to max-
imise: (a) energy consumption from PEVs, and (b) energy consumption from PEVs while also
considering reducing highest load peaks; for each of the set of household units used in this
work).
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4.1 Maximising Energy Consumption from PEVs’ batteries
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Fig. 3. Average of 30-day energy consumption for 40 (top) and 80 (bottom) household units,
each using between 10-20 appliances. The consumption of energy from the transformer alone
is shown by the white-filled bars whereas the black-filled bars represent the consumption taken
from electric vehicles’ batteries. Maximising energy consumption from electric vehicles only and
maximising energy consumption from electric vehicles while considering also reducing highest
load peaks are shown in the left-hand side and right-hand side of the figure, respectively.

Let us start analysing our approach on how the batteries of the PEVs helped to
partially satisfy the consumption demand from a set of household units. The averaged
consumption over a period of 30 days of these household can be seen in Figure 3 (a, b)
and (c, d) for 40 and 80 houses, respectively.

In the left-hand side of this figure, we show the distribution of consumption of both
transformer and PEVs’ batteries proposed by the differential evolution algorithm, when
trying to maximise the consumption of energy from the PEVs’ batteries via Equation 7.
More specifically, it aims at using all the possible energy available from the batteries
while guaranteeing that each PEV has a minimal SoC at the time of departure (see Ta-
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ble 1) that guarantees that each PEV will reach work. The white-filled bars represent
the electricity taken from the substation transformer whereas the remaining consump-
tion to fulfil the load demand is taken from the PEVs’ batteries. The latter is shown by
the black-filled bars.

Because we are interested in using the PEVs’ batteries as mobile energy storage
units, we are particularly interested in seeing how the energy consumption from these
is managed by the differential evolution algorithm. In the first instance of our algorithm
(i.e., maximising the energy consumption from the batteries of PEVs with associated
constraints as formally described in Equation 7, as mentioned previously), it is expected
that the energy taken from the batteries would not follow a particular pattern (e.g.,
there is no correlation between the amount of energy consumption from PEVs and the
energy needed by a number of household units). Indeed, this is the case as seen in the
left-hand side of Figure 3. For example, notice how the consumption from PEVs’ is
proportionally similar during both high-peak (e.g., 18:30 - 19:30) and low-peak periods
(e.g., 22:00 - 23:00).

The situation is more encouraging when we consider the second instance of our al-
gorithm (i.e., maximising energy consumption from PEVs’ batteries while considering
high-peak periods as formally described in Equation 8), shown in the right-hand side
of Figure 3. As it can be observed, the proposed enriched fitness function is able to
automatically produce results that can reduce the load peaks from the substation trans-
former by using more electricity from the PEVs’ batteries. For example, notice how the
consumption of energy from batteries is higher during high-peak periods (e.g., 18:30
- 19:30) and lower during low-peak periods (e.g., 22:00 - 23:00). Details on the con-
sumption, per day for six days, can be seen in Figures 4 and 5 when using 40 and 80
household units, respectively. The first two rows and the last two rows of these figures
show the behaviour observed when using Equations 7 and 8, respectively.

4.2 Consumption from PEV’s batteries

In the previous paragraphs, we discussed and showed the results obtained by our ap-
proach using two fitness (cost) functions, formally described in Equations 7 and 8. It is
clear that the latter function is able to use a higher quantity of energy from the PEVs’
batteries during high-peak periods compared to the effects observed when using the for-
mer function, as shown in the right-hand and left-hand side of Figure 3, respectively,
using 40 and 80 household units. This averaged result over a period of 30 simulated
working days, however, does not inform us in detail when the highest consumption
from batteries occurred (e.g., when and how much consumption from the batteries for
every of the simulated days occurred). Some insight can be gained when analysing some
days (see Figures 4 and 5) but this still is limited since, due to page-limit constraints,
not all days can be shown.

To this end, we kept track of the consumption from the PEVs’ batteries during the
simulated period of time (i.e., 17:00 - 8:00) for every day of the simulated days. The
patterns of such consumption are shown in Figure 6 (a, b) and (c, d) for 40 and 80
household units, respectively.

Let us start our analysis when maximising the energy that can be taken from the
batteries while ensuring that each PEV has the minimum SoC at the time of departure,
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40 houses trying to maximise the use of PEV’s batteries
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40 houses trying to maximise the use of PEVs’ batteries while attempting to reduce high peak loads
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Fig. 4. Consumption per day (only 6 days chosen randomly) for 40 household units using each
between 10 and 20 appliances. The consumption of energy from the transformer alone is shown
by the white-filled bars whereas the black-filled bars represent the consumption taken from elec-
tric vehicles batteries. Maximising energy consumption from electric vehicles only is shown in
the first two rows and maximising energy consumption from electric vehicles while considering
also reducing highest load peaks is shown in the last two rows.
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80 houses trying to maximise the use of PEV’s batteries
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80 houses trying to maximise the use of PEVs’ batteries while attempting to reduce high peak loads
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Fig. 5. Consumption per day (only 6 days chosen randomly) for 80 household units using each
between 10 and 20 appliances. The consumption of energy from the transformer alone is shown
by the white-filled bars whereas the black-filled bars represent the consumption taken from elec-
tric vehicles batteries. Maximising energy consumption from electric vehicles only is shown in
the first two rows and maximising energy consumption from electric vehicles while considering
also reducing highest load peaks is shown in the last two rows.
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Fig. 6. Energy quantity taken from 11 (a, b) and 21 (c, d) electric vehicles over the range of time
period studied in this work, from 17:00 until 8:00 (shown in the x-axis), for 30 days (shown in the
y-axis) to help with the energy consumption of 40 (a, b) and 80 (c, d) household units. Darker-
filled circles represent higher energy quantity taken from the PEVs’ batteries. The enriched cost
function, described in Equation 8, follows a well-defined desired pattern (b, d), whereas the cost
function that tends to find local optimum solutions, described in Equation 7, tends to have a rather
undesirable random pattern (a, c).

