Comparing the Performance of the Evolvable
wGrammatical Evolution Genotype-Phenotype Map to
Grammatical Evolution in the Dynamic Ms. Pac-Man Environment

Edgar Galan-Lopez, David Fagan, Eoin Murphy, John Mark Swafford,
Alexandros Agapitos, Michael O’Neill and Anthony Brabazon

Abstract—In this work, we examine the capabilities of two have a better overall performance in terms of finding better
forms of mappings by means of Grammatical Evolution (GE) results compared to standard GE as shown in [9], [2]. The

to successfully generate controllers by combining high-level objective of this paper is to see the utility of both forms of
functions in a dynamic environment. In this work we adopted . .
t mappings on a dynamic problem.

the Ms. Pac-Man game as a benchmark test bed. We show thal X) . .
the standard GE mapping and Position Independent GE £GE) This paper is structured as follows. In the following seetio
mapping achieve similar performance in terms of maximising we describe how both mappings (standard GE a@GE)

the score. We also show that the controllers produced by work. In Section Il we describe the benchmark problem
both approaches have an overall better performance in terms used in this work. In Section IV we describe the approach

of maximising the score compared to a hand-coded agent. taken f troli t d . . ol
There are, however, significant differences in the controllers aken for controliing our agent on a dynamic environment. In

produced by these two approaches: standard GE produces more Section V we describe the eXperimental setup and Section VI
controllers with invalid code, whereas the opposite is seen with presents the results achieved by our approach, followed by a

mGE. discussion. Finally, Section VIl draws some conclusions.

l. INTRODUCTION Il. OVERVIEW OF GE AND 7GE MAPPINGS
In G.rammatical Evolution (GE) [10],. [1], rather than rép-A. Standard GE Mapping

resenting programs as parse trees, as in Genetic Progrgmmin
(GP) [4], a variable length linear genome representation i ,))
used. A genotype to phenotype mapping process is employ]a[’ ,T’ P, 5}, whereN is the set of non-termma@, Is the
on these genomes which uses a user-specified context-f}gém'nal set,P stands f(_)r a_set of production rules ar_ﬁj,
grammar to generate the actual phenotype. This work 13 the start symbol which is also an element Bt It is
concerned with understanding the impact of two form portant to note thalv may be mapped to othgr ellements
of this mapping, the traditional GE mapping and Positio fom N as well as elements frorf. The fqllowmg IS an
Independent GEXGE) [9], in a dynamic environment. We example pased on the grammar usgd in th.|s w'olrk (Notg: the
use the notion of a dynamic problem as defined in*{1] following is not the actual grammar, just a simplified versio

a problem in which some element under its domain varie¥® Figure 4 for the actual grammar used in our studies):

In GE, a grammar can be represented by the tuple

with the progression of time”For this purpose, we use the . <F¢rJLe> s cites | <ifes <ergg:§n ons (g,;na?i;
Ms. Pac-Man game as a benchmark problem (the specifii:g Prog= == :
about the Ms. Pac-Man game are given in Section lll). (b)<ifs>::=if(<vars> <equal s> <vars>){ <prog>} (0)

. K i f(<vars> <equal s> <vars>){<action> 1
Using Trojanowski and Michalewicz’'s categorization of b a " b

dynamic problems [12], [13], we know that this problem lieg c) <el ses> ::= el se{ <action>} | else{ <prog>} (0),(1)

in the category of a static objective function (i.e., maxXimg (d)<action> ::= goto(nearestPill) (0)

the score of the Ms. Pac-Man agent) and static constraints. I 92:852:2: Z:: Eglwte”f Eig']'o)st) E;g

These type of problems are interesting because both element g

(objective function and constraints) do not change oveetine) <equal s> ::|: ;_I | <=1> (02 ’35 12 h; 2)

and, in principle, it should be easier to examine the effects T ’

of both mappings (i.e., standard and ar@E) on a dynamic (f)<vars> ::= threshol dDi stanceGhost (0)
. | inedibl eGhost Di stance (1)

environment. | avgDi st Bet Ghosts | wi ndowSi ze (2),(3)

GE has been successfully used in a wide range of appli-

cations as reported in [10], [LFGE has been reported to _ 1© Pettér understand how the genotype-phenotype map-

ping process works in GE, here is a brief example. Suppose
Edgar Galan-Lopez, David Fagan, Eoin Murphy, John Mark Swafford,that we use the grammar defined previously. It is easy to

Alexandros = Agapitos, Michael O'Neill and Anthony Brabazawe gee that each rule has a number of different choices. That is,
with the University College Dublin, Natural Computing Resdn &

