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Abstract. Multiple Artificial Intelligence (AI) methods have been pro-
posed over recent years to create controllers to play multiple video games
of different nature and complexity without revealing the specific mechan-
ics of each of these games to the AI methods. In recent years, Evolu-
tionary Algorithms (EAs) employing rolling horizon mechanisms have
achieved extraordinary results in these type of problems. However, some
limitations are present in Rolling Horizon EAs making it a grand chal-
lenge of AI. These limitations include the wasteful mechanism of creating
a population and evolving it over a fraction of a second to propose an
action to be executed by the game agent. Another limitation is to use
a scalar value (fitness value) to direct evolutionary search instead of ac-
counting for a mechanism that informs us how a particular agent behaves
during the rolling horizon simulation. In this work, we address both of
these issues. We introduce the use of a statistical tree that tackles the
latter limitation. Furthermore, we tackle the former limitation by em-
ploying a mechanism that allows us to seed part of the population using
Monte Carlo Tree Search, a method that has dominated multiple General
Video Game AI competitions. We show how the proposed novel mech-
anism, called Statistical Tree-based Population Seeding, achieves better
results compared to vanilla Rolling Horizon EAs in a set of 20 games,
including 10 stochastic and 10 deterministic games.

1 Introduction

General video game playing aims to produce Artificial Intelligence (AI) agents
capable of playing a variety of games rather than playing a specific game. This is
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one of the grand challenges of AI. Games are excellent benchmark problems that
provide opportunities to test and analyse algorithms in AI. The General Video
Game AI (GVGAI) framework [30] is a popular setting that offers a collection
of games of different characteristics and this has been used extensively.

Statistical forward planning techniques, such as Monte Carlo Tree Search
(MCTS) [25] and Rolling Horizon Evolutionary Algorithms (RHEA) [26], are
considered the dominant AI techniques in GVGAI competitions [30]. RHEAs
have become real contenders to tree search-based methods that have dominated
many GVGAI competitions for many years. Vanilla RHEA models sequences
of actions encoded in individuals that are improved through an evolutionary
process. The algorithm can be stopped at any time and returns the first action
of the fittest individual to be executed by the game agent.

Vanilla RHEA ignores valuable information available when testing the indi-
viduals in the evolutionary process. This issue has been addressed with the use
of a statistical tree approach [29], the employment of a population seeding [6]
and the use of a shift buffer mechanism [7], to mention a few. All these meth-
ods yielding better results compared to Vanilla RHEA. However, most of the
Vanilla RHEA enhancements waste computational power evaluating meaning-
less individuals and struggle to maintain a diverse population throughout the
evolutionary process, which is important to avoid getting stuck in local optima.
The lack of diversity in Vanilla RHEA is likely to happen given the small number
of individuals forming a population due to the limited time budget available to
the algorithm in which potential solutions can be evolved.

The main contribution of this work is the proposal of novel mechanisms for
Vanilla RHEA that exploits the theoretical guarantees of the Upper Confidence
Tree (UCT) policy, explained in Section 3 and heavily employed by MCTS.
We use this to generate tree-based individuals and seed part of the evolved
population saving valuable computational time. Valuable information gathered
during the rolling horizon simulation of the EAs is used and is stored in an
statistical tree.

The remainder of this paper is organised as follows. Section 2 presents the
related work. Section 3 outlines the background in Monte Carlo Tree Search,
Evolutionary Algorithms (EAs), Rolling Horizon EAs, and GVGAI. Section 4
discusses our proposed approach. Section 5 presents the experimental setup used
and Section 6 presents and discusses the results obtained by all the approaches
adopted in this study. Section 7 concludes this paper with some remarks.

2 Related Work

Statistical tree enhancements, inspired by tree search algorithms, were devised
by Perez et al. [29]. Statistical tree enhancements targets some of the shortcom-
ings of Vanilla RHEA of not using information knowledge obtained from previous
game cycles. The idea of this approach is to build a tree with the statistics of the
scores acquired during the game simulations. The tree is built while evaluating
each individuals action plan. Each action is added as a node to the tree starting
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from the root. The root represents a node whose action was chosen on the pre-
vious game step. Each node contains information of how many times it has been
visited, the action assigned to it and also an accumulated reward. This is called
Open Loop Search and it means that the game states (generative models) are
not stored in the nodes. This is important because the game states can become
obsolete and provide irrelevant information. The tree is built by evaluating the
first action of the individual and this action is added as a child to the root node.
All subsequent actions are added in the similar manner. When the last action
is applied using a forward model, the game state is evaluated and its result is
assigned to the individual’s fitness. This value is then back-propagated to the
root, incrementing the node visits count and augmenting stored rewards with
the fitness value.

