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Abstract. The effects of neutrality on evolutionary search are not fully
understood. In this paper we make an effort to shed some light on how
and why bit-wise neutrality – an important form of neutrality induced
by a genotype-phenotype map where each phenotypic bit is obtained by
transforming a group of genotypic bits via an encoding function – influ-
ences the behaviour of a mutation-based GA on functions of unitation.
To do so we study how the fitness distance correlation (fdc) of landscapes
changes under the effect of different (neutral) encodings. We also study
how phenotypic mutation rates change as a function of the genotypic
mutation rate for different encodings. This allows us to formulate simple
explanations for why the behaviour of a GA changes so radically with
different types of neutrality and mutation rates. Finally, we corroborate
these conjectures with extensive empirical experimentation.

1 Introduction

Evolutionary Computation (EC) systems are inspired by the theory of natural
evolution. The theory argues that through the process of selection, organisms
become adapted to their environments and this is the result of accumulative
beneficial mutations. However, in the late 1960s, Kimura [22] put forward the
theory that the majority of evolutionary changes at molecular level are the result
of random fixation of selectively neutral mutations. In other words, the muta-
tions that take place in the evolutionary process are neither advantageous nor
disadvantageous to the survival of individuals. Kimura’s theory, called neutral
theory of molecular evolution, considers a mutation from one gene to another as
neutral if this modification does not affect the phenotype.

Within the context of EC, different approaches have been proposed to study
neutrality in evolutionary search. Whether or not neutrality helps evolutionary
search, however, has not conclusively been established. In the following section,
we will present work that shows clearly that the relationship between the geno-
type space and phenotype space when neutrality is present in the evolutionary
search plays a crucial role.
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The aims of our work are:

– understanding the relationship between the solution space (represented at
phenotype level) and the search space (represented at genotype level) in the
presence of neutrality, and, following this analysis,

– identifying under what circumstances neutrality may help to improve per-
formance of evolutionary processes.

The paper is organised as follows. In the next section, previous work on neu-
trality in EC is summarised. In Section 3, we describe the genotype-phenotype
encodings studied in this paper. In Section 4 we review the notion of the fitness
distance correlation (fdc), introduce our test problems and look at their fdc in
the absence of neutrality. In Section 5 we study the effects of bitwise neutrality
on the difficulty of our test problems, exploring the case of the OneMax problem
in particular depth. Section 6 makes the relation between genotypic mutation
rates and phenotypic mutation rates explicit. In Sections 7 and 8 we present
and discuss the results of experiments with unimodal, multimodal and deceptive
landscape problems and draw some conclusions.

2 Previous Work

In biology the effects of neutrality have been extensively discussed in numerous
studies (see for example [22, 18, 13]). As a consequence of these studies, there
has been a growing interest in using and analysing the effects of neutrality in
EC.

For instance, Barnett [3] introduced a new family of NK fitness landscapes
that has the property of allowing the explicit addition of neutrality in the evo-
lutionary process. He called them NKp fitness landscapes. The parameter p is
determines the amount of neutrality that is be present during evolution (p = 0
corresponds to a normal NK landscape while p = 1 corresponds to a flat land-
scape). Barnetts’ motivation was to see if the constant innovation property ob-
served in biology [18] was present in this type of neutrality. The author argued
that, at least for a mutation-selection algorithm, avoiding to get stuck in local
optima can be achieved in the presence of neutral networks.

In a insightful investigation, Weicker and Weicker [36] used two methods to
analyse the effects of redundancy: diploid and decoders. For the former method,
each individual contains two solutions and an extra bit which is in charge to
set the active solution. So, it is clear that the size of the search space for this
kind of redundancy has increased dramatically. Moreover, this kind of mapping
is homogenous. This is not the case, however, for the decoder method. A decoder
is effectively a repair mechanism that maps an invalid genotype (e.g., one that
violates some constraints) into a valid one. They investigated the effects of both
methods with respect to local optima, finding that local optima in the search
space are converted to plateaus. However, this does not mean that this represent
an advantage, as the authors pointed out saying: “... redundancy has many facets
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with various different characteristics. The mapping from those characteristics to
the expected performance remains to be done” [36].

Toussaint and Igel [33] pointed out that standard approaches to self-
adaptation [10] are a basic and explicit example for the benefit of neutrality.
In these approaches the genome is augmented with strategy parameters which
typically parameterise the mutation distribution (e.g., the mutation rate). These
neutral parts of the genome are co-adapted during evolution to induce better
search distributions. Interestingly, theoretical work on the evolution of strategy
parameters [4] can so be re-interpreted as theoretical results on the evolution
of neutral traits. The point of view developed in [33] conversely suggests that
the core aspect of neutrality is that different genomes in a neutral set provide a
variety of different mutation distributions from which evolution may select in a
self-adaptive way.

