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Abstract

Demand-Side Management systems aim to modulate energy consumption at the customer side of the meter using price incen-
tives. Current incentive schemes allow consumers to reduce their costs, and from the point of view of the supplier play a role in
load balancing, but do not lead to optimal demand patterns. In the context of charging fleets of electric vehicles, we propose a
centralised method for setting overnight charging schedules. This method uses evolutionary algorithms to automatically search
for optimal plans, representing both the charging schedule and the energy drawn from the grid at each time-step. In successive
experiments, we optimise for increased state of charge, reduced peak demand, and reduced consumer costs. In simulations, the
centralised method achieves improvements in performance relative to simple models of non-centralised consumer behaviour.

Keywords: Demand-Side Management Systems, Evolutionary Algorithms, Genetic Algorithms, Evolution Strategies, Electric
Vehicles, State of Charge, Peak-to-average ratio, Electricity Costs, Smart grid time-of-use pricing

1. Introduction

EU policy aims to reduce greenhouse gas emissions and reduce dependency on imported fossil fuels. The
“20-20-20” targets [1] mandate the reduction in member states to 20% below the 1990 emission levels, the sup-
ply of 20% of all energy from renewable energy sources (RESs) and a reduction in energy consumption by 20% by
the year 2020.

Electric vehicles (EVs) are viewed as playing a role in reducing emissions in the transport sector, but their usage
causes an increase in electricity demand. The use of RESs also causes problems for the efficient operation of a power
plant [2]. Increased cycling (starting up and shutting down) of the power system results in increased wear and tear on
the plant and can cause an increase of greenhouse gas emissions.

Therefore, new methods are required to increase electricity grid efficiency and reduce emissions. The smart grid
(SG) is one main approach. A SG is a type of electrical power grid whose goal is to respond to the behaviour and
actions of energy suppliers and consumers to efficiently deliver economic, reliable and sustainable electricity services.
Multiple research areas have been explored in SG over recent years as a result of different challenges that have been
posed to the electrical grid. One of the most explored areas in SG is Demand-Side Management (DSM) systems as
shown by the increasing number of publications, ranging from the use of intelligent algorithms (e.g., game theory [3],
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Monte Carlo-based methods [4], evolutionary algorithms [5], multi-agent systems [6]), real-time systems [7], up to
challenges and in-depth surveys on the area [8, 9, 10, 11].

DSM is a set of measures to improve the energy system at the consumer side. DSM ranges from improving energy
efficiency through the use of better insulation or better materials up to the use of autonomous systems to control
energy resources [10]. DSM programs include different approaches, e.g. manual conservation and energy efficiency
programs [12] and Residential Load Management (RLM) [6, 3]). RLM programs based on smart pricing are amongst
the most popular methods.

The motivation for smart grid tariff structures is twofold. They allow consumers to reduce their electricity costs. At
the same time, the utility company achieves a reduction in the peak-to-average ratio (PAR) in load demand resulting
from the shifted consumption [6]. If no special measures are taken to avoid them, high PAR values come about
naturally because consumer electricity demand follows a diurnal pattern, with increased load in the morning, a dip in
the afternoon, a rise in the evening, and a stronger dip in the middle of the night.

Some of these smart pricing methods are very popular. In particular, time-of-use (ToU) pricing has been widely
adopted in some European countries [11]. Other smart pricing types include critical-peak pricing, extreme day pricing,
and smart grid real-time pricing, to mention a few.

Motivated by smart price-based approaches, we are interested in developing an autonomous intelligent DSM
system that shifts electricity consumption of electric vehicles (EVs). To this end, we use stochastic optimisation
evolutionary algorithms (EAs). The main contribution of this work focuses on the notion of load shifting, borrowed
from popular smart pricing-based methods. In contrast to typical DSM approaches such as dynamic pricing, which
are based on an interaction between the utility and the user, we use a centralised approach, wherein the consumption
schedule is set centrally based on complete information of all EVs. The motivation is to achieve improvements in
performance. To do so, we use EAs to automatically generate (optimal) solutions. The use of all EVs is considered
in the solution representation used in our EAs (described in detail in Section 2). We also use this in the evaluation of
candidate solutions.

To test this idea, we considered a dynamic scenario of 28 simulated days, with the charging period from 18:00 to
07:30, divided into 28 time-slots of 30 minutes each. An action (switching EV charging on or off) can be taken at the
beginning of each time-slot. We defined three different goals:

(a) that EVs’ batteries are as fully charged as possible;
(b) we add an extra goal to (a) by aiming for a low fluctuation at the transformer load (i.e., low PAR); and finally,
(c) we add a third and final goal that aims to reduce electricity costs to the consumer by using a pricing signal based

on ToU.

To achieve these three goals, we propose three fitness functions. Each will be used independently in our EA and will
guide our evolutionary search to automatically create an (optimal) plan.

The core elements in this work are:

1. We study the impact of the representation and functions proposed in this work when scaling the problem up
(i.e., from using a few EVs to using dozens of them) by measuring the transformer load, the initial and final
state of charge (SoC), the PAR and electricity costs.

2. To do so, we used two EA approaches: a genetic algorithm and an evolution strategy and compared their
performance against three non-intelligent approaches (i.e., Greedy-, Midnight- and Random method), each of
them simulating a specific user behaviour.

3. A dynamic scenario was used to study all these approaches by allowing having a variety of changes, i.e. different
SoC for each EV for each of the simulated days, over a 28-day simulated period.

1.1. Importance of this Research in DSM
DSM has been investigated extensively over recent years. For instance, it has been shown that more than 2,000

scientific papers have been published in this area since the 1980s [4], with more than half in this decade. Figure 1
shows a visual representation of the research trends followed in DSM (a) from 2010 until now, and (b) in 2014 only1.

1Source: http://ieeexplore.ieee.org/Xplore/home.jsp. Last accessed date: 31/08/2014. Links of strength less than 55 (in (a)) or 20
(in (b)) are filtered out. Details on how this was produced can be found in [13].
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Figure 1. Research trend on ‘Demand-side management’ systems (a) 2010 until 2014, and, (b) 2014 only. Only links (similarities) with strength
greater than 55 (in (a)) or 20 (in (b)) are shown.
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As can be seen in Figure 1 multiple topics have been covered in DSM, ranging from electricity costs, the use of
electric vehicles, up to the use of data. The research conducted in this work lies at the very core of the research trend
observed in this figure.