Some other interesting works have been proposed to improve Vanilla RHEA.
Gaina et al. [7] used four approaches to overcome some limitations present in
Vanilla RHEA. The first approach, called Bandit-based mutation, aims at using
a bandit system for mutations at both individual and gene level. Interestingly,
Gaina et al. used this to revert mutations when no improvement in the value of
a given individual was observed. The second approach, named statistical tree,
keeps statistical information in game trees associated to each individual evolved.
The fitness of each individual is employed to update the statistics stored in
each node that has been visited during the evaluation of the individual. The
third approach proposed by Gaina et al., called shift buffer, is a simple yet
effective technique that maximises the information gained during the limited
time to make a decision. Instead of discarding information in every generation,
the authors simply add a new random action at the end of each individual
in the population. The last approach called roll-outs, inspired by the work of
Horn et al. [23] and Monte Carlo simulations, consists of rolling a simulation
and then selecting a random selection of actions and game simulations using the
forward model. The authors reported competitive results compared to tree-based
methods. In particular, shift buffer, in combination with other approaches, such
as roll-outs, yielded the most promising results.

More recently, Santos and Hauck [31] proposed two ideas combined into one
approach: (i) one-step-look-ahead and (ii) a redundant action avoidance policy
with the goal of overcoming some limitations present in Vanilla RHEA. The
former idea consists of using the forward model to try every possible action
available from the current game state with the goal of selecting the best possible
action. This was executed after shift buffer was applied, as proposed by Gaina et
al. [7] and explained previously. The latter idea proposed by Santos and Hauck
seeks to avoid redundant actions. More specifically an action is randomly selected
whenever a set of sequence of actions is present in the individuals forming a
population. They tested their approach using 20 different games and compared
their results against Vanilla RHEA and Shift Buffer obtaining better results
overall.
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3 Background

3.1 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a sampling method for finding optimal de-

cisions by performing random samples within the decision space and building a
tree according to the partial results. These Monte Carlo methods work by ap-
proximating future rewards that can be achieved through random samplings. The
evaluation function of MCTS relies directly on the outcomes of simulations. The
accuracy of this function increases by adding more simulations, thus the optimal
search tree is guaranteed to be found with infinite memory and computation [25].
However, in more realistic scenarios (e.g., limited computing resources available),
MCTS can produce very good approximate solutions. MCTS has gained a lot of
popularity thanks to its recent success in the board game of computer Go [22],
where the space of solutions is 10170 and up to 361 legal moves. A problem, that
until recently, was highly difficult for AI, and considered much more harder than
chess, and where MCTS has obtained excellent results, including achieving dan
– master – level at the 9 x 9 board game. This is, perhaps, the reason why MCTS
has been used heavily in two-player board games.

However, researchers have begun to apply MCTS to other research problems.
For instance, MCTS has been explored in constraint satisfaction (e.g., constraint
problems [2]) and energy-based problems [12,13].

The Mechanics Behind MCTS MCTS relies on two key elements: (a) that
the true value of an action (in our problems, an action could be turn right, turn
left, and so on) can be approximated using simulations; and (b) that these values
can be used to adjust the policy towards a best-first strategy. The algorithm,
explained later in this section, builds a partial tree, guided by the results of
previous explorations of that tree. The algorithm iteratively builds a tree until
a condition is reached or satisfied (e.g., number of simulations, time given to
perform Monte Carlo simulations), then the search is halted and the best per-
forming action is executed. In the tree, each node represents a state, and directed
links to child nodes represent actions leading to subsequent states.

Like many AI techniques, MCTS has several variants. Perhaps, the most
accepted steps involved in MCTS are those described in [4] and are outlined as
follows: (a) Selection: a selection policy is recursively applied to descend through
the built tree until an expandable node has been reached. A node is classified as
expandable if it represents a non-terminal state, and also, if it has unvisited child
nodes; (b) Expansion: normally one child is added to expand the tree subject
to available actions; (c) Simulation: from the new added nodes, a simulation is
run to obtain an outcome (e.g., reward value); and (d) Back-propagation: the
outcome from the simulation step is back-propagated through the selected nodes
to update their statistics.