This line of thought was further formalised by Toussaint [32]. Given a fixed
GP-map one can investigate the varieties of mutation distributions induced by
different genomes in a neutral set. If their phenotypic projections (the phenotypic
mutation distributions) are constant over each neutral set this is defined as triv-

ial neutrality. Toussaint shows that trivial neutrality is a necessary and sufficient
condition for compatibility with phenotypic projection of a mutation-selection
GA. Intuitively this means that, in the case of trivial neutrality, neutral traits
have no effect on phenotypic evolution. I.e., whether one or another representa-
tive of a neutral set is present in a population does not influence the evolution
of phenotypes. Note that one of the encodings we will investigate (the Parity en-
coding) is a case of trivial neutrality. This and calculations presented in Section 5
will help us explain the results presented in Section 7. In the case of non-trivial
neutrality, different genotypes in a neutral set induce different phenotypic dis-
tributions, which implies a selection between equivalent genotypes similarly to
the selection of strategy parameters in self-adaptive EAs. Toussaint interprets
this as the underlying mechanism of the evolution of genetic representations.

Vassilev and Miller [35] claimed that the presence of neutrality in evo-
lutionary search was useful when they used Cartesian Genetic Programming
(CGP) [25] to evolve digital circuits. For their study, the authors considered the
well-known three-bit multiplier problem. They focused their attention on the re-
lation between the size and the height of the landscapes plateaus. In their work,
Vassilev and Miller suggested that the length of neutral walks will decrease as
the best fitness increases. They concluded that neutrality helps to cross wide
landscapes areas of low fitness.

Smith et al. [29] analysed the effects of the presence of neutral networks on
the evolutionary process. They observed how evolvability was affected by the
presence of such neutral networks. For their study they used a system with an
extremely complex genotype-to-fitness mapping. They concluded that the ex-
istence of neutral networks in the search space, which allows the evolutionary
process to escape from local optima, does not necessarily provide any advantage.
This is because the population does not evolve any faster due to inherent neu-
trality. In a different piece of work [30], the same authors focused their research
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on looking at the dynamics of the population rather than looking at just the fit-
ness, and argued that neutrality did not perform a useful role in an evolutionary
robotic task.

Ebner et al. [9] studied the effects of neutrality on the search space. For this
purpose, they separate the search space into phenotypes which belong to different
species. In their work, they proposed three different types of encodings which,
according to the authors, seem to allow a high degree of connectivity among
neutral networks and so, individuals will not have problem discovering other
species. From their experiments, they concluded that the higher the degree of
redundancy (another term for neutrality) is, the better species are able to adapt.
In other words, redundancy avoids getting stuck in local optima.

Yu and Miller [37] showed in their work that neutrality improves the evo-
lutionary search process for a Boolean benchmark problem. They used Miller’s
CGP [25] to measure explicit neutrality in the evolutionary process. They ex-
plained that mutation on a genotype that has part of its genes active and others
inactive may produce different effects: mutation on active genes is adaptive be-
cause it exploits accumulated beneficial mutations, while mutation on inactive
genes has a neutral effect on a genotype’s fitness, yet it provides exploratory
power by maintaining genetic diversity. Yu and Miller extended this work in [38]
showing that neutrality was helpful and that there is a relationship between
neutral mutations and success rate in a Boolean function induction problem.
However, Collins [7] claimed that the conclusion that neutrality is beneficial in
this problem is flawed.

Yu and Miller also investigated neutrality using the simple OneMax prob-
lem [39]. They attempted a theoretical approach in this work. With their exper-
iments, they showed that neutrality is advantageous because it provides a buffer
to absorb destructive mutations.

Chow [5] studied the relationship between genotype space and phenotype
space. In his work, Chow used a hybrid algorithm (a GA receiving feedback from
a hill climber). The approach proposed by Chow relies on replacing a genotype
by converting a phenotype to its corresponding genotype. Such phenotype is
given to the GA by the hill climber. Chow claimed that in all experiments, such
replacements improved the search results.