Applications Group, UCD CASL, 8 Belfield Office Park, BeaveovR there are 2, 2, 2, 3, 5, _and 4 9“0'095 for rUIe_S (a)' (b)’ (C)’
Clonskeagh, Dublin 4, email:edgar.gal van, david.fagan, (d), (e), and (f), respectively. Given the following genome
eoi n. nur phy, john-nark. swaf ford, al ex-agapitos,

moneil |, anthony. brabazon@icd. i e. 16 93 34 81 17 46,

we need to define a mapping function (i.e., genotype- I1I. Ms. PACMAN AGENT
phenotype mapping) to produce the phenotype. GE uses
the following function: Rule = ¢ mod r, wherec is the
codon integer value and is the number of choices for the
current symbol, to determine which productions are picke
for the phenotype. Beginning with the start symbaqir og>,
and its definitiongprog> ::= <ifs> | <ifs> <el ses>
the mapping function is performed:6 mod2 = 0. This
means the left-most non-terminalpr og> will be replaced

Ms. Pac-Man, released in early 1980s, became one the
most popular video games of all time. This game, the sequel
Pac-Man, consists of guiding Ms. Pac-Man through a
Mmaze, eating pills, power pills, and fruit. This task woulel b
simple enough if it was not for the presence of four ghosts,
Blinky, Pinky, Inky, and Sue, that try to catch Ms. Pac-Man.
Each ghost has their own, well-defined, behaviour. These
ibehaviors are the largest difference between the Pac-Man
by its 0" production,<i f s>, leaving the current phenotype: and Ms. Pac-Man. In the original Pac-Man, the ghosts are

<ifs>. L . ;
Becausei f s> has two productions and the next codon indetermlnlst|c and players who understand their behavigr ma

. .) .) always predict where the ghosts will move. In Ms. Pac-
the integer array is, 93;i f s> is replaced byi f (<vars> L ; .
. . Man, the ghosts have non-deterministic elements in their

<equal s> <var>){ <action> } . Following the same

idea, we take the next codon, 34. and left-most rlor]_terminatﬂehavior and are not pr_edictable. This feature makes the
. . . -game extremely challenging.
<varr]s>hand apply the mapping function. The resuilts is 2, The gameplay mechanics of Ms. Pac-Man are also very
??(ta\?g% i?gngqgsstn:vtequal s><var>) {<action>}. easy to understand. When Ms. Pac-_Man_ eats a power pill,
Repeating the same process for the remaining codons the ghosts change the_|r status from inedible to edible (only
will have the following expression: ’ Wefhey are out5|dg the!r “nest”, located at the centre of 'Fhe
if(avgDistBet Ghosts <= i nedi bl eGhost Di st ance) maze) and remain ed|.ble for a_few seconds. In the edible
{got o(near est Power Pi [1) }. state they are Qefenswe, and '|f they are eaten, Ms. Rac—
Man’s score is increased considerably. When all the pills
are eaten, Ms. Pac-Man is taken to the next level. Levels get
progressively harder by changing the maze, increasing the
speed of the ghosts, and decreasing the time to eat edible
Position Independent GErGE) [9], [2] is almost identi- ghosts. The original version of Ms. Pac-Man presents some
cal in operation to standard GE except when it comes gy interesting features. For instance, Ms. Pac-Man moves
the mapping process. As shown above, GE always takgfightly slower than Ghosts when she is eating pills, but
the left-most non-terminal to be expanded next during thene moves slightly faster when crossing tunnels. The most
mapping from genotype to phenotype. #GE, we refine challenging element is the fact that the ghosts’ movements
this process by introducing an evolved ordering as to whichre non-deterministic. The goal of the ghosts is to catch
non-terminals are expanded. By doing this, we allow thg1s. pac-Man, so they are designed to attack her. Due to
grammar to have more freedom in the way the derivatiophejr non-deterministic behaviour, the player may not be
tree (i.e., phenotype) is built. With this method, not onlycertain what the ghosts will do next. Over the last few
the productions used for the non-terminal expansions ajars, researchers have tried to develop software agelets ab
picked using chromosome, the chromosome is also usedp successfully clear the levels and simultaneously get the
determine the order in which the non-terminals are expandqqghest score possible (the world record for a human player
In 7GE, we take a standard GE chromosome and convertdh the original game stands at 921,360 [6]). The highesgscor
into a list of codon pairs. The second codon of each pajjchieved by a computer, developed by Matsumoto [7], based
is used to choose which non-terminal to expand next (thgh a screen-capture system that is supposed to be exactly
order of mapping), and the first codon is used to decidge same as the arcade game, stands at 30,010 [6]. The other
what that non-terminal will expand to. If this happens tqop three scores achieved are 15640, 9000 and 8740 points,
be another non-terminal it is added to a list of unexpandeg@spectively [7]. It is worth pointing out that all of them

expansion. The method for selection which non-terminalomputation or machine learning algorithm.

expand is based on the equation for selecting what the non-powever, it is important to note that there has been work
terminal should expand toion — terminal to expand = \yhere researchers have used a variety of artificial intiig
codon value mod number of non — terminals. approaches to create Ms. Pac-Man players. Some of these
i approaches state a goal of evolving the best Ms. Pac-Man
C. Final Remarks on GE andGE player possible. Others aim to study different charadiesis
As mentioned previously, the GE mapping follows a leftof an algorithm in the context of this non-deterministic

to-right, depth-first development of the structure, whereggame. Some previous approaches are listed here, but will
7GE adopts an evolved ordering to the mapping. Thigot be compared against each other due to differences in the
mapping, is in fact, quite interesting, specially when aepl Ms. Pac-Man implementation and the goal of the approach.
with the dynamic problem that we have used as benchmarkOne of the earliest, and most relevant, approaches comes
test. This is introduced in the following section. from Koza [4]. He used genetic programming to combine