Simulations in MCTS start from the root state (in our case, from the current
time when an action for an electric device should be made) and are divided in
two stages. When the state is added in the tree, a tree policy is used to select the
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actions (the selection step is a key element and it is discussed in detail later in this
section). Otherwise, a default policy is used to roll out simulations to completion.
One element that contributed to enhance the efficiency in MCTS is the selection
mechanism proposed in [25]. The main idea of this proposed selection mechanism
was to design a Monte Carlo search algorithm that had a small probability
error if it were stopped prematurely and eventually converged to the optimal
solution given enough time. The selection mechanism nicely balances exploration
vs. exploitation and this will be explained in the following paragraphs.

Upper Confidence Bounds for Trees As indicated previously, MCTS works
by approximating “real” values of the actions that may be taken from the current
state. This is achieved through building a search or decision tree. The success of
MCTS depends heavily on how the tree is built and the selection process plays
a fundamental role in this. One particular selection mechanism that has proven
to be very reliable is the UCB1 [1]. Formally, UCB1 is defined as:

UCB1 = X̄j + 2K

√

2 · ln(n)

nj

(1)

where n is the number of times the parent node has been visited, nj is the
number of times child j has been visited, X̄j is the mean reward of the node j

and K > 0 is a constant. In case of a tie for selecting a child node, a random
selection is normally used [25]. Thus, this selection mechanism is successful due to
its emphasis on balancing both exploitation (first part of Eq. 1) and exploration
(second part of Eq. 1). Every time a node is visited, the denominator of the
exploration part increases resulting in decreasing its overall contribution. If,
on the other hand, another child node of the same parent node is visited, the
numerator increases, so the exploration values of unvisited children increase.
The exploration term in Eq. 1 guarantees that each child node has a selection
probability greater than zero, which is essential given the random nature of the
play-outs.

3.2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) [5] refer to a set of stochastic optimisation bio-
inspired algorithms that use evolutionary principles to build robust adaptive
systems. EAs work with a population of µ-encoded potential solutions to a par-
ticular problem. Each potential solution, commonly known as an individual,
represents a point in the search space, within which the optimum solution lies.
The population is evolved by means of genetic operators, over a number of gener-
ations, to iteratively produce better results to the problem. Each member of the
population is evaluated using a fitness function to determine how good or bad
the potential solution is for the problem at hand. The fitness value assigned to
each individual in the population probabilistically determines how successful the
individual will be at propagating (part of) its code to further generations. Better
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performing solutions will be assigned higher values (for maximisation problems)
or lower values (for minimisation problems). The evolutionary process is repeated
until a stopping condition is met. Normally this is until a maximum number of
generations has been executed. The population in the last generation is the re-
sult of exploring and exploiting the search space over a number of generations.
It contains the best evolved potential solutions to the problem and may also,
in some cases, represent the globally optimum solution. EAs have been success-
fully used in a wide variety of problems including games [11,15,19], energy-based
problems [10,18,20,17], evolvable hardware [9,16], file type detection [24], classi-
fication of imbalanced datasets [8,14,21], to mention a few examples.

3.3 Rolling Horizon Evolutionary Algorithms

Rolling Horizon Evolutionary Algorithms (RHEAs) [28] are inspired by MCTS
as explained in Section 3.1. RHEAs employ roll-outs and a generative model
(a simulator) allowing the algorithm to see into the future for a short period
of time (generally for a fraction of a second). Using this information, the agent
(individual) evolves a plan by means of EAs, explained in Section 3.2, executes
an action on the problem by firing the first action of its plan. This continues until
a stopping condition is met. In the context of GVGAI, RHEAs are executed until
the game is over. Details on how RHEA works can be found in greater detail
within [28].

3.4 General Video Game Artificial Intelligence

In this work, we use the General Video Game AI (GVGAI) framework [30] to
test our proposed approach, called Statistical Tree-based Population Seeding (see
Section 4). The GVGAI framework provides a corpus of games, as well as means
for creating games, that can be used as testbeds. The corpus consists of two-
player games and single-player 2D games of different genres, including shooter,
maze, survival, puzzle, and so on. All games have their own rules, scoring and
winning criteria. For example, in the game “Aliens”, the agent (or controller)
wins when it kills all of the aliens and it gets points for every killed alien and
an obstacle destroyed. A controller (agent) in the game “Survive Zombies” wins
if it is able to stay alive by avoiding being eaten by zombies for a particular
amount of time. The avatar in this game has a health bar that decreases every
time a zombie catches a player. Collecting honey helps restore the health bar.
Furthermore, there are obstacles in the players way that must be avoided whilst
also running away from zombies.