Fonseca and Correia [12] developed a mathematical model which is able to
include the properties proposed by Rothlauf and Goldberg [28] and which are
claimed to influence the quality of redundant representations. All their experi-
ments were carried out in the context of a simple mutation-selection evolutionary
model. Under this model, the authors were wondering whether a redundant rep-
resentation might be constructed which preserves evolutionary behaviour. Based
on their mathematical model, they claimed that the presence of non-coding genes
do not affect the evolutionary process. However, they were unable to determine
what kind of representation (redundancy) is necessary to obtain good results on
a given optimisation problem.

Banzhaf and Leier [2] studied the effects of neutral networks’ connectivity
using a Boolean problem. They studied the effects of neutrality using 2 NAND
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space and showed how it can aid the evolutionary search. For this purpose,
Banzhaf and Leier used a linear GP representation because, they argued, with
GP it is easier to identify neutrality than in other evolutionary method. In
their experiments and by means of an exhaustive examination of all possible
genotypes, they showed how there are highly common phenotypes and very few
uncommon phenotypes. The authors concluded that neutral networks must be
highly intertwined to allow a quick transition from one network to the next.

In summary, the literature presents a mixed picture as to what the effects of
neutrality on evolutionary search are.

As can be seen from previous paragraphs, the relationship between pheno-
type and genotype space is crucial to understand the influence of neutrality on
evolutionary search. We believe that the effects of neutrality on evolutionary
search are not well understood for several reasons:

– studies often consider problems, representations and search algorithms that
are relatively complex and so results represent the compositions of multiple
effects (e.g., bloat or spurious attractors in genetic programming),

– there is not a single definition of neutrality and different studies have added
neutrality to problems in radically different ways, and,

– the features of a problem’s landscape change when neutrality is artificially
added, but rarely an effort has been made to understand in exactly what
ways.

Recently [14, 24], in an effort to shed some light on neutrality we started ad-
dressing these problems. In particular, we studied perhaps the simplest possible
form of neutrality: a neutral network of constant fitness, identically distributed
in the whole search space. For this form of neutrality, we analysed both problem-
solving performance and population flows from and to the neutral network and
the basins of attraction of the optima, as the fitness of the neutral network was
varied.

In this paper, we will continue towards the same goals, but we will consider
a much more practical form of neutrality, bit-wise neutrality.

3 Bitwise Neutrality

Bitwise neutrality is a form of neutrality induced by a genotype-phenotype map
where each phenotypic bit is obtained by transforming a group of genotypic bits
via some encoding function. In this paper we consider three different kinds of
genotype-phenotype encodings to specify bitwise neutrality in the evolutionary
process. For the three of them, each phenotypic bit is encoded using n genotypic
bits.

These encodings are defined as follows:

1. The majority encoding works as follows: given n bits, the user defines a
threshold (T ) (0 ≤ T ≤ n) and if the number of ones that are in the n
genotypic bits is greater or equal to T then the bit at the phenotype level is
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set to 1, otherwise it is set to 0. Figure 1(a) illustrates this concept. Normally,
to avoid biasing the system we will always use T = n/2 and n odd. This
guarantees that 0s and 1s are treated identically.

2. The parity encoding works as follows: if the number of ones that are in n
genotypic bits is an even number, then the bit at the phenotype level is set
to 1, otherwise it is set to 0. Figure 1(b) illustrates this concept.

3. The truth table encoding works as follows: a truth table is generated and the
output for each combination is produced at random. (Half of the outputs
of the truth table are assigned with 0s and the other half are assigned with
1s. Then the outputs are shuffled to make them perfectly random). Then we
consider the n genotypic bits as inputs, and we take as our phenotypic bit
the corresponding truth table’s output. Figure 1(c) illustrates this concept.

Neutrality is added to the non-redundant code by the proposed encodings.
Because each bit is encoded using n bits, the same phenotype can be obtained
from different genotypes and, so, neutrality is artificially added to the search
space.

In the presence of the form of neutrality discussed above, the size of the
search space is 2`n, where ` is the length of a phenotypic bit string and n is
the number of bits required to encode each bit. With the types of encodings
explained earlier, we have increased not only the size of the search space but
also the size of the solution space. However, this does not mean that neutrality
is always beneficial. We have also to bear in mind that the mutation rate at
genotype level is different than the mutation rate at phenotype level. We will
calculate these mutations rates and see their effects in Section 6.

Neutrality is often reported to help in multimodal landscapes, in that it
can prevent a searcher from getting stuck in local optima. However, very little
mathematical evidence to support this claim has been provided in the literature.
So, in the next section we start our analysis by using a well-defined hardness
measure, the fitness distance correlation, calculating it in such a way to make the
dependency between problem difficulty and neutrality of the encoding explicit.