B. 7GE Mapping

. . . // edibl eGhost counts for the nunber of edible ghosts.
pre-defined actions and conditional statements to evolu@ndowsi ze = 13; avoi dGhost Di stance = 7;

_) ; reshol dGhost Di st anceGhosts = 10;
Ms. Pac-Man game players. Koza's primary goal was tmedi bl eGhost Di stance = Utilities.getC osest(current.adj,

achieve the highest possible Ms. Pac-Man score using a nig. cl osest, gs.getMaze());
fitness function that only accounts for the points earneﬂ“‘;ggg(g:‘“{b' eChosts) {

per game. Work similar to that of Koza [4] is reported by if (inedibl eGhostDi stance < wi ndowsi ze){

Szita and Brincz [11]. Their approach used a combination next = Uilities.getd osest(current. adj,

. . ang. cl osest, gs.getMaze());
of reinforcement learning and the cross-entropy method t0 } else if (nunPowerPills > 0) {

assist the Ms. Pac-Man agent in “learning” the appropriate ' (avgll st et Chost 5 ;e: freshol ?E‘;}f:gﬂfeg&f“s){
decisions for different circumstances in the game. This “nppd. cl osest, gs. get Maze())
i imi Qg - 1 } else {
approaqh is similar tp Koza’s in that they pre-define a set next = Wilities.getd osest(current. adj.
of conditions and actions and allow the Ms. Pac-Man agent npd. cl osest, gs.get Maze());
to learn how to combine and prioritise them. Another, more ol te {
recent, approach by Lucas [5] uses an evolutionary strategy next = Utilities.getd osest(current.ad;,
to train a neural network to play Ms. Pac-Man in hopes of npd. closest, gs. get Maze());
creating the best possible player. Recently, Gahdpez et br eak;
al. used GE [3]. 4 ,
case 1:
IV. GE AND TGE APPROACH TOMS. PACMAN AGENT ggzg g
As highlighted by the literature there are many approachescase 4:{ _ _ _
N if (inedibl eGhostDi stance < avoi dGhost Di stance) {
one could take when designing a controller for Ms. Pac- next = Uilities.getd osest(current.ad;,
Man. We now describe the rule-based approach we have Lol se | ang. cl osest, gs.getMze());
. . el se
taken. Broadly speaking, a rule is a sentence of the form next = Wilities.getd osest(current.adj,
“if <condition> then perform <action>". These rules are easy } ngd. cl osest, gs.getMaze());

to read, understand, and more importantly, they can be com- pcax:
bined to represent complex behaviours. Now, an important}
guestion arises: What needs to be accounted for when usi}ng
rules .to e.V(.)Ive a Ms. PaC-Ma.n controller? To answer_thléig. 1. Hand-coded functions to maneuver Ms. Pac-Man (seke Tefor
question it is necessary to define these three elements: ;i description of the functions used).
« Conditions- The current state of the ghosts, Ms. Pac-
Man, the pills in the maze, and their relations to each

other are used to define the conditions. It is importan) i i .
ese functions, pre-defined variables, and conditiorsést

to consider these because the combinations of the) ; .
ments using GE. These functions were easy to implement,

will determine which actions Ms. Pac-Man will take .
to achieve high scores. and can be potentially very useful for our purposes.

« Actions- Given the goal of maneuvering Ms. Pac-Man
through a maze while trying to get the highest score
possible, a set of basic actions need to be defined to d&- Hand-Coded Example
termine how Ms. Pac-Man will move through the maze.
When certain conditions, determined by evolution, are The code shown in Figure 1 calls the functions described
met these actions will be executed. Descriptions of thim Table I. It is worth mentioning that we tried different
actions defined for this work can be found in Table I. rule combinations with different values for the variables
« Complexity- Because there are many possibilities fore.g., windowSize) and the code shown in Figure 1 gave us
combining the actions and conditions, restrictions arthe highest score among all the combinations and different
needed to limit the number of these combinations. Whevalues assigned to the variable that we tested. As stated
defining these restrictions, a balance is needed to ensiyefore, the goal of the game is to maneuver Ms. Pac-Man
that the evolved controllers may increase in complexityhrough a maze, trying to achieve the highest score possible
without becoming completely unreasonable in size. Tavhile trying to avoid inedible ghosts. First, we count the
achieve this, a grammar is defined which specifies whatumber of edible ghosts. Based on this information, Ms. Pac-
combinations of conditions and actions are possible (sé¢an has to decide if it goes to eat power pills, pills, or
Figure 4 for the grammar used). edible ghosts. We will further explain this hand-coded agen
A number of functions were implemented to be used as Section VI where we will compare it with the evolved
primitives in the evolution of the Ms. Pac-Man controllercontrollers (both using GE andGE). In the following
(see Table I). The aim of each of these functions is to bgection, the experimental setup is described to show how
sufficiently basic, allowing evolution to combine them in aboth approaches evolved the combination of the high-level
significant manner to produce the best possible behavior flunctions described in Table | with conditional statements
the Ms. Pac-Man controller. In other words, we provide handand variables to determine when certain actions should be
coded, high-level functions and evolve the combination dfken.