defined in Equation 7. The consumption pattern of this is shown in Figure 6 (a) and
(c) for 40 and 80 household units, respectively. It should be noted that the higher the
consumption from batteries is, the darker the dot. We can see that a random pattern
is achieved by the cost function shown in Equation 7. That is, for every recorded day,
shown in the y-axis, the amount of energy taken from the batteries is rather random
regardless of the period time, shown in the x-axis, except from 17:00-18:30 and 6:30
– 8:00, where the consumption from batteries is low. This can be explained due to the
availability of PEVs during these periods. That is, as indicated in Section 3, each PEV
has its own time of arrival and departure which varies during these periods of time.

We continue our analysis on the proposed enriched maximisation cost function, see
Equation 8, that aims at using the most amount of energy from the batteries of the PEVs
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while ensuring that each has a minimum SoC at the time of departure, and that tries to
reduce the highest peak loads. The consumption pattern from the batteries is shown in
Figure 6 (b) and (d) for 40 and 80 household units, respectively. This is a mirror image
of what we discussed in the previous paragraph. That is, there is a well-defined pattern
for each of the simulated days, shown in the y-axis, during the period of study, shown in
the x-axis of the figure. We can observe that this cost function indeed achieves at using
the most amount of energy when it is needed the most (high-peaks) as shown by the
darker-filled squares while ensuring that the constraints are not violated (e.g., minimum
SoC at the time of departure).

4.3 Peak-To-Average Ratio

As indicated previously, the peak-to-average ratio (PAR) is calculated by the maximum
load demand for a period of time over the average load demand for the same period. It
has been shown that a lower PAR is preferred [16].

We calculated the PAR considering the consumption from the substation trans-
former. Figure 7 shows the PAR for 40 (left-hand side) and 80 (right-hand side) house-
hold units for each of the 30 working simulated days using our proposed approach. It
is easy to observe that a higher PAR is achieved by the fitness (cost) function formally
defined in Equation 7, which goal is to use the most amount of energy from PEVs’ bat-
teries while at the same time aims at guaranteeing that each PEV has a minimum SoC
at the time of departure compared to that PAR achieved by the enriched fitness function
formally described in Equation 8 that is built on the top of Equation 7, which also tries
to reduce the highest peak loads.

This, in fact, is to be expected given that the fitness function described in Equation 8
does consider an associated ranking system (recall that a third of time slots are consid-
ered critical, i.e., high peak period) that is able to reflect smoothly the consumption
from the substation transformer as shown by the low PAR achieved by this enriched
fitness function for each day of the 30 simulated days, denoted by the white-filled bars
in Figure 7.

5 CONCLUSIONS

Demand-Side Management (DSM) refers to programs that aim to control the energy
consumption at the customer side of the meter. Different techniques have been pro-
posed to achieve this. The most popular techniques are those based on smart pricing
(e.g., critical-peak pricing, real-time pricing). One major limitation of smart pricing is
the fact that the electricity price is proportional to the electricity demand. This is par-
ticularly true for the time-of-use smart pricing adopted in some countries, where there
is a financial incentive to use the electricity at night given its lower cost compared to
its cost during day time. To alleviate this problem, we proposed the development of a
demand-side autonomous intelligent management system that exploit plug-in electric
vehicles’ (PEV) batteries. More precisely, our system uses the PEV’s batteries to par-
tially and temporarily fulfil the demand of end-use consumers instead of using only the
electricity available from a substation transformer.
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Fig. 7. Peak-to-average ratio (PAR) load demand achieved by our proposed approach when trying
to maximise energy consumption from PEVs’ batteries (black-filled bars) vs. when trying to
maximise energy consumption from PEVs’ batteries while aiming at reducing highest load peaks
(white-filled bars), for 40 and 80 household units shown at the left-hand side and right-hand side
of the figure, respectively. A lower PAR is preferred.

To this end, we used an stochastic bio-inspired method, differential evolution, given
its natural representation (encoding of a solution) that allows to make fine-grained de-
cision in terms of the exact energy that can be taken from PEVs’ batteries to partially
and temporarily fulfil energy requirements from a set of household units. To effectively
do so, we proposed two fitness (cost) functions that achieve: (a) to use the maximum
allowed energy from PEVs while still guaranteeing they can complete a journey, and
(b) to use the maximum energy consumption from PEVs batteries while considering
reducing high-peak periods.

From experimental results, it is clear that the enriched fitness function is able to use
the most amount of energy from PEVs, it is also able to reduce peak loads and it is also
able to achieve a lower PAR compared to the other ‘simple’ fitness function proposed
in this work.
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10. E. Galván-López, R. Poli, C. Coello, Reusing code in genetic programming, in: M. Keijzer,
U.-M. OReilly, S. Lucas, E. Costa, T. Soule (Eds.), Genetic Programming, Vol. 3003 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2004, pp. 359–368.
URL http://dx.doi.org/10.1007/978-3-540-24650-3_34
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