4 Fitness Distance Correlation

4.1 Definition

Jones [19, 20] proposed fitness distance correlation (fdc) to measure the diffi-
culty of problem by studying the relationship between fitness and distance. The
idea behind fdc was to consider fitness functions as heuristics functions and to
interpret their results as indicators of the distance to the nearest global opti-
mum of the search space and, so, fdc is an algebraic measure to express such a
relationship.

The definition of fdc is quite simple: given a set F = {f1, f2, ..., fn} of fitness
values of n individuals and the corresponding set D = {d1, d2, ..., dn} of distances
to the nearest global optimum, we compute the correlation coefficient r, as:
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Fig. 1. Three different encodings used in our research: (a) Majority encoding, (b) Parity
encoding and (c) Truth table encoding.
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r =
CFD

σF σD

,

where:

CFD =
1

n

n
∑

i=1

(fi − f)(di − d)

is the covariance of F and D, and σF , σD , f and d are the standard deviations
and means of F and D, respectively. The n individuals used to compute fdc can
be chosen in different ways. For reasonably small search spaces or in theoretical
calculations it is often possible to sample the whole search space. In this case
fdc can be computed exactly. However, in most other cases, fdc is estimated by
constructing the sets F and D via some form of random sampling.

According to [20] a problem can be classified in one of three classes, depending
of the value of r: (1) misleading (r ≥ 0.15), in which fitness tends to increase with
the distance from the global optimum, (2) difficult (−0.15 < r < 0.15), for which
there is no correlation between fitness and distance, and (3) easy (r ≤ −0.15),
in which fitness increases as the global optimum approaches.

There are some known weakness in the fdc as a measure of problem hard-
ness [1, 26, 27]. However, it is fair to say that the method has been generally
very successful [6, 20, 31, 34]. The distance used in the calculations is, for binary
search spaces, the Hamming distance, H .

In this work we will use fdc to evaluate problem difficulty with and without
neutrality. Here we only consider problems where the fitness function is a function
of unitation, so, we can rewrite CFD in a more explicit form.

4.2 Test Problems

We have used three problems to analyse neutrality. The first one is the OneMax
problem. The problem is to maximise:

f(x) =
∑

i

xi,

where x is a binary string of length `, i.e., x ∈ {0, 1}`. Naturally, this problem
has only one global optimum in 11 · · · 1, and, the landscape is unimodal. Seen as
a function of unitation the problem is represented by f(u) = u or f(x) = u(x)
where u(x) is a function that returns the unitation value of x.

For the second problem, we used a multimodal problem generator [8, 21, 23].
The idea is to create problem instances with a certain degree of multi-modality.
In general, for a problem with P peaks, P bit strings of length ` are randomly
generated. The generator works as follows. To evaluate an arbitrary individual
x, we first locate the nearest peak in Hamming space

Peakn(x) = argmin
i

H(Peaki, x)
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In case there is a tie, the highest peak is chosen. The fitness of x is the number
of bits the string has in common with that nearest peak, divided by ` and scaled
by the height of the nearest peak:

f(x) =
` − H(x, Peakn(x))

`
× Height(Peakn(x))

In this problem, the fitness value has a range from 0.0 and 1.0. The goal is
to find the highest peak (i.e., to find a string with fitness 1.0). The difficulty
of the problem depends on the number of peaks, the distribution of peaks and,
finally, the distribution of peak heights. To carry out our experiments, we have
tuned the parameters in such a way to make the problem much harder than the
OneMax problem but easier than the trap function (see below). More details
will be provided in Section 7.

The third and last problem is a Trap function, which is a deceptive function
of unitation [15–17]. For this example, we have used the function:

f(x) =

{

a
umin

(umin − u(x)) if u(x) ≤ umin,
b

`−umin
(u(x) − umin) otherwise

where a is the deceptive optimum, b is the global optimum, and umin is the
slope-change location. Basically the idea is that there are two optima, a and b,
and by varying the parameters ` and umin, we can make the problem easier or
harder.

4.3 fdc in the Absence of Neutrality

For all our test problems, given a search space of binary strings of length ` and
being the unitation of the optimal string uopt = `, if we sample the whole search
space in order to compute CFD, we have:

CFD =
1

2`

∑̀

u=0

(

`

u

)

(f(u) − f)(` − u − d)

where:

f =
1

2`

∑̀

u=0

(

`

u

)

f(u)

and

d = ` − 1

2`

∑̀

u=0

(

`

u

)

u =
`

2
.