The challenges continuously presented to the grid, such as the aggregation of new electric devices (e.g., electric
vehicles using the grid can double the average household load [3]) make the use of intelligent algorithms suitable to
be used in the design/implementation of DSM systems. Figure 1 shows this trend. For instance, notice the presence
of “algorithms”, “programs”, and “methods”. In fact, one could consider the presence of “algorithms” in the core of
Figure 1 if researchers had unified their use around this unique term instead of various synonyms.

Several algorithms have been used in DSM system and each has focused attention on different areas within DSM.
For example, it has been shown that by adopting pricing tariffs which differentiate energy usage by time and level, a
global optimal performance can be achieved by means of a Nash equilibrium of the formulated consumption schedul-
ing game [3]. Multi-agent systems have also been used in DSM. For instance, the research conducted in [14] aimed
to create a DSM based on these type of systems and studied different types of smart pricing, concluding that in all
studied scenarios, a high PAR was observed under the use of these smart pricing models (e.g., ToU, critical peak price,
real-time pricing).

In this work we use EAs to automatically create plans to intelligently charge EVs’ batteries, aiming at reducing
PAR, reducing load at the substation transformer, and reducing costs to the consumer.

This paper is organised as follows. In the following section we introduce our proposed approach. Section 3 shows
the experimental setup used in this study. In Section 4, we present and discuss our findings. Section 5 draws some
conclusions and presents some future work.

2. Proposed Approach

2.1. Background

Evolutionary Algorithms (EAs) [15, 16], also known as Evolutionary Computation systems, are influenced by the
theory of evolution by natural selection. These algorithms have been with us for some decades and are very popular,
perhaps, due to their successful application in a range of different problems, ranging from the automated design of
an antenna carried out by NASA [17], the automated optimisation of game controllers [18, 19], the automated design
of combinational logic circuits [20, 21], to automated optimal localisation for building seismic sensing stations [22].
EAs are “black-box”, that is, they do not require any specific knowledge of the fitness function. They work even
when, for example, it is not possible to define a gradient on the fitness function or to decompose the fitness function
into a sum of per-variable objective functions. The fitness functions used in our work (described in Section 2.2) are
not amenable to analytic solution or simple gradient-based optimisation, hence search algorithms such as EAs are
required.

The idea behind EAs is to automatically generate (nearly) optimal solutions by “evolving” potential solutions
(individuals forming a population) over time (generations) by using bio-inspired operators (e.g., crossover, mutation).
More specifically, the evolutionary process includes the initialisation of the population P(0) at generation g = 0.
The population consists of a number of individuals which represent potential solutions to the particular problem. At
each iteration or generation (g), every individual within the population (P(g)) is evaluated using a fitness function that
determines its fitness (i.e., how good or bad an individual is). Then, a selection mechanism takes place to stochastically
pick the fittest individuals from the population. Some of the selected individuals are modified by genetic operators
and the new population P(g + 1) at generation g + 1 is created. The process stops when some halting condition is
satisfied. Further details on how these stochastic optimisation algorithms work can be found in [15, 16].

2.2. Representation and Evaluation

In this work, we use a fixed-length bitstring representation, where each bit indicates whether a particular EV
should be charged or not during a particular time period.

Let N denote the number of household units (users). Let M denote the number of electric vehicles (EVs) available
in N. In our study M = N. In our work the time-slots are of length 30 minutes, starting at ti and running to t f .
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Therefore an energy consumption schedule can be naturally represented by a matrix of bits:

EM ,


Eti

1 , · · · , E
t f

1
Eti

2 , · · · , E
t f

2
...

Eti
M , · · · , E

t f

M

 (1)

where each Et
m is a single bit representing whether EV m is charging at time t or not. Each row represents the

behaviour of a single EV over the full period; each column represents the behaviour of all EVs at a single time-slot.
An individual in the EA is just a matrix EM , unrolled to give a bitstring, that is:

Eti
1 , · · · , E

t f

1 , E
ti
2 , · · · , E

t f

2 , · · · , E
ti
M , · · · , E

t f

M (2)

Now, we need to define a fitness function (cost function) to automatically evaluate the candidate solution shown
in Equation 2. To do so, we need to define several elements, discussed next.

For each m ∈ {1, . . . ,M}, let ltm denote the load drawn by EV m at time t. If Et
m = 0 then ltm = 0; if Et

m = 1 then
ltm = 1.7kW (this constant is characteristic of the EV). The total load across all EVs at each time t ∈ {ti, . . . , t f } is

Lt ,
∑

m∈{1,...,M}

ltm (3)

As indicated previously, we are interested in the first instance in automatically creating (near-)optimal schedules
so that the final state of charge SoCt f for all m ∈ {1, . . . ,M} is as high as possible (goal (a) as described in Section 1).
Let us call this the ‘Charging’ function, fc. Thus, we aim to maximise

fc(EM) ,
1
M

∑
m∈{1,...,M}

SoCt f (Em)
SoCmaxm

(4)

where we denote the maximum possible charge as SoCmaxm . Equation 4 guides our EA towards a solution that aims
to charge each EV as much as possible.

We now proceed to consider goal (b), which is a low fluctuation in the total EV load over time. The peak-to-average
ratio (PAR) is calculated as the maximum load demand for a period of time divided by the average load demand.
Therefore, the PAR in demand is obtained by using Equation 3 as a basis, and so we have

PAR ,

max
t∈{ti,...,t f }

Lt

1
T

∑
t∈{ti,...,t f }

Lt
(5)

To define a suitable fitness function, we start by defining the variance of the total load (Equation 3) over time. We
take the negative (and add a scaling constant) so that we aim to maximise:

S (EM) , −
1
C
σ[Lti , · · · , Lt f ] +

1
C

(6)

where σ[Lti , · · · , Lt f ] is the variance in the total load over time, and C ≈ 80%M. Equation 6 calculates the constancy
of load. Now, we are in position to define a ‘Steady Charging’ function:

fs(EM) ,

 fc(EM) if ∃m : SoC(Em) < SoCmin,
fc(EM) + S (EM) otherwise.