TABLE |
HIGH-LEVEL FUNCTIONS USED TO CONTROLMS. PAC-MAN.

Function Variable Description

NearestPill () npd Originally, this function [6] the agent finds the nearest food pill and kead
straight for it regardless of what ghosts are in front of it. We modifiesbit
that in the event a power pill is found before the target food pill, it waits
next to the power pill until a different condition is met and another action is

executed.

Near est Power Pi | | () nppd The goal of this function is to go to the nearest power pill.

Eat Near est Ghost () ngd When there is at least one edible ghost in the maze, Ms. Pac-Man gaasisow
the nearest edible ghost.

Avoi dNear est Ghost () ang Calculates the distance of the nearest inedible ghost in a “window” of size

windowSize X windowSize , given as a parameter set by evolution, and
returns the location of the farthest node from the ghost. This “window"ss ju
a mask, where Ms. Pac-Man is at the center.

Near est | nedi bl eGhost () nig Returns the distance from the agent to the nearest inedible ghost. Ti®fun
is used by the previously explainéd/oi dNear est Ghost () .

/1 edi bl eGhost counts for the number of edible ghosts. /1 edibl eChost counts for the nunmber of edible ghosts.

1 threshol dDi st anceGhosts = 13; w ndowSi ze = 11 ; t hreshol dDi st anceGhosts = 10; w ndowSi ze = 11 ;

2 avoi dGhost Di stance = 8 ; avoi dGhost Di st ance = 4;

3 avgDi st Bet Ghosts = (i nt)adbg. score(gs, avgDi st Bet Ghosts = (i nt)adbg. score(gs,

4 t hreshol dDi st anceGhost s); t hreshol dDi st anceGhosts);

5 ang. score(gs, current, w ndowSi ze); ang. score(gs, current, w ndowSize);

6 if(edibleGiosts == 0){ if (edibleCGiosts == 0){

7 if (avgDi st Bet Ghosts >= avoi dGhost Di stance) { if (inedibleGhostDi stance < wi ndowSi ze) {

8 if (nunPowerPills > 0){ next = Wilities.getC osest(current.adj,

9 next = Wilities.getC osest(current.adj, nppd. cl osest , gs.get Maze());

10 nppd. cl osest , gs.get Maze()); }

11 } else{ }

12 next = Utilities.getd osest(current.adj, el se{

13 npd. cl osest, gs.getMaze()); if (inedibleChostDistance < wi ndowSi ze) {

14 } next = Utilities.getd osest(current.adj,

15 } else { nppd. cl osest , gs.get Maze());

16 if(avgDi st Bet Ghosts <= avgDi st Bet Ghosts) { } else {

17 if (avoi dGhost Di st ance>t hreshol dDi st anceGhost s) { next = Utilities.getd osest(current.adj,

18 next = Uilities.getC osest(current.adj, ngd. cl osest , gs.getMaze());

19 ngd. cl osest , gs.get Maze()); }

20 } }

21 } else {

22 if (nunPowerPills > 0)({

23 next = Uilities.getC osest(current.adj,

24 nppd. cl osest , gs.getMaze()); Fig. 3. Best evolved agent usingGE to maneuver Ms. Pac-Man (see
25 } else{ Table | for a full description of the functions used).

26 next = Utilities.getd osest(current.adj,

27 npd. cl osest, gs.getMaze());

28 }

29 }

30 }

31

32 } elsef

S s S e sebt curr ont. o used in this work is shown in Figure 4. The fitness function
gg | nppd. cl osest , gs. get Maze()); is defined to reward higher scores. This is done by adding
o e iliti es. get O osest (current. ad the scores for each pill, power pill, and ghost eaten. The
gg ngd. cl osest , gs.getMaze()); scores used are the same as the original Ms. Pac-Man game
40 } } described in Section Ill. Each generated Ms. Pac-Man agent

was executed 20 times to get the fitness.
Fig. 2. Best evolved agent using G&maneuver Ms. Pac-Man (see Table |
for a full description of the functions used). The experiments were conducted using a generational
approach, a population size of 100 individuals, 100 gener-
ations, and the maximum derivation tree depth to control
V. EXPERIMENTAL SETUP bloat was set at 10. The rest of the parameters are as
We use the Ms. Pac-Man simulator developed by Simaiollows: tournament selection of size 2, int-flip mutatiortiw
Lucas [8]. It is important to mention that the simulatorprobability 0.1, one-point crossover with probability Oahd
only gives one life to Ms. Pac-Man and has only one leveB maximum wraps were allowed to “fix” invalid individuals
The Ms. Pac-Man implementation was tied into GE in Javéin case they still are invalid individuals, they were given
(GEVA). This involved creating a grammar that is able tdowest possible fitness). To obtain meaningful results, we
represent what was considered the best possible combinatfgerformed 100 independent runs. Runs were stopped when
of the high level functions described in Table I. The grammathe maximum number of generations was reached.