Similar expressions can be obtained for σD and σF .
So, for example, for OneMax, where f(u) = u, we have f̄ = `

2 and

CFD =
1

2`

∑̀

u=0

(

`

u

)(

u − `

2

)(

`

2
− u

)

= − `

4
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as one can easily see by noting that 1
2`

(

`

u

)

is a binomial distribution,
(

`
u

)

pu(1 − p)`−u, with success probability p = 1/2. Therefore, by definition of

variance, CFD = −V ar[u] = −`p(1 − p) = − `
4 . By similar arguments one finds

σ2
D = σ2

F = 1
4 , whereby r = −1, suggesting an easy problem. For Trap functions,

instead, whenever umin ≈ ` one finds r ≈ 1 [19] indicating hard problems.

5 fdc in the Presence of Bitwise Neutrality

As mentioned in Section 3, the form of neutrality we consider here is one where
each phenotypic bit is encoded using n genotypic bits. In this situation, CFD is
given by:

CFD =
1

2n`

∑

x∈{0,1}n`

(fx(x) − f̄)(d(x) − d̄)

where x = x1 · · ·xn` is a genotype and fx(x) is the genotypic fitness. Similar
expressions can be obtained for σD and σF . Note that fx(x) can be written as

fx(x) = fy(g(x(1)), g(x(2)), · · · , g(x(n)))

where x(k) = x(k−1)n+1 · · ·xkn is a substring of x, g is one of our encoding
functions (e.g., Majority or Parity), and fy(y) is the phenotypic fitness (y ∈
{0, 1}`), which in this work we will assume to be a function of unitation.

We define Xn = {x ∈ {0, 1}n : g(x) = 1} and X̄n = {x ∈ {0, 1}n : g(x) = 0}.
We require that our encoding functions g respect one property: that on average
they return as many 0s as 1s, i.e.,

∑

x∈{0,1}n

g(x) = 2n−1.

This property is respected by the encodings described in Section 3. So, |Xn| =
|X̄n| = 2n−1.

To illustrate the effects of the introduction of bitwise neutrality, in the fol-
lowing we will consider in detail the case of OneMax.

5.1 fdc for OneMax with Bitwise Neutrality

For the OneMax function we have

fx(x) =
∑

i

g(x(i)).

To compute fdc we can make use of a result originally derived by Jones [19,
Appendix D]: the concatenation of multiple copies of a problem does not change
the fdc of the original problem, provided the fitness of the concatenated problem
is obtained by summing the fitnesses of the sub-problems. This result is appli-
cable because we can interpret g as the fitness functions of an n-bit problem
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which is concatenated ` times to form an `×n bit problem with fitness function
fx(x). Therefore, we can compute the fdc for OneMax with different forms of
bitwise neutrality by simply computing the fdc of the corresponding g functions.
Since these functions take only binary values, this calculation is simpler than
the original.

Let us start by considering the mean value of the function g, ḡ, for all encod-
ings. By definition we have that g(x) = 1 for x ∈ Xn and g(x) = 0 otherwise.
So, irrespective of the encoding used we have

ḡ =
1

2n

∑

x∈{0,1}n

g(x) =
1

2n

∑

x∈Xn

1 =
1

2n
|Xn| =

1

2

irrespective of the encoding function used.

We use this result in the computation of σ2
F , obtaining

σ2
F =

1

2n

∑

x∈{0,1}n

(g(x) − ḡ)2

=
1

2n





∑

x∈Xn

(

1 − 1

2

)2

+
∑

x∈X̄n

(

0 − 1

2

)2




=
1

4
,

which, again, is valid for all encodings.

Also, we have

d̄ =
1

2n

∑

x∈{0,1}n

H(x, N(x))

where N(x) is the global optimum nearest to x and H is the Hamming distance.
Because all elements of Xn are global optima of g, and, so, x = N(x) and
H(x, N(x)) = 0 for x ∈ Xn, we have

d̄ =
1

2n

∑

x∈X̄n

H(x, N(x)). (1)

If we extend the definition of Hamming distance to sets by via the definition
H(x, S) = miny∈S H(x, y), we can rewrite Equation (1) as

d̄ =
1

2
E[H(x, Xn)|x ∈ X̄n], (2)

where E[H(x, Xn)|x ∈ X̄n] is the mean Hamming distance between the elements
of X̄n and the set Xn.
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Similarly we have,