(7)

where SoCmin is the minimum state of charge that an EV should achieve at time t f , and in this work we have arbitrarily
chosen SoCmin = 80% of capacity. Equation 7 aims first at reaching this minimum SoC for all EVs and then tries to
achieve constancy of EV load at the transformer. This in consequence translates into having both a constancy and a
low PAR (Equation 5).
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We finally consider our final goal (c): reduction of electricity costs. So, we define our third and last function, to
be called ‘Price-Based Charging’ ( fp). This function works in three stages. It first tries to charge an EV to a certain
minimum SoC, SoCmin. Once this is achieved, it tries to reduce costs, by taking advantage of cheaper electricity at
certain times (details are given in Section 3). It then tries to reduce variance at the transformer load (Equation 6). The
reduction of electricity cost is defined by

R(EM) ,
C
M

∑
m∈M

(
1 −

Pm(EM)
Pmaxm − Pminm

)
(8)

where Pm, Pmaxm , and Pminm indicate the price of a given scheduling Em for a single EV m, the highest possible price
for that EV, and the optimal price for it, respectively.

Since R(EM) is a reduction, higher values are better. We will denote the minimum desired price reduction as
Rmin. In this work we use the value Rmin = 0.15, chosen empirically. Other values are also possible. By using the
expressions in (4), (6) and (8) we are now in a position to define our ‘Price-Based Charging’ function fp. Thus, we
have

fp(EM) ,


fc(EM) if ∃m : SoC(Em) < SoCmin,
fc(EM) + R(EM) if ∀m : SoC(Em) ≥ SoCmin and R(EM) < Rmin,
fc(EM) + R(EM) + S (EM) otherwise.

(9)

Next, we describe the experimental setup used in this work to test the three proposed functions: Charging ( fc),
Steady Charging ( fs) and Price-Based Charging ( fp).

3. Experimental Setup

3.1. Grid Scenario

We assume that EVs are charged only at home, and between the hours of ti = 18:00 and t f = 07:30, inclusive. This
charging period is divided into 30-minute slots. This scenario is common in previous research [5, 23, 24, 25]. There
are several reasons why a 30-minute slot is used: sometimes electricity costs are recorded every 30 minutes [25];
another reason is to reduce the decision space in the context of reinforcement learning [6]. In this study, we decided to
use 30-minute slots in order to have candidate solutions of reasonable size (see Equation 1), which results in a smaller
search space. Our representation allows for charging to switch on or off every 30 minutes, but modern EV batteries
are not as susceptible to damage from switching charging on and off frequently [26].

In our considered benchmark smart grid system there are N = {10, 30, 60, 90} users, each with one EV (hence
N = M). Each EV m ∈ {1, . . . ,M} can only be charged at home. These small numbers of EVs are not unrealistic:
in real-world electricity markets, a Demand Aggregator is a market participant which plays the role of a middleman
between the consumer and the supplier (see e.g. [27]). In our scenario, a Demand Aggregator would be responsible
for the centralised control of a (potentially small) number of EV charging schedules.

We simulated a dynamic scenario, where the initial state of charge (SoC) for each EV at time of arrival (ti) at home
varies for each of the 28 simulated days.

To calculate the electricity costs yielded by the fitness functions proposed in Section 2, we use the smart pricing
time-of-use ‘Standard Electricity NightSaver’ plan implemented by electric Ireland2 on the summertime schedule. The
peak time is from 09:00 until midnight, whereas the remaining time is off-peak time (Table 1 shows the electricity
costs for these two periods). In our scenario, this translates as having a high-peak time from 18:00 until 23:30, whereas
the off-peak time is from midnight until 07:30.

Table 1 summarises the parameters used to simulate our grid scenario. We ran our simulations using the GridLab-D
simulator [28] (version 2.3). This is an open source electrical grid simulator developed by the US Department of
Energy.

2Source: https://www.electricireland.ie/switchchange/detailsValueRewardNightSaver.htm
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Parameter Value
Number of EVs (N) {10, 30, 60, 90}
Initial time and latest ti =18:00,
time to charge t f =07:30
Frequency of making a decision 30 minutes
Number of time slots T 28
State of Charge (SoC) at ti (%) Uniform in [40, 60]
Battery capacity (kW) Random from {24, 60}
Plug-in charging (kW) 1.7

Time-of-use pricing (kWh) e0.2062 (peak)
e0.1019 (off peak)

Table 1. Summary of parameters used for our smart grid system.

Parameter Value
Length of the chromosome NT (see Table 1)
Population size 100
Generations 200
Crossover rate 0.5 (Only for the EA)
Mutation rate 0.01

Table 2. Summary of parameters used for our evolutionary algo-
rithm.

3.2. Evolutionary Algorithms
The experiments were conducted using two evolutionary algorithms: (1) a population-based EA, with a steady

state approach with tournament selection, one-point crossover and bit-flip mutation; and (2) a 1+1-evolution strat-
egy (only one individual is evolved using mutation). We will refer to them in this work as “EA” and “1+1-ES”,
respectively.

The parameters used for the EA are shown in Table 2. The 1+1-ES uses mutation as the only genetic operator. It
was run for 20,000 generations, giving the same total number of fitness evaluations as the EA. The parameter values
and type of operators were determined empirically in pilot experiments. From these experiments there are some
elements worth mentioning. For example, a two-point crossover decreased the performance of our EA, whereas the
one-point crossover, which we used in our work, exhibited a slightly better performance. We also realised that a much
lower number of generations were required when using 10 and 30 EVs to find good results. However, we decided to
use the same number of generations over all the EVs scenarios (from 10 up to 90 EVs) to make a fair comparison.

Because of the stochasticity in the initial conditions on each day and in the EA, we performed extensive indepen-
dent runs (we executed 672 runs in total, see Table 3 for details). Runs were stopped when the maximum number of
generations was reached.

3.3. Baselines
We will provide three simple methods of setting charging schedules as baselines against which to compare EA

performance, named “Greedy”, “Midnight” and “Random”.
The Greedy baseline represents one typical customer behaviour. It represents the behaviour of a customer who

begins charging the EV at 18:00, ignoring cost, until the time of departure (07:30) or until it is fully charged
(i.e. SoCmaxm ). This is not an unrealistic behaviour for many customers. It is fully deterministic. For evaluation
purposes, the Greedy approach can be represented in the EA framework by a matrix where each row is of the form

[1, 1, . . . , 1, 1, 1, . . . , 1] (if charging has not finished at 07:30)
[1, 1, . . . , 1, 1, 0, . . . , 0] (if charging finishes before 07:30)

where the transition point from charging (1) and non-charging (0) is determined by the EV’s initial SoC, capacity, and
target SoC.