TABLE I

VI. RESULTS AND DI ION .
SULTS SCUSSIONS RESULTS OF FOURdifferent Ms. Pac-Man agents (random, random

A. Ghost Teams and Basic Controllers non-reverse, simple pill eater and a hand-coded agest)THREE
For comparison purposes, we used three different ghOSpIFFERENT GHOST TEAMS OVERLOOINDEPENDENT RUNS HIGHEST

teams (already implemented in [8]), called Random, Legacy, SCORES ARE SHOWN IN BOLDFACE

gnd Pincer team, where each has a particular form of “attack- Ghost Team Vin- Viax Score Sum of

ing” Ms. Pac-Man. The random ghost team chooses a random Score| + Std. Dev. | all Runs

direction for each of the four ghosts every time the method Random Agent

is called. This method does not allow the ghosts to reverse. Random 70 3810 = 160.95 24,450

The second team, Legacy, uses four different methods, one Legacy 40 200+ 31.75 8,670

per ghost. Three ghosts use the following distance metrics: Pincer 40 410+ 4.33 10,460

Manhattan, Euclidean, and a shortest path distance. Each Random Non-Reverse Agent

of these distance measures returns the shortest distance to| Random | 80 2,800+ 59.92 | 89,760
Ms. Pac-Man. The fourth ghost simply makes random moves. '-Peig?g 28 g’gigi ;j"llg gg’gig
Finally, the Pincer team aims to trap Ms. Pac-Man between ’ : !

. . . . Simple Pill Eater Agent
junctions in the maze paths. Each ghost attempts to pick the Random 240 | 4,180% 108.70 | 146,010

closest junction to Ms. Pac-Man within a certain distance in Legacy 550 | 5380% 107.04 | 154.720
order to trap her. Pincer 240 4,780+ 96.33 | 174,370
We started our studies by using four different Ms. Pac- Hand-coded Agent

Man Agents (including a hand-coded approach as mentioned Random 180 | 11,220+ 242.68| 579,590
in Section IV). These are random, random non-reverse and Legacy 190 | 11,740+ 236.58 | 404,640
simple pill eater agent. ThRandomagent chooses one of Pincer 790 | 12,820+ 327.10| 409,040
five options (up, down, left, right, and neutral) at every
time step. This agent allows reversing at any time. The
second agent, callé@andom Non-Reversis the same as the better compared to the hand-coded controllerGE also
random agent except it does not allow Ms. Pac-Man to backhows good performance, although not as good as GE, as
track her steps. Finally, thimple Pill Eateragent heads for can be seen in Table IV (i.e., 5 maximum scores were better
the nearest pill, regardless of what is in front of it. Resultcompared to the hand-coded controller shown in Figure 1).
achieved by these agents are shown in Table II. To see how robust our approach is, we now are turning
As expected, the results achieved by these agents versug attention to the results achieved by the “worst” evolved
ghosts are poor. This is not surprising given their natureontrollers using both approaches. Table V shows the gesult
It is very difficult to imagine how a controller that doesobtained by the “worst” four evolved controllers obtained b
not take into account any valuable information in terms o6E on 100 games. The maximum scores achieved by these
both, surviving and maximizing the score, can successfullgvolved controllers show that they are robust in achieving
navigate the maze. There are, however, some differencashigh score (i.e., 6 out of 12 are at least as good as the
worth mentioning. For instance, the random agent shows tieges found by the hand-coded approach). A similar story is
poorest performance of all the agents described previousibserved by the “worst” evolved controllers found bh&E
This is to be expected mainly because of two reasons: (gee Table VI), where 7 maximum scores were higher than
performs random movements and, more importantly, it allowiose found by the hand-coded approach. Figure 5 simply
reversing at any time, so Ms. Pac-Man can easily spend tptots the highest scores found by the best and the “worst”
much time going backwards and forwards in a small spaceontrollers found by GE andGE.
This is different for the random non-reverse agent that doesTo understand how the evolved controllers manage to
not allow reversing and as a result of this achieves a highachieve highest scores compared to the hand-coded approach
score. The score achieved by the simple pill eater is betti#ris necessary to analyse the controllers. Due to space
compared with random and random non-reverse agents. Tk@nstraints, we will use the best controller found by GE
is simply because there is a target of increasing the score {8ee Figure 2) andGE (see Figure 3) and compared them
eating pills. with the hand-coded controller (shown in Figure 1). If we
start first analysing our hand-coded controller, we can see
that we take quite a conservative approach. For instance,
Due to space limitations, we have taken the best and timetice how we considered thAvoidNearestGhostfunction
worst four individuals from the 100 independent runs usings important because it helps Ms. Pacman to eventually
both GE andrGE (i.e., 16 individuals). Each of these werescape from the ghosts. However, this function is never dalle
used 100 times in the Ms. Pac-Man game. We can see tfiem the evolved controllers (both using GE an@E).
highest scores achieved by the best controllers using G& fact, the latter two controllers both use a more risky
and 7GE in Tables Il and IV, respectively. Clearly, the approach. That is, they achieved the highest scores cothpare
best four controllers evolved using GE show a better overaib the hand-coded approach by using only three functions:
performance in terms of highest score (i.e., 8 results weidearestPowerPill(), EatNearestGhost(), NearestPRill{is is