Different games have different actions that are legal for a controller to ex-
ecute. In total, there are six actions in the GVGAI framework: left, right, up,
down, nil, use and escape. In the planning track of the framework, controllers
have access to the current game state; they can copy it and execute actions on
the copy by using a forward model, necessary to perform roll-outs, thus simulat-
ing the game. Games can be deterministic or stochastic in nature. In stochastic
games, a forward model can produce different future game outcomes from the
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current game state with each simulation, contrary to deterministic games. All
games can be played on five levels. Each level can be played independently, there
is no connection between levels or on how the controller performs, as there is no
requirement for a controller to win a level to advance to the next level. A higher
level can increase a complexity of the game played and can introduce new chal-
lenges to the player, and so on. In our experiments, a controller has a budget of
900 forward model calls (equivalent to 40ms) to simulate the game and decide on
an action to fire. This is aligned to the GVGAI competitions where controllers
face disqualification if they exceed the time allowed for decision making.

4 Statistical Tree-based Population Seeding

We propose a novel mechanism that partly seeds the population of the RHEA
using the UCB1 policy on a statistical tree. The statistical tree introduced in
[29] is a RHEA improvement that constructs a tree with each state visited when
individuals in the population are evaluated. Each state is modelled as a node
and is linked to the previous state by an action. Each node stores two values:
the times it has been visited and the cumulative reward. After each individual
is evaluated the rewards are back-propagated from the corresponding leaf node
to the root. In this way, the statistical tree keeps track of the rewards found by
the RHEA’s evolutionary process. RHEA returns the first action of the fittest
individual as the action to be performed by the controller. In the statistical tree,
the node linked to the root with the performed action is transformed into the
new root node. Any nodes not part of the sub-tree beginning from the new root
node are pruned.

When the RHEA algorithm is required again to return a new action, the
initial population is seeded with the statistical tree. The first individual is gen-
erated following the path in the tree leading to the best reward. The rest of
the population is generated following the UCB1 policy from the root node. This
action is repeatedm−1 times, wherem is the population size, to generate the re-
maining m−1 individuals. It is important to evaluate each new individual before
generating a new one to update the statistical tree. The available computational
power to make a decision is limited (900 forward model calls) and as a result of
this, the size of the population must be small. This can hinder the population’s
diversity with the consequence of individuals getting stuck in local optima. To
alleviate this, the proposed algorithm attempts to inject a new individual after
each generation. The individual is generated following the UCB1 policy on the
statistical tree, and replaces the worst individual in the current population only
if the newly tree-based generated individual performs better. Regardless of it
being added to the population or discarded, the newly generated individual con-
tributes to the construction and statistics of the statistical tree. This step helps
to keep interesting individuals emerging in the within population while guiding
the search towards promising regions.
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5 Experimental Setting

5.1 Controllers

We compare our proposed approached, dubbed (a) Statistical Tree-based Pop-
ulation Seeding, against (b) Vanilla RHEA [28]. Furthermore, we also use (c)
the Statistical Tree approach [29], and (d) the Shift Buffer mechanism [7]. The
latter three approaches (b – d), explained previously, heavily inspired our pro-
posed approach and show how by borrowing elements from these and integrating
new elements such as partially seeding a population, it is possible to get, overall,
better results compared to these three approaches.

5.2 Games

Table 1. List of the 20 games used in our studies, including their names with their cor-
responding indexes divided in two categories: stochastic (G1 – G10) and deterministic
(G11 – G20).

Index Stochastic Index Deterministic

G1 Aliens G11 Bait

G2 Butterflies G12 Camel Race

G3 Chopper G13 Chase

G4 Crossfire G14 Escape

G5 Dig Dug G15 Hungry Birds

G6 Infection G16 Lemmings

G7 Intersection G17 Missile Command

G8 Roguelike G18 Modality

G9 Sea Quest G19 Plaque Attack

G10 Survive Zombies G20 Wait for Breakfast

Each of the four algorithms (controllers) used in this study were run on 20
games of the GVGAI corpus, on all 5 levels, 40 times each. Each algorithm had
to play 4000 times, resulting in 16000 independent runs in total. To perform this
large number of simulations, we used a supercomputer with 336 nodes where each
node has 2x 20-core 2.4 GHz Intel Xeon Gold 6148 (Skylake) processors, 192 GiB
of RAM. Furthermore, to provide a sound comparison of results, we selected ten
stochastic games and ten deterministic games. The selection of these is based on
performing a uniform sampling from the list of games in Table 1. The selection of
these games is the result of analysing dozens of games based on the performance
of MCTS expressed in terms of the winning rate for each of the 62 games used
in Nelson [27] and based on the similarity of game features among 49 games
studied in Bontager et al. [3].