The Midnight baseline represents the behaviour of a customer who aims to use the cheapest possible electricity,
and so starts charging at midnight when the off-peak price applies, and continues until either the EV is charged or
the customer leaves home at 07:30. For evaluation purposes, the Midnight approach can be represented in the EA
framework by a matrix where each row is of the form

[0, 0, . . . , 0, 1, 1, . . . , 1] (if charging continues until 07:30), or
[0, 0, . . . , 0, 1, 1, . . . , 1, 0, 0, . . . , 0] (if charging finishes before 07:30)
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Description Value
Number of simulated days 28
Number of fitness functions 3
Number of EV fleets 4
Number of algorithms (EA and 1+1-ES) 2
Total number of runs 672∗
∗672 = 28 * 3 * 4 * 2.

Table 3. Total number of runs executed for our experiments.

Approach
Electric Vehicles

10 30 60 90
1+1 ES Charging 1’43” 3’53” 2’05” 2’47”
1+1 ES Steady 3’57” 10’10” 13’52” 12’21”
1+1 ES Price-Based 4’27” 6’50” 4’28” 4’32”
EA Charging 2’00” 5’21” 5’29’ 8’01”
EA Steady 4’09” 11’00” 12’53” 15’51”
EA Price-Based 4’11” 9’52” 11’28” 15’32”

Table 4. CPU time using different sizes of EV fleets over a pe-
riod of 28 days, using the three proposed fitness functions (i.e.,
Charging, Steady Charging, Price-Based Charging) and using two
variants of EAs (i.e., 1+1-ES and EA). Notice that this CPU time
excludes compiling the simulator, which takes approximately one
minute. This has to be compiled for each of scenarios shown in
this table.

The Random baseline represents, perhaps, a more realistic behaviour of customers given that it incorporates ran-
domness. Each EV begins charging at a random time and ends at a random (later) time. For evaluation purposes, the
Random approach can be represented in the EA framework by a matrix where each row is of the form

[0, 0, . . . , 0, 1, 1, . . . , 1, 0, 0, . . . , 0]

4. Results and Discussion

As discussed throughout the paper, we are interested, broadly speaking, in maximising the charge of the EVs’
batteries, while at the same time balancing the transformer load.

Thus, in the following paragraphs we focus our attention on the performance of our proposed approach by
analysing the total EV load at the transformer over time and how this translates to charge in the EVs’ batteries by
analysing the initial and final state of charge. We also analyse what the impact is on the peak-to-average ratio. Finally,
we discuss and analyse the implications of the proposed approach in terms of electricity costs.

4.1. Overall Performance
Let us start our analysis by considering the performance of our proposed approaches in terms of their fitness values,

as defined in Section 2.2. The three fitness functions are named (a) Charging, (b) Steady Charging and (c) Price-Based
Charging. According to all three definitions of fitness, higher fitness values are preferred. Their performance is shown
in Figure 2 when using a 1+1-ES (top row) and when using a population-based EA (bottom row). Evolutionary time,
i.e. generations, is shown on the ‘x-axis’, and fitness on the ‘y-axis’. As mentioned before, both the 1+1-ES and the
EA use the same number of fitness evaluations (e.g., 20,000 generations, as seen in the ‘x-axis’ of Figure 2 (top),
for the 1+1-ES evolving 1 individual; and 200 generations, shown in the ‘x-axis’ of Figure 2 (bottom), for the EA
using 100 individuals). All three fitness functions show the expected tendency to yield higher fitness values as search
progresses. CPU time required to run the experiments is shown in Table 4 using a desktop computer with Intel Core
i7-2600 CPU clocked at 3.40GHz and 8GB RAM.

Broadly speaking, the results show that the 1+1-ES slightly out-performs the EA, and that performance for both
algorithms tends to decrease slightly as problem size increases (the 10- up to 90-EV cases).

The Charging fitness function, formally defined in Equation 4, aims to charge the EVs’ batteries as much as
possible. This is the simplest function defined in our work. The 1+1-ES achieves very good results for this function
(Figure 2 (a)), with the EA (Figure 2 (d)) achieving equally good results for the smallest problem (10 EVs) and slightly
worse for larger ones.

The Steady Charging fitness function, formally described in Equation 7, is built on top of the Charging fitness
function (it aims to charge the EVs’ batteries as much as possible) but also considers a steady charging of the EVs’
batteries. As explained in Section 2, this function works in two stages: it aims at charging the EVs’ batteries up to a
certain point, SoCmin = 80% of capacity in Equation 6) and then it tries to find solutions that draw power steadily from
the transformer (low PAR). When using the 1+1-ES to optimise this fitness function (Figure 2 (b)), we can observe
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Figure 2. Average of best fitness values over 28 independent runs for each of the three fitness functions proposed in this work, named (a) Charging,
(b) Steady Charging and (c) Price-Based Charging, using a 1+1-ES (top row) and a EA (bottom row). The fitness values denote the performance
of our proposed fitness functions using different number of EVs: 10, 30, 60 and 90, specified with the red-filled squares, green-filled diamonds,
blue-filled circles and magenta-filled squares, respectively. Higher fitness values denote better performance.

good performance after only 2,000 generations (the equivalent of 20 generations with the EA). Thereafter the fitness
values improve marginally if at all. In contrast, the EA achieves good results slowly (Figure 2 (e)). Even at the end of
the run, the results on the largest case (90 EVs) are improving but are still not quite as good as for the 1+1-ES. This
may suggest that longer runs would allow the EA to continue to improve, eventually out-performing the 1+1-ES.