σ2
D =

1

2n

∑

x∈{0,1}n

(H(x, N(x)) − d̄ )2

=
1

2n





∑

x∈Xn

(

0 − d̄
)2

+
∑

x∈X̄n

(

H(x, N(x)) − d̄
)2





=
1

2

(

d̄ 2 + E
[

(

H(x, Xn) − d̄
)2
∣

∣

∣x ∈ X̄n

])

=
1

2

(

d̄ 2 + E
[

H(x, Xn)2
∣

∣

∣
x ∈ X̄n

]

− 2d̄E
[

H(x, Xn)
∣

∣

∣
x ∈ X̄n

]

+ d̄ 2
)

=
1

2

(

d̄ 2 + E
[

H(x, Xn)2
∣

∣

∣x ∈ X̄n

]

− 2d̄ × (2d̄ ) + d̄ 2
)

=
1

2

(

E
[

H(x, Xn)2
∣

∣

∣x ∈ X̄n

]

− 2d̄ 2
)

Finally, we have

CFD =
1

2n

∑

x∈{0,1}n

(g(x) − ḡ )(H(x, N(x)) − d̄ )

=
1

2n





∑

x∈Xn

(

1 − 1

2

)

(

0 − d̄
)

+
∑

x∈X̄n

(

0 − 1

2

)

(H(x, N(x)) − d̄ )





=

(

−1

2

)





1

2
d̄ +

1

2n

∑

x∈X̄n

H(x, N(x)) − 1

2n

∑

x∈X̄n

d̄





=

(

−1

2

)





1

2n

∑

x∈X̄n

H(x, N(x))





=

(

−1

2

)(

1

2
E[H(x, N(x))|x ∈ X̄n]

)

= − d̄

2

In the following subsections we apply these generic results to our three en-
coding functions: Parity, Truth Table and Majority.

5.2 fdc under Parity

Let us start with the Parity encoding. The bit strings in X̄n have all odd parity.
Therefore, they can be turned into even-parity global optima by a single bit flip.
That is, their Hamming distance from a global optimum is always 1, whereby
E[H(x, Xn)|x ∈ X̄n] = 1. So, from Equation (2) we obtain

d̄ =
1

2
.
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From this, it follows that

CFD = −1

4
.

We also have that E
[

H(x, Xn)2
∣

∣

∣
x ∈ X̄n

]

= 1. So,

σ2
D =

1

2

(

1 − 2 × 1

4

)

=
1

4
.

Therefore, the fitness distance correlation for OneMax under the Parity en-
coding is

r =
− 1

4
√

1
4

√

1
4

= −1

That is, the fdc of OneMax is unaffected by the presence of bitwise neutrality
under Parity encoding, irrespective of the number of bits (n) one uses.

5.3 fdc under Truth Table

Let us now consider the Truth Table encoding. In order to apply Equation (2)
we need to compute E[H(x, Xn)|x ∈ X̄n]. To do this we will treat H(x, Xn) as a
stochastic variable, compute its probability distribution and then make use of the
definition of expected value. Let us call p(d) the probability that H(x, Xn) = d
for a randomly chosen x ∈ X̄n.

Let us choose uniformly at random an x ∈ X̄n and then choose randomly one
of the Hamming-1 neighbours, x′, of x. Because the entries of the truth table
are randomly assigned, the probability that x′ ∈ Xn is 1

2 . Note that p(1) is the
probability that at least one neighbour of x is a member of Xn. Since x has n
neighbours and each neighbour’s membership of Xn is a Bernoulli trial, we have
that

p(1) = 1 −
(

1

2

)n

.

So, as n grows, p(1) rapidly approaches 1.

Let us now focus on p(2). This can be seen as the probability of a joint
event, i.e., none of the Hamming-1 neighbours of a randomly chosen x ∈ X̄n is a
member of Xn, but at least one of its Hamming-2 neighbours is. We treat these
two events as independent.1 We know that the probability of the first event is
just 1−p(1) =

(

1
2

)n
and we compute the probability of the second as one minus

the probability that none of the Hamming-2 neighbours of x is in Xn. Since
there are

(

n
2

)

such neighbours and the probability of each being in Xn is 1
2 , the

1 This is an approximation, but its accuracy rapidly improves with n. So, our calcu-
lations are already very accurate for n ≥ 3.
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probability that none of the Hamming-2 neighbours of x is in Xn is 1 −
(

1
2

)(n
2).

Putting everything together we then get

p(2) =

(

1

2

)n
(

1 −
(

1

2

)(n

2)
)

Similarly, we get

p(3) =

(

1

2

)n+(n

2)
(

1 −
(

1

2

)(n

3)
)

and, more generally,

p(d) =

(

1

2

)

Pd−1

k=1 (n
k)
(

1 −
(

1

2

)(n
d)
)

.