5.3 EAs Configuration and Parameters

The experiments were conducted using a generational approach. The population
size was set to 10 and the length of the individual (action plan) set to 14.
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All four algorithms used in this study used uniform crossover and mutation
operators. Tournament selection (size 3) was used as a selection mechanism in
our algorithms. Furthermore, we used elitism (1 individual) to ensure that the
best individual was carried over to the next generation. Our algorithms were not
limited in the number of generations. Instead, we set a budget of 900 forward
model calls every time an action was fired by any of the algorithms used in this
study. We use the score as the fitness function in each of the four controllers
used in this study.

6 Results and Analysis

All results were converted into Formula-1 (F1) ranking scheme. That is, for
each game, controllers are compared by their mean win rate. The controller
with the highest average win rate gets 25 points, the second best controller
is granted 18 points, and the remaining two controllers get 15 and 12 points
respectively. If two or more controllers achieved the same number of victories
then they are compared by their scores. The overall results are displayed in
Table 2. A breakdown of the results for each game is presented in Table 3 for
stochastic games and Table 4 for deterministic games. Vanilla RHEA is ranked
4th and is the worst of all the controllers used in this work. Our proposed Statistic
Tree-based Seeding Population algorithm ranked first in 10 games as well as first
overall. It is closely followed by the Stat. Tree variant. Both methods were tied in
F1 scores in deterministic games, but Stat. Tree-based Population Seeding had
a better performance in stochastic games, showing that the proposed method
has a potentially greater impact in the latter types of games.

Table 2. F1 total points achieved by each controller used in this study.

Rank RHEA Approach F1 Points Avg. Points

1st Stat. Tree-based Population Seeding 412 49.67%

2nd Stat. Tree 382 48.37%

3rd Shift Buffer 315 45.92%

4th Vanilla RHEA 291 46.77%

Table 3. F1 ranking of the controllers in the 10 stochastic games. The darker the cell,
the better the result.

RHEA Methods G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Total

Stat. Tree-based Population Seeding 15 15 25 25 15 15 25 18 25 25 203

Stat. Tree 18 25 12 15 18 25 15 15 15 15 173

Shift Buffer 25 18 18 12 25 18 12 25 12 12 177

Vanilla RHEA 12 12 15 18 12 12 18 12 18 18 147
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Table 4. F1 ranking of the controllers in the 10 deterministic games. The darker the
cell, the better the result.

RHEA Methods G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 Total

Stat. Tree-based Population Seeding 25 25 18 25 18 12 18 18 25 25 209

Stat. Tree 18 18 25 12 25 25 25 25 18 18 209

Shift Buffer 12 15 12 15 12 18 15 12 12 15 138

Vanilla RHEA 15 12 15 18 15 15 12 15 15 12 144

The Mann-Whitney U test at 5% significance level was used to compare
controllers with each other to determine if the difference in scores and wins is
statistically significant. Table 5 shows the count of stochastic and deterministic
games where the algorithm in the row significantly outperforms the algorithm in
the column in win rates. Table 6 is similar to this but now considers those signif-
icant scores between any two algorithms. Table 7, listed in the Appendix, shows
the details of wins for each game attained by each of the four methods used in
this work. The average scores are not shown due to space constraints. Based
on these tables, it can be seen that both statistical tree-based RHEA versions
achieved the highest number of games where they outperformed the other two
algorithms. Our proposed approach, Statistical Tree-based Population Seeding,
had a significantly superior score in 13 games in total, and significantly supe-
rior win rates in 9 games, compared to the other three algorithms (controllers).
The three games in which the Statistical Tree-based Population Seeding sig-
nificantly outperformed the Vanilla RHEA in win rates are Wait for breakfast,
Missile command and Chopper. Regarding scores, our approach was significantly
better than Vanilla RHEA in Wait for breakfast, Roguelike, Crossfire, Chopper
and Intersection. Missile command is the only game in which both the Statis-
tical Tree-based Population Seeding and the Stat. Tree controllers significantly
improve over the Vanilla RHEA in both scores and win rates. Dig-dug is the
only game in which the Stat. Tree-based Population Seeding performed signif-
icantly worse than the Vanilla RHEA regarding scores. This is not the same
situation for win rates. Stat. Tree-based Population Seeding also struggled with
the game Lemmings. One possible reason is that exploration in this game can be
extremely costly and rewards are sparse. The exploratory nature of Stat. Tree-
based Population Seeding ends up actually impacting it negatively. In general,
Stat. Tree-based Population Seeding is a promising approach that improves over
the Vanilla RHEA, being clearly superior to the Shift Buffer and more robust
than the Stat. Tree in many cases.