The third and last fitness function proposed in our work, named Price-Based Charging, formally described in
Equation 9, works in three stages: it aims to charge the EVs’ batteries up to a certain point (i.e., SoC 80%), then
it tries to reduce electricity costs given a pricing signal. Once search is able to meet these two targets, it tries to
achieve a constancy at the transformer load (Equation 6). The performance of this function when using the 1+1-ES
is depicted in Figure 2 (c). We can see a trend similar to that of the previous two fitness functions when using this
particular algorithm. That is, performance drops for the larger problems (60- and 90-EV cases). The EA (Figure 2
(f)) marginally out-performs the 1+1-ES on the 10-EV case, but again performance is somewhat worse for larger
problems.

From the above discussion, we have learned that both algorithms are capable of improving all three fitness func-
tions, and that the 1+1-ES has a slight advantage over the EA. However the functions’ impact on the individual goals
of the work (transformer load, SoC, PAR, and electricity costs) is not yet clear. This is particularly so for the func-
tions that work in two phases (i.e., the Steady- and Price-Based Charging), due to the fact that the fitness values are
a combination of these stages. In the following sections, the fitness functions’ impact on the individual goals will
be examined in turn and compared to the baselines described in Section 3 (i.e. the Greedy, Midnight, and Random
baselines).
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Figure 3. Transformer load, averaged for 28 days, for 10 electric vehicles (EVs). From top to bottom and from left to right, the figures show
the transformer load for the (a) Greedy-, (b) Midnight-, (c) Random approach, (d) 1+1-ES Charging, (e) 1+1-ES Steady Charging, (f) 1+1-ES
Price-Based Charging, (g) EA Charging, (h) EA Steady Charging and (i) EA Price-Based Charging.

4.2. Transformer Load

Let us consider the load over time, averaged over a period of 28 simulated days, depicted in Figures 3, 4, 5 and 6,
for 10, 30, 60 and 90 EVs, respectively, when using the Greedy, Midnight and Random baselines, and using both the
1+1-ES and a EA with the three fitness functions.

Results for the Greedy approach are shown with red squares in Figures 3 (a), 4 (a), 5 (a) and 6 (a) (top-left
image in all cases). It results in a high transformer load from 18:00. Demand begins to drop from 00:00 as some EVs
become fully charged. It represents one of the two worst-case scenarios for transformer load (the other is the Midnight
approach, discussed in the next paragraph) because it simulates that an EV starts charging as soon as it reaches home.
As expected, this approach gives a higher transformer load during the 18:00-00:00 period than either of the algorithms
with any of the three fitness functions. We can also see that with the Greedy approach it is not possible to fully charge
all the EVs’ batteries for each of the simulated days since with this method the transformer load never drops to zero,
as shown in Figures 3 (a), 4 (a), 5 (a) and 6 (a) for 10, 30, 60 and 90 EVs, respectively. The reason why this happens
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Figure 4. Transformer load, averaged for 28 days, for 30 electric vehicles (EVs). From top to bottom and from left to right, the figures show
the transformer load for the (a) Greedy-, (b) Midnight-, (c) Random approach, (d) 1+1-ES Charging, (e) 1+1-ES Steady Charging, (f) 1+1-ES
Price-Based Charging, (g) EA Charging, (h) EA Steady Charging and (i) EA Price-Based Charging.

is due to three main factors: the battery sizes, the limit on charging rate, and the period of time during which EVs can
be charged (these specifications and their corresponding values are shown in Table 1).

The Midnight approach is depicted with magenta squares in Figures 3 (b), 4 (b), 5 (b) and 6 (b) for 10, 30, 60 and
90 EVs, respectively (top-centre image in all cases). Here, load is zero until 00:00, then jumps to a maximum and
remains at this value until some EVs become fully charged. It is equally as bad as the Greedy approach, and in fact,
it shows the same transformer load achieved by the Greedy approach, but at a different time. Because of the nature of
this approach (i.e., starts to charge the EVs at midnight, when the electricity cost is the lowest) and by considering the
previous approach, which starts charging the EVs 6 hours before compared to this approach, it is clear that none of the
EV fleets will be fully charged at the time of departure, as can be observed in the referred figures. For instance, if we
consider the case with 10 EVs, shown in Figure 3 (b) we can see that at 07:30, the average transformer load is around
12kW, whereas for the Greedy approach, the average transformer load is around 4kW, depicted in Figure 3 (a). The
same trend is observed for the rest of the EV fleets (i.e., 30, 60 and 90 EVs). We will further discuss the implications
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Figure 5. Transformer load, averaged for 28 days, for 60 electric vehicles (EVs). From top to bottom and from left to right, the figures show
the transformer load for the (a) Greedy-, (b) Midnight-, (c) Random approach, (d) 1+1-ES Charging, (e) 1+1-ES Steady Charging, (f) 1+1-ES
Price-Based Charging, (g) EA Charging, (h) EA Steady Charging and (i) EA Price-Based Charging.

of this transformer load when analysing the state of charge, peak to average ratio and electricity costs later in this
section.

We now turn our attention to the last non-intelligent approach, the Random approach, shown with black circles
in Figures 3 (c), 4 (c), 5 (c) and 6 (c) for 10, 30, 60 and 90 EVs, respectively (top-right image in each case). Unsur-
prisingly, we can see that the average transformer load is reduced substantially compared to the values found during
charging periods by the other two non-intelligent approaches (i.e., Greedy and Midnight), discussed previously. This
is to be expected given the nature of this approach. That is, each EV may begin to charge at any point in the time pe-
riod (i.e., from 18:00 until 07:30 as specified in Table 1). Clearly, this approach is the best amongst the non-intelligent
algorithms in terms of keeping the transformer load low. Its effect on the final state of charge, peak to average ratio,
and electricity costs will be discussed later in this section.