We are now in a position to compute

E[H(x, Xn)|x ∈ X̄n] =
n
∑

d=1

d · p(d). (3)

Note that p(d) is a very rapidly decreasing function. For example, for n = 4
we have p(1) = 0.93750, p(2) = 0.061523, p(3) = 0.00091553 and p(4) =
0.000030518. Furthermore, as n increases more and more of the probability mass
accumulates onto p(1), effectively leading to only p(1) and p(2) having any rel-
evance in the calculation in Equation (3). So, we can write

E[H(x, Xn)|x ∈ X̄n] ≈ p(1) + 2p(2) = 1 +

(

1

2

)n

− 2

(

1

2

)n+(n
2)

,

which makes it clear that for the Truth Table encoding E[H(x, Xn)|x ∈ X̄n] ≈
1 + 2−n. For example, for n = 3, 4, 5, 6, and computing E[H(x, Xn)|x ∈ X̄n]
using Equation (3) we obtain the values 1.11719, 1.06342, 1.03128, 1.01563,
respectively. So, under the Truth Table encoding

d̄ ≈ 1

2
+ 2−n−1

From this, it follows that

CFD = −1

4
− 2−n−2.

Using a similar approach we compute

E
[

H(x, Xn)2
∣

∣

∣x ∈ X̄n

]

=

n
∑

d=1

d2 · p(d)

≈ p(1) + 4p(2)

= 1 + 3

(

1

2

)n

− 4

(

1

2

)n+(n
2)

≈ 1 + 3 × 2−n
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So,

σ2
D ≈ 1

2

(

1 + 3 × 2−n − 2 ×
(

1

2
+ 2−n−1

)2
)

≈ 1

2

(

1 + 3 × 2−n − 1

2
− 2−n

)

≈ 1

2

(

1

2
+ 2 × 2−n

)

=
1

4
+ 2−n

Therefore, the fitness distance correlation for OneMax under the Truth Table
encoding is

r = −
1
4 + 2−n−2

√

1
4 + 2−n

√

1
4

= −2(−n−1) + 1
2

√

2−n + 1
4

≈ −1 + 2−n.

That is, for n ≥ 5 or so, also Truth Table induces a form of neutrality which
effectively leaves the fdc/problem difficulty unchanged. For relatively small val-
ues of n, however, this encoding makes the OneMax problem harder, albeit to
a small degree. In Section 6 and 7 we will use n ≥ 5, for which Truth Table
effectively behaves like Parity.

5.4 fdc under Majority

Let us now consider the Majority encoding. Again, we start by computing
E[H(x, Xn)|x ∈ X̄n].

With a Majority encoding with T = n/2 and n odd, X̄n is the class of all
strings of length n which have 0, 1, ... bT c bits set to 1. That is, we can naturally
describe X̄n by saying that it is contains all strings with unitation value u < T .
Given a string in X̄n having unitation u, we can compute how close this is to
Xn just by looking at how many additional 1’s would be needed to transform
the string into a member of Xn. This number is simply dT − ue. Since for each
unitation class u we have

(

n
u

)

strings, we can then write

E[H(x, Xn)|x ∈ X̄n] =
1

2n−1

∑

x∈X̄n

H(x, Xn) =
1

2n−1

∑

u<T

(

n

u

)

× dT − ue.

This can be computed numerically. For T = n/2, n odd, and small values of n,
E[H(x, Xn)|x ∈ X̄n] grows approximately as 0.63 + 0.37

√
n. So, we have

d̄ ≈ 0.315 + 0.185
√

n

and
CFD ≈ −0.1575− 0.0925

√
n.
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Using a similar approach we compute

E
[

H(x, Xn)2
∣

∣

∣x ∈ X̄n

]

=
1

2n−1

∑

x∈X̄n

H(x, Xn)2

=
1

2n−1

∑

u<T

(

n

u

)

× dT − ue2

≈ 0.725 + 0.334× n

for small values of n. So,

σ2
D ≈ 1

2

(

0.725 + 0.334× n − 2
(

0.315 + 0.185
√

n
)2
)

≈ 0.133 n− 0.117
√

n + 0.263

Therefore, the fitness distance correlation for OneMax under the Majority
encoding is

r ≈ − 0.315 + 0.185
√

n
√

0.133 n− 0.117
√

n + 0.263
.