Table 5. Count of games where the controller in the row has significantly
better win rates than the controller in the column.

Stat. Tree-based Seeding Stat. Tree Shift Buffer Vanilla RHEA

Stat. Tree-based Seeding – 2 4 3

Stat. Tree 2 – 3 3

Shift Buffer 0 0 – 0

Vanilla RHEA 0 2 1 –
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Table 6. Count of games where the controller in the row has significantly better scores
than the controller in the column.

Stat. Tree-based Seeding Stat. Tree Shift Buffer Vanilla RHEA

Stat. Tree-based Seeding – 3 4 6

Stat. Tree 4 – 4 5

Shift Buffer 2 0 – 5

Vanilla RHEA 1 1 0 –

7 Conclusions

In this paper we proposed a novel mechanism named Statistical Tree-based Pop-
ulation Seeding to be employed in Rolling Horizon Evolutionary Algorithms
(RHEAs) with the goal of overcoming some limitations of the vanilla RHEA.
This mechanism uses a Statistical Tree that keeps track of information gathered
by the individuals contained in the population. Each of these individuals con-
tribute to the information stored in this Statistical Tree every time a potential
solution is rolled in a game simulation. We then use this tree to generate an
individual to be seeded in the population in order to have diversity in the pop-
ulation as well as speeding up the process of evolution required in the limited
time (a fraction of a second) to ‘fire’ an action to be executed by the game agent.
We demonstrated how our approach is significantly superior to Vanilla RHEA as
well as being better, in average, to the other two controllers, named Statistical
Tree and Shift Buffer, used in this study.
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24. A. Kattan, E. Galván-López, R. Poli, and M. O’Neill. Gp-fileprints: File types
detection using genetic programming. In Genetic Programming, 13th European
Conference, EuroGP 2010, Istanbul, Turkey, April 7-9, 2010. Proceedings, pages
134–145, 2010.
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Appendix

Table 7. Mean win rate achieved by each controller in each of the 20 games used in
this study.

Game name
Mean wins (± standard deviation)

Stat. Tree-based Seeding Shift Buffer Stat. Tree Vanilla RHEA

aliens 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00)

bait 0.11 (±0.31) 0.04 (±0.20) 0.09 (±0.28) 0.07 (±0.25)

butterflies 0.92 (±0.27) 0.92 (±0.26) 0.98 (±0.14) 0.88 (±0.32)

camelRace 0.05 (±0.21) 0.03 (±0.18) 0.04 (±0.20) 0.03 (±0.17)

chase 0.03 (±0.18) 0.03 (0.17) 0.05 (±0.21) 0.035 (±0.18)

chopper 1.00 (± 0.00) 0.99 (0.09) 0.975 (±0.15) 0.98 (±0.14)

crossfire 0.08 (± 0.27) 0.05 (0.21) 0.05 (±0.21) 0.06 (±0.23)

digdug 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

escape 0.38 (± 0.48) 0.2 (±0.40) 0.175 (±0.37) 0.315 (±0.46)

hungrybirds 0.30 (± 0.45) 0.27 (±0.44) 0.33 (±0.47) 0.285 (±0.45)

infection 0.96 (± 0.18) 0.985 (±0.12) 0.995 (±0.07) 0.955 (±0.20)

intersection 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00) 1.00 (± 0.00)

lemmings 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

missilecommand 0.72 (± 0.44) 0.64 (±0.48) 0.74 (±0.43) 0.545 (±0.49)

modality 0.26 (± 0.44) 0.255 (±0.43) 0.265 (±0.44) 0.26 (±0.43)

plaqueattack 0.97 (± 0.17) 0.92 (±0.27) 0.965 (±0.18) 0.945 (±0.22)

roguelike 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

seaquest 0.88 (± 0.32) 0.75 (±0.43) 0.87 (±0.33) 0.88 (±0.32)

survivezombies 0.50 (± 0.49) 0.415 (±0.49) 0.455 (±0.49) 0.475 (±0.49)

waitforbreakfast 0.75 (± 0.43) 0.67 (±0.47) 0.69 (±0.46) 0.64 (±0.48)
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