B. Evolved Controllers

<prog> = <set up><mai n>
<set up> = threshol dDi st anceGhosts = <ghost Threshol d>; w ndowSi ze = <wi ndow>;
avoi dGhost Di st ance = <avoi dDi st ance>; avgDi st Bet Ghosts = (i nt)adbg. score(gs);
ang. score(gs, current, w ndowSize);
<mai n> = if(edibleCGhosts == 0){ <statenents> } else{ <statements> }
<st at ement s> = <ifs> | <ifs> <el ses>
<ifs> = if(<condition>) { <action>} | if(<condition>) { <statenents> }
| if(avgDi stBet Chosts <l essX2> threshol dDi stanceCGhosts) { <actsOrStats> }
| if(inedibleGhostDistance <l essX2> wi ndowSi ze) { <avoi dOrPPill> }
<el ses> = else { <action>} | else { <statenments> }
<actsOr Stat s> = <action> | <statenents>
<action> = next = getC osest(current.adj, <closest>, gs.getMze());
| if (numPowerPills <nore> 0){ <pPillAction> }
el se{ next = getC osest(current.adj, npd.closest, gs.getMaze()); }
<cl osest > npd. cl osest | ang.closest | ngd.cl osest

<avoi dOrPPi | | >
<avoi dActi on>
<pPi | | Acti on>
<avoi dd osest >
<var >

<avoi dAction> | <pPillAction>

next = getd osest(current.adj, <avoi dC osest>, gs.getMze());

next = getd osest(current.adj, <pPillC osest>, gs.getMze());

ang. cl osest <pPi || Cl osest> ::= nppd. cl osest <condition> ::= <var> <conparison> <var>
threshol dDi st anceGhosts | inedi bl eGhost Di stance | avgDi st Bet Ghosts

| avoi dGhost Di stance | w ndowSi ze

1] 2| 3] 45| 6] 7| 8] 9] 10| 11| 12| 13| 14| 15| 16| 17| 18| 19| 20
1] 2| 3] 4| 5| 6] 7| 8] 9] 10| 11| 12| 13| 14| 15

<ghost Threshol d> ::
<avoi dDi st ance>

<wi ndow> 3| 5| 7] 9] 11| 13| 15| 17| 19
<conpari son> <less> | <nobre> | <lesse> | <noreE> | <equal s>
<l essX2> <l ess> | <lessE>
<l ess> "<
<nor e> .
<l essE> : <="
<nor eeE> : >="
<equal s> o= =
Fig. 4. The grammar used in our experiments to evolve a Ms. Pacddatroller using the functions described in Table I.
TABLE Il TABLE IV
RESULTS OF THE FOUKittest evolved Ms. Pac-Man agents using StandardRESULTS OF THE FOUFittest evolved Ms. Pac-Man agents usinGE vs.
GE VS. THREE DIFFERENT GHOST TEAMS OVERLOO INDEPENDENT THREE DIFFERENT GHOST TEAMS OVERLOO INDEPENDENT RUNS
RUNS. HIGHEST SCORES ARE SHOWN IN BOLDFACE HIGHEST SCORES ARE SHOWN IN BOLDFACE
Ghost Team| Min. Max. Score Sum of Ghost Team | Min. Max. Score Sum of
Score + Std. Devw. all Runs Score + Std. Dev. all Runs
Evolved Agent 1 Evolved Agent 1
Random 230 | 110104+ 2704.86| 356450 Random Team 230 | 128504 2717.12| 350460
Legacy 260 | 13780+ 2666.00| 418380 Legacy Team | 340 | 10450+ 2571.18| 476080
Pincer 310 | 14180+ 3397.97| 417500 Pincer Team | 700 | 13730+ 3199.74| 451760
Evolved Agent 2 Evolved Agent 2
Random 570 | 11220+ 2290.83| 441550 Random Team 1040 | 9510+ 2030.77 | 434910
Legacy 660 | 12010+ 3052.81| 503790 Legacy Team| 1080 | 12390+ 2591.76| 530930
Pincer 260 | 14010+ 3606.44| 663710 Pincer Team | 280 | 10990+ 2979.73| 380590
Evolved Agent 3 Evolved Agent 3
Random 580 9590+ 2424.38 | 405410 Random Team 600 88004 2248.27 | 412890
Legacy 570 | 121104+ 2879.62| 484820 Legacy Team| 1000 | 11650+ 2733.71| 462880
Pincer 1000 | 14050+ 3556.82| 630850 Pincer Team | 270 | 12280+ 3002.68| 501470
Evolved Agent 4 Evolved Agent 4
Random 230 | 10410+ 2745.91| 375120 Random Team| 570 | 109804+ 2528.87| 444390
Legacy 260 | 12000+ 2651.73| 467990 Legacy Team| 270 | 11860+ 3216.99| 487090
Pincer 900 | 12230+ 2975.72| 419880 Pincer Team | 290 | 13230+ 3870.62| 470780