Let us now turn our attention to the transformer load using a 1+1-ES approach with each of the three fitness
functions proposed in this work: Charging, Steady Charging and Price-Based Charging, denoted by the triangles, in
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Figure 6. Transformer load, averaged for 28 days, for 90 electric vehicles (EVs). From top to bottom and from left to right, the figures show
the transformer load for the (a) Greedy-, (b) Midnight-, (c) Random approach, (d) 1+1-ES Charging, (e) 1+1-ES Steady Charging, (f) 1+1-ES
Price-Based Charging, (g) EA Charging, (h) EA Steady Charging and (i) EA Price-Based Charging.

the middle row (d)–(f), from left to right, of Figures 3, 4, 5 and 6 for 10, 30, 60 and 90 EVs, respectively. If we
focus our attention on the 10-EV case, shown in Figure 3, and consider the Charging function, we can observe that
the algorithm tends to reduce the transformer load compared to the first two non-intelligent approaches, despite not
explicitly aiming to minimise it. In fact, the average transformer load is something over half of that achieved during
charging with the Greedy and Midnight approaches, with a high variability (the standard deviation is shown by the
vertical lines). A similar trend can be seen when using 30 EVs, as seen in Figure 4 (d), 60 EVs as shown in Figure 5
(d), and 90 EVs as depicted in Figure 6 (d). A similar tendency can be seen when using the same algorithm (1+1-ES)
and the two other fitness functions proposed in this work. For instance, if we continue analysing the 10 EV case,
we can see that the Steady Charging function, formally defined in Equation 6 yields similar results: see Figure 3
(e), compared to the Charging function as shown in Figure 3 (a), discussed in the previous paragraph. Moreover,
the Price-Based Charging function again yields similar results (see Figure 3 (f) compared to the Charging function).
This intuitively means that when using the 1+1-ES and these fitness functions, one should expect similar results when
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analysing the final SoC, electricity costs, and PAR. We will discuss these later in this section.
We now analyse behaviour of the population-based EA (or simply EA) with the three proposed fitness functions.

The results obtained by the EA are shown in the bottom row (g)–(i) of Figures 3, 4, 5 and 6 for 10, 30, 60 and 90 EVs,
respectively. We see that results are very similar to those of the 1+1-ES, and again are superior to those of the Greedy,
Midnight, and Random approaches. There are some elements worth mentioning for each of the functions presented
in this work.

For instance, when using the Charging fitness function (bottom left-hand corner, Figures 3 (g), 4 (g), 5 (g) and 6
(g)), it can be perceived that the average transformer load is, for the smaller problem sizes (10, 30 and 60 EVs), larger
than when using the Steady Charging function (bottom centre, Figures 3 (h), 4 (h), 5 (h) and 6 (h)). However, the
Steady Charging function has a much more smooth load compared to the Charging fitness function. This is to be
expected since the latter function rewards candidate solutions that tend to show less variance in terms of the actions
executed by the EVs. The difference between these two functions is less clear when using 90 EVs, as depicted in
Figure 6 (g) and (h).

Finally, let us focus our attention on the effect of the Price-Based Charging functions on the average load at the
transformer, shown in Figures 3 (i), 4 (i), 5 (i) and 6 (i) (bottom-right image in each case), when using 10, 30, 60
and 90 EVs, respectively. This function is built on the previously discussed functions. It aims to charge the EVs’
batteries up to a certain level (i.e., 80%). Once they reach this level, the function tries to achieve a certain reduction
in electricity cost. Finally it aims for balanced load. As can be seen, this function works fairly well as it follows the
pricing signal (recall that the lowest price is from midnight onward as specified in Table 1), which results in the ‘stair’
shape seen in Figures 3 (i), 4 (i) and 5 (i). The situation is less clear when using 90 EVs, as seen in Figure 6 (i).

As indicated throughout the paper, the proposed approach, discussed in Section 2, aims at charging the EVs’
batteries as much as possible at the time of departure, balancing transformer load, and reducing consumer electricity
costs. Only the first of these goals is captured in the Charging function defined in Equation 4, whereas the Steady
Charging considers the first two goals, and Price-Based Charging considers all three.

4.3. State of Charge

From our previous analysis on the transformer load and the three fitness functions, we know that the Charging
function will achieve a higher final state of charge (SoC) compared to that achieved by the two other functions.
However, it remains unclear exactly what final SoC will be achieved for both the non-intelligent approaches (i.e.,
Greedy, Midnight and Random) and the EA approaches (i.e., 1+1-ES and population-based EA) using each of the
three fitness functions.

Thus, to shed some light on this, we calculated the final SoC for all the approaches discussed previously using
10, 30, 60 and 90 EVs. The results are shown in Figure 7 (a)–(d), respectively. Recall that the initial SoC for each
of the EVs, for each of the 28 simulated days, is between 40% and 60%, as specified in Table 1. It can be seen
that, unsurprisingly, the Greedy approach, shown in the first boxplot, achieves the highest final SoC, regardless of the
number of EVs used. This, however, is achieved at a great cost since the transformer load is fairly high, as discussed
in the previous paragraphs. The Midnight approach also shows a high final SoC given that all EVs start to charge as
soon as the electricity price drops at 00:00, and continue until the time of departure (18 slots over 28 available time
slots, see Table 1 for details). This intuitively means that one should expect to see a low electricity price when using
this approach, but it has the drawback of having a high transformer load from 00:00, as discussed in the previous
paragraphs. The Random approach shows the lowest SoC among all the approaches (see third boxplot in each of the
plots of Figure 7), including the EA methods used in this work. This is to be expected by its nature. Recall that any
EV could be charged during any time over the charging period. Moreover, it could be charged for a short period (e.g.,
1 slot = 30 minutes).

Let us now analyse the results yielded by both EA methods: 1+1-ES and population-based EA. To facilitate our
analysis, we have put together in Figure 7 the results from methods using each of the fitness functions proposed in
this work. From the formal definition of these functions, introduced in Section 2 and from the analysis conducted
throughout all the paper, we know that the Charging function should result in having a high SoC, and this is found in
the fourth and fifth boxplots of Figure 7 (b)–(d). For the 10-EV case (Figure 7 (a)) there is no difference.

If we now focus our attention on the results yielded by the Steady Charging function, shown in the seventh and
eighth boxplots of Figure 7 (a)–(d), we can see a similar scenario compared to the Charging function, described above.
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Figure 7. Percentage of state of charge (SoC), averaged for 28 simulated days using (a) 10, (b) 30, (c) 60 and (d) 90 electric vehicles (EVs). The
figures show a summary of the results achieved by the non-intelligent algorithms (i.e, Greedy, Midnight and Random approach) and the two variants
of EAs (i.e., 1+1-ES and population-based EA) using the three proposed fitness functions: Charging, Steady Charging and Price-Based Charging,
specified in the ‘x-axis’ of the figures. The variance within each scenario comes about partly through the fact that the initial conditions vary during
the 28 simulated days, as well as the non-deterministic behaviour of the EA.