actually quite interesting because GE am@E shape the (see Figure 2 lines 15-30). This is not the case fGE
controllers based on what gives the highest points (i.evepo (see Figure 3), where all the code can be executed at some
pills and then heading towards the ghosts). This shows someint. It is important to point out that for both approacHes t
degree of intelligence because this happens only if the fosame grammar was used (see Figure 4). This is something
ghosts are in inedible state, so this gives the chance to Mbat attracted our attention, and so, we examined all the
Pacman to eat the four ghosts after eaten the power pill, armhntrollers produced by both GE anGE. We found out that
so, trying to maximise the score. GE produced 16.66% controllers that contain unused code,
There is one element that is different from the controllersrhereas only 3.33% of the evolved controllers produced by
evolved by GE andrGE. The former produced code thatrGE contain unused code. When we analyse how this could
will never be executed because the conditions are never nietppen, we see thatGE produces bigger derivation trees

TABLE V
RESULTS OF THE FOURess-fit evolved Ms. Pac-Man agents using
Standard GEvS. THREE DIFFERENT GHOST TEAMS OVERL00
INDEPENDENT RUNS HIGHEST SCORES ARE SHOWN IN BOLDFACE

Ghost Team| Min. Max. Score Sum of
Score =+ Std. Dev. all Runs
Evolved Agent 1
Random 230 | 10180+ 2341.41| 361950
Legacy 340 | 10400+ 2492.30| 414410
Pincer 330 | 14290+ 3024.45| 451810
Evolved Agent 2
Random 870 | 10710+ 2724.08| 479250
Legacy 470 | 11390+ 2996.76| 395720
Pincer 1050 | 14010+ 3712.82| 771480
Evolved Agent 3
Random 470 | 128204+ 2866.94 | 523040
Legacy 470 | 129404 2943.21| 399110
Pincer 530 | 14420+ 4456.26| 809430
Evolved Agent 4
Random 230 | 10320+ 2218.13| 364970
Legacy 340 | 12240+ 2661.62| 466990
Pincer 450 | 10830+ 2453.71| 380030

TABLE VI
RESULTS OF THE FOURess-fit evolved Ms. Pac-Man agents usinGE
VS. THREE DIFFERENT GHOST TEAMS OVERLOOINDEPENDENT RUNS

HIGHEST SCORES ARE SHOWN IN BOLDFACE

(both in terms of depth and number of nodes) compared f] M. O'Neill and C. Ryan,
those produced by GE (see Figure 5). This is not surprising
becauserGE's nature allows more freedom in the production[11

of derivation trees compared to standard GE.

VIl. CONCLUSIONS ANDFUTURE WORK

code (i.e., code that is never executed because a condition i
never met), whereas withGE we have a mirror image. That
is, there are more controllers (five times compared to GE)
where there is no invalid code. The former is not an ideal
scenario because, as we have seen, both approaches give a
similar performance (i.e., increasing the score), ancdh&E
is a better approach when combining high-level functions.
We have also seen that our approach is robust in the sense
that even those controllers having a low fithess achieved
good results on the game, and in fact, some of them were as
competitive as the best controllers found by GE ar8E.
In a future work, we would like to explore the idea of
using more complex functions and adopting a multi-objectiv
approach, where both: surviving and maximizing score, can
be taken into account to evolve our controller.

ACKNOWLEDGMENTS

This research is based upon works supported by the
Science Foundation Ireland under Grant No. 08/IN.1/11868.

REFERENCES

[1] I. Dempsey, M. O'Neill, and A. BrabazorfFoundations in Grammat-
ical Evolution for Dynamic Environment$Springer, Apr. 2009.

[2] D. Fagan, M. O'Neill, E. Galan-Lopez, A. Brabazon, and S. Mc-
Garraghy. An analysis of genotype-phenotype maps in gramahatic
evolution. InEuroGP 2010: European Conference on Genetic Pro-
gramming Springer, 2010.

[3] E. Galvan-Lopez, J. M. Swafford, M. O'Neill, and A. Brabazon.