The differences between the 1+1-ES and EA, if any, are small. However, the SoC achieved by this Steady Charging
function is often lower than that of the Charging function. This is also to be expected given the features of the former
function. That is, it tends to charge an EV as much as possible while at the same trying to make a low fluctuation at
the transformer load. Thus, as a result of the last constraint, one should expect a lower SoC.

The final fitness function, Price-Based Charging function, shown in the last two boxplots of Figure 7 (a)–(d),
shows a slightly lower SoC compared to the previous fitness functions, regardless of the EA approach used. Again,
by analysing both the fitness function and the results on the transformer load, we can see that the rather erratic
behaviour observed on the transformer load should result on having a lower SoC compared to the other two functions,
as discussed in the previous paragraphs.

4.4. Peak-to-average ratio

The peak-to-average ratio (PAR) is calculated by the maximum load demand for a period of time divided by the
average load demand (see Equation 5). A lower PAR is preferred [29] via [3]. The total required generating capacity
is determined by the peak load, hence a low PAR allows for a reduction in the total required generating capacity.
PAR is related to but distinct from the Steady Charging objective, in that Steady Charging is motivated by a desire to
reduce the inter-time-step fluctuation in load, whereas PAR is concerned only with the peak and the average load. It
is possible to achieve a relatively low PAR despite a relatively bad (“non-steady”) Steady Charging behaviour.
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(c) 60 electric vehicles (d) 90 electric vehicles

Figure 8. Peak-to-average ratio (PAR), averaged for 28 simulated days using (a) 10, (b) 30, (c) 60 and (d) 90 EVs. The figures show a summary
of the PAR when using the non-intelligent algorithms (i.e, Greedy, Midnight and Random approach) and the two variants of EAs (i.e., 1+1-ES and
population-based EA) using the three proposed fitness functions: Charging, Steady Charging and Price-Based Charging, specified in the ‘x-axis’
of the figures.

The PAR achieved by the non-intelligent approaches (i.e., Greedy, Midnight and Random) and our proposed
approach using each of the three fitness functions when using a 1+1-ES and a population-based EA is summarised in
Figure 8. The horizontal dotted line shown in the figure is the optimal value that can be obtained and it is taken as a
baseline against which to compare all the approaches used in this work.

Considering only the non-intelligent approaches, the Greedy approach achives the lowest PAR, followed by the
Midnight approach and the Random approach. To see why this happens, one should recall how each of these ap-
proaches work. For instance, the Midnight approach achieves higher PAR compared to the Greedy approach because
although both reach the same peak (at 00:00 and 18:00 respectively), the Midnight approach has a zero load before
00:00 whereas the Greedy approach never draws a load of zero. The Random approach achieves the highest PAR
amongst these approaches given its constant fluctuation.

If we now consider the EA approaches using the three proposed fitness functions, we see some differences worth
mentioning. Let us start with the best (lowest) PAR, yielded by the Steady Charging function and using both the
population-based EA and the 1+1-ES, shown in the sixth and seventh boxplots of Figure 8 (a)–(d). We can see that
for the 10, 30 and 60 EV scenarios, shown in Figure 8 (a) - (c), the PAR value is almost the ideal as it is close to
the horizontal line, which denotes the optimal PAR value. This, however, is not observed for the case of 90 EVs,
which agrees with the rather erratic result observed at the transformer load shown in Figure 6 (i). The other two
fitness functions, Charging and Price-Based Charging, yield high PAR values regardless of both the number of EVs
and the type of EA employed. This is in fact to be expected. For the Charging function, one should recall that this
function does not consider to reward candidate solutions based on a low fluctuation of the load. On the other hand,
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(c) 60 electric vehicles (d) 90 electric vehicles

Figure 9. Electricity costs, in euros, averaged for the number of electric vehicles used (a) 10, (b) 30, (c) 60 and (d) 90 electric vehicles. The figures
show an average of the electricity cost when using the non-intelligent algorithms (i.e, Greedy, Midnight and Random approach) and the two variants
of EAs (i.e., 1+1-ES and population-based EA) using the three proposed fitness functions: Charging, Steady Charging and Price-Based Charging,
specified in the ‘x-axis’ of the figures.

the Price-Based Charging function does consider the fluctuation. However, the high PAR observed by this function is
mainly caused by the drastic change in price, resulting in having a fairly big jump at the transformer load at 00:00, as
observed by the ‘stair’ shape in Figures 3 (i), 4 (i), 5 (i), for 10, 30 and 60 EVs, respectively.

4.5. Electricity costs

As measures of the performance of the plans produced, we have considered transformer load over time (Fig-
ures 3–6), the state of charge (Figure 7), and the peak-to-average ratio (Figure 8). It remains to consider the electricity
cost. The natural way to measure this is as the total cost of the electricity drawn by all EVs over the 28 simulated days.
However, it is necessary to account for the fact that some plans draw more electricity than others: this is reflected in
the fact that the SoC at the end of the charging period is not uniform. Therefore, we have implemented a measure
of electricity cost we will refer to as Equalised Cost. It uses the minimum SoC achieved for each EV as a reference
point. Since all EVs achieve this SoC or higher, the cost up to this SoC can be compared fairly. Therefore, we simply
calculate the cost of electricity per EV up to this minimum SoC, and disregard the electricity drawn after this SoC.
That is, within this metric all EVs are seen as drawing the same amount of electricity. Furthermore, we calculate the
electricity costs by considering the ToU and the peak and off-peak times, as discussed in Section 3 (a summary is
provided in Table 1).