Ghost Team| Min. Max. Score Sum of Evolving a ms. pacman controller using grammatical evolutiarAp-
Score 4+ Std. Dev. all Runs plications of Evolutionary Computation, EvoApplicatio2810: Evo-
Evolved Agent 1 COMPLEX, EVOGAMES, EVoIASP, EVoINTELLIGENCE, EvoNUM
and EvoSTOQvolume 6024 oL NCS pages 161-170. Springer, 2010.
Random 470 9610+ 2464.54 | 421580 [4] J. R. Koza. Genetic Programming: On the Programming of Com-
Legacy 870 | 10280+ 2655.65| 367270 puters by Means of Natural Selectiomhe MIT Press, Cambridge,
Pincer 1670 | 13630+ 3369.96| 551100 Massachusetts, 1992.
Evolved Agent 2 [5] S. Lucas. Evolving a neural network location evaluatoplay ms. pac-
Random 530 | 11840L 285338 349030 man. InIEEE Symposium on Computational Intelligence and Games
. 203-210, 2005.
Le_'gacy 340 | 10740+ 2690.25| 495140 [6] gégl_euscas. Ms Pac-Man Competitionht t p: / / cswww. essex.
Pincer 330 | 13580+ 3046.06] 438250 ac. uk/ st af f/ snl / pacman/ PacManCont est . ht m , Septem-
Evolved Agent 3 ber 2009.
Random 330 9720+ 2727.93 | 411140 [7] S. Lucas. Ms Pac-Man Competition - IEEE CIG 2009.
. http://csww. essex. ac. uk/ st af f/ sm / pacman/
ey | 250 [aom0s s s 8 o b 2o
: [8] S. Lucas. Ms Pac-Man versus Ghost-Team Competition.
Evolved Agent 4 http://csee. essex. ac. uk/ staf f/sm / pacman/ ki t /
Random 230 8820+ 2417.84 | 333380 Agent V_er susChost s. ht m . September 2009.
Legacy 330 11930L 249856 | 488500 [9] M. O'Neill, A. Brabazon, M. Nicolau, S. McGarraghy, and keenan.
- pi-grammatical evolution. In K. Deb, R. Poli, W. Banzhaf, H.-G
Pincer 330 | 141504 3506.20| 454930 Beyer, E. K. Burke, P. J. Darwen, D. Dasgupta, D. Floreand.J.

Foster, M. Harman, O. Holland, P. L. Lanzi, L. Spector, A. detanzi,

D. Thierens, and A. M. Tyrrell, editorsSGECCO (2) volume 3103 of

Lecture Notes in Computer Sciengmages 617—-629. Springer, 2004.

Grammatical Evolution: Evolutionary
Automatic Programming in a Arbitrary Languag&luwer Academic
Publishers, 2003.

] I. Szita and A. Brincz. Learning to play using low-complexity rule-
based policies: illustrations through ms. pac-manArtif. Int. Res.
30(1):659-684, 2007.

[12] K. Trojanowski and Z. Michalewicz. Evolutionary algthrms for non-

stationary environments. lin Proc. of 8th Workshop: Intelligent

We have shown that it is possible to successfully combine
high-level functions by means of evolution using two formg13]
of mappings: the traditional GE andSE. Both approaches
have a similar performance in terms of maximizing Ms. Pac-
Man score. There are, however, important differences on
these approaches. GE produces more controllers with chvali

Information systemspages 229-240. ICS PAS Press, 1999.

K. Trojanowski and Z. Michalewicz. Evolutionary optimgtion in non-
stationary environmentsournal of Computer Science and Technology
1(2):93-124, 2000.

Average Used Gene Length

Best GE Evolved Ms. Pacman Agents vs. Three Ghost Teams Best PiGE Evolved
T T

Ms. Pacman Agents vs. Three Ghost Teams
T T T

15000 T T T 15000 T T
I Random I Random
— [Legacy [CJLegacy
I Pincer I Pincer
10000 - q 10000 q
IS <4
I} S
O Q
n 2]
5000 - q 5000 - q
0 . " . " - 0 . L " . "
Hand-Coded Agent 1 Agent 2 Agent 3 Agent 4 Hand-Coded Agent 1 Agent 2 Agent 3 Agent 4
Ms. Pacman Agents Ms. Pacman Agents
Worst GE Evolved Ms. Pacman Agents vs. Three Ghost Teams Worst PiGE Evolved Ms. Pacman Agents vs. Three Ghost Teams
15000 T T T T i 15000 T T T T T
I Random I Random
[JLegacy [JLegacy m
I Pincer I Pincer
10000 - B 10000 - [B
<4 <4
I} S
o o
n %]
5000 - q 5000 - q
0 . " . " o~ 0 . L " . "
Hand-Coded Agent 1 Agent 2 Agent 3 Agent 4 Hand-Coded Agent 1 Agent 2 Agent 3 Agent 4

Ms. Pacman Agents

Ms. Pacman Agents

Fig. 5. Highest scores achieved by the best GE evolved drtigop left), bestrGE evolved controller (top right), “worst” GE evolved caoiter

(bottom left) and “worst"rGE evolved controller (bottom right).

Mean Average Used Gene Length Mean Average Node Count

8§ - - pacman GE!

~— pachan'GE!
- pacman’ piGE

- spacman piGE

34
I

160
I

11.0

150
I
105

Average Node Count

28
I

140
|
Average Derivation Tree Depth

100

26
I
130
I
95

24
I

120
I

9.0

0 20 40 60 80 100 0 20 40 60 80 100

Generation Generation

Fig. 6. Number of used genes (left), number of nodes in the akiwiv tree (centre) and depth of the
on the Ms. Pac-Man problem.

Mean Average Derivation Tree Depth

Generation

derivation tree (riftt)Standard GE andGE