The results of this analysis are shown in Figure 9, with more details shown in Table 5. For all scenarios (10, 30, 60,
and 90 EVs) there is quite a clear trend of decrease in Equalised Cost as we move from the Greedy approach, through
the Charging and Steady Charging to the Price-Based Charging fitness function. The price per EV for the Greedy
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Approach
Consumption in kWh Consumption in kWh

Equalised Cost Equalised Cost per EV
during peak hours during off-peak hours

10 electric vehicles
Greedy 102.21 7.92 21.88 2.18
Midnight 0 110.13 11.22 1.12
Random 38.73 71.40 14.32 1.43
1+1-ES Charging 60.87 49.26 17.20 1.72
EA Charging 65.99 44.14 18.10 1.81
1+1-ES Steady Charging 60.05 50.08 17.12 1.71
EA Steady Charging 60.96 49.17 17.58 1.75
1+1-ES Price-Based Charging 27.35 82.78 13.34 1.33
EA Price-Based Charging 27.14 82.99 14.05 1.40

30 electric vehicles
Greedy 307.77 37.06 67.24 2.24
Midnight 0 344.84 35.13 1.17
Random 81.52 263.31 36.95 1.23
1+1-ES Charging 203.80 141.03 56.39 1.87
EA Charging 193.34 151.50 55.30 1.84
1+1-ES Steady Charging 163.43 181.41 52.18 1.73
EA Steady Charging 166.72 178.11 52.52 1.75
1+1-ES Price-Based Charging 96.78 248.05 44.88 1.49
EA Price-Based Charging 107.40 237.44 46.34 1.54

60 electric vehicles
Greedy 617.41 75.38 134.99 2.24
Midnight 0 692.8 70.59 1.17
Random 163.54 529.26 73.91 1.23
1+1-ES Charging 405.05 287.75 112.79 1.87
EA Charging 342.31 350.48 106.30 1.77
1+1-ES Steady Charging 313.08 379.72 103.20 1.72
EA Steady Charging 319.23 373.56 103.89 1.73
1+1-ES Price-Based Charging 200.29 492.51 89.31 1.48
EA Price-Based Charging 244.61 448.18 96.10 1.60

90 electric vehicles
Greedy 930.59 128.45 204.97 2.27
Midnight 0 1059.05 107.91 1.20
Random 246.49 812.56 112.90 1.25
1+1-ES Charging 544.94 514.11 163.93 1.82
EA Charging 490.65 568.39 159.09 1.76
1+1-ES Steady Charging 475.54 583.51 156.34 1.73
EA Steady Charging 481.31 577.73 158.11 1.75
1+1-ES Price-Based Charging 348.26 710.79 142.25 1.58
EA Price-Based Charging 414.73 644.31 151.17 1.67

Table 5. The Equalised Cost is calculated based on the number of kilowatt-hours drawn during peak and off-peak hours, equalized between
schedules by taking into account only electricity up to a minimum SoC. The Equalised Cost per EV is calculated based on the Equalised Cost and
the number of EVs.

approach is relatively constant, at about EUR2.18 – EUR2.27 per charging period. This relatively high price reflects
the fact that the Greedy approach carries out its charging as early as possible, as seen in Figures 3–6, coinciding with
the peak charging period. Obviously, the Midnight approach results in the lowest Equalised Cost given that it only
uses the cheapest electricity cost. The Random approach also yields some fairly low Equalised Costs, although with
a high variance. The reason the latter approach yields some low Equalised Costs is due to the fact that the off-peak
period is longer than the peak period (see Table 1 for details).

The Charging and Steady Charging fitness functions tend to spread the load out more, hence as a by-product tend
to take better advantage of the off-peak charging period, again as seen in Figures 3–6. The two are comparable, though
Steady Charging spreads the load out slightly more and achieves slightly lower overall price.

However, the Price-Based Charging fitness function explicitly rewards low prices, and so is capable of achieving
lower prices: approximately EUR1.40 for 10 EVs, up to EUR1.67 for 90 EVs, when using the population-based EA
approach. However, its advantage over the other fitness functions, which is very clear for 10, 30 or 60 EVs, is far less
clear for 90 EVs.
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5. Conclusions and Future Work

We have implemented two variants of evolutionary algorithms (EAs): a 1+1-ES and a population-based EA to
search for efficient charging schedules for fleets of EVs, achieving good results in terms of reducing peak demand
and reducing consumers’ electricity costs, while maintaining a high overall state of charge of EVs’ batteries. We have
tested these approaches on small to medium fleet sizes – 10, 30, 60 and 90 EVs – using realistic data generated by a
state of the art grid simulator, over the course of 28 simulated days.

We have found that the 1+1-ES is capable of slightly out-performing a population-based EA, referred to in this
work as EA. We have also shown that both the EA and the 1+1-ES approach exhibit better performance compared
against the non-intelligent methods (i.e., Greedy-, Midnight- and Random approach) used in this work. This is a
significant result because each of these non-intelligent methods reflects likely default behaviour for most consumers:
in the Greedy approach, the EV is simply plugged in and charged up fully as soon as it arrives home each evening;
in the Midnight approach, the EV is plugged in at midnight to take advantage of the cheapest electricity cost; and in
the Random approach, the EV could be charged at any time during the simulated period for any length of time. In
contrast, either of the EAs used in this work produces plans which take advantage of lower-cost pricing in the middle
of the night, and at the same time reduce peak demand.

Although numbers of EVs are projected to be in the thousands or millions, Demand Aggregators may have much
smaller fleet sizes. Therefore, the smaller fleet sizes considered here represent an important real-world case. The slight
disimprovement in the EA’s results noted in Section 4 for the 90-EV case is not a cause for great concern. However,
in future work we hope to scale our results up further.

It is an assumption of this work that customers are willing to submit their charging schedules to a central authority,
e.g. a Demand Aggregator. The intelligent algorithms used in this work (i.e., 1+1-ES and EA) require centralised
knowledge (the number of EVs and their initial SoC) and centralised control (specification of when each EV should
charge, up to 30-minute granularity). This assumption is not unrealistic. As we have seen, customers will do better
through centralised control than through the most likely individualised behaviour, the Greedy approach. However,
more informed and more price-conscious customers will be willing to deviate from the Greedy approach in order to
avail of lower cost periods in the middle of the night. Such behaviour would lead to decreases in performance, in
particular increases in peak demand. Therefore, to apply our work customers would have to be either contracted to
submit control of charging schedules to the central authority, or induced to do so via a monetary reward. (Any such
monetary reward is not considered in our calculations of electricity costs.)

In future work, this assumption could be removed, by modelling consumers as independently evolving agents
seeking to reduce their own costs and maximise their own SoC. The price signal would then have to be modulated
to induce a steady charging behaviour. Both the consumer’s behaviours and the price signal policy could then be
optimised in a coevolutionary setup.

We hope that the results achieved by our EA approach using the fitness functions proposed in this work and by
using a well-developed grid simulator could attract the attention of companies to adapt this form of machine learning
technique.
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