So, in this case there is a much more marked effect of the encoding on the diffi-
culty of a problem with the fdc progressively increasing (from the original value
of −1) when n increases. For example, for n = 3, 5, 7, 9, 11 we obtain fdc values
of approximately -0.9376, -0.8926, -0.8554, -0.8261 and -0.8028, respectively.

Naturally, theoretical fdc calculations could be performed also for the Mul-
timodal problem generator and the Trap function in the presence of bitwise
neutrality, although for these functions one could not use Jones’ result [19, Ap-
pendix D]. We do not report these calculations. However, based on our results
with OneMax and the results in [32], it is easy to understand that the Parity
and Truth Table encodings have no or limited influence on the difficulty of the
Trap and Multimodal functions. However, we should expect Majority to make
these problems easier.

6 Phenotypic Mutation Rates

The analysis based on fdc indicates that the choice of encoding function used
to introduce neutrality may be critical in determining whether a problem is
made easier or harder by the introduction of neutrality in evolutionary search.
However, fitness landscapes and fdc effectively neglect to model the fact that the
precise distribution of mutants may have an important effect of search behaviour
and performance. For example, fdc remains the same irrespective of the mutation
probability pmut.

So, to better evaluate benefits and drawbacks of neutrality we want to un-
derstand what effects different types of neutral encodings have on the way the
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search proceeds under mutation. In particular we are interested in understand-
ing how genotypic mutations are related to phenotypic mutations, since only
phenotypic changes can lead to fitness changes. To do so, we use the notion of
phenotypic mutation rate.

When the parity encoding is used, the phenotypic mutation rate correspond-
ing to a genotypic mutation rate pmut is given by:

pmutphenotypic =
∑

i=1,3,5,...

(

n

i

)

pi
mut(1 − pmut)

n−i

This is because only an odd number of genotypic bit-flips can produce a pheno-
typic change.

When the Truth Table encoding is used, the mutation rate at phenotype level
is given by:

pmutphenotypic =
1 − (1 − pmut)

n

2

This is because there is the potential for a change in phenotypic value whenever
we change the row from which we read out the output in the truth table. This
happens if at least one genotypic mutation takes place (hence the factor 1 −
(1 − pmut)

n). However, not all row changes lead to a flipped phenotypic bit.
Because the table is random, this happens only in 50% of the cases (hence the
denominator, 2).

The calculation of the phenotypic mutation rates for Majority are more dif-
ficult. We can, however, obtain numerical estimates for these very easily. We
do this by generating genotypic mutants of individuals using a particular geno-
typic mutation rate and recording how frequently the mutants are in a different
majority class than the original parents.

In Table 1, we show the phenotypic mutation rates when mutation rates at
genotype level are 0.01, 0.06 and 0.1 for Parity, Truth Table and Majority. In
the case of Majority figures are estimates obtained by generating 10,000 mutants
starting from a uniform random population. As we can see, there are conditions
in which different encodings produce similar phenotypic mutation rates. This
is the case, for instance, for the pairs of numbers in boldface, underlined, in
italics and in sans serif. Note that the Parity and Truth Table (for the values
of n used in the table) leave the fitness distance correlation of a problem un-
changed, as discussed in the previous section. So, whenever also the phenotypic
mutation rates match, we should expect to see similar performance under these
two encodings. We will verify this in the next section.

7 Results and Analysis

For OneMax and the other two problems we have used chromosomes of length
` = 14. For the multimodal landscape we have used P = 400 peaks. These were
distributed in such a way to give the problem deceptive features. Specifically,
the highest peak is at position 111 · · ·111 and the second highest peak is at
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Table 1. Phenotypic mutation rates when mutation rates at genotype level are 0.01,
0.06 and 0.1.

Type of Pmut = 0.01 Pmut = 0.06 Pmut = 0.1
redundancy

Parity (n bits = 5) 0.0480 0.2361 0.3362

Parity (n bits = 6) 0.0571 0.2678 0.3689
Parity (n bits = 7) 0.0659 0.2957 0.3951
Parity (n bits = 8) 0.0746 0.3202 0.4161

Truth Table (n bits = 5) 0.0245 0.1331 0.2048
Truth Table (n bits = 6) 0.0293 0.1551 0.2343
Truth Table (n bits = 7) 0.0340 0.1758 0.2609
Truth Table (n bits = 8) 0.0386 0.1952 0.2848

Majority (n = 5, T = 2.5) 0.0168 0.0916 0.1530
Majority (n = 7, T = 3.5) 0.0204 0.1072 0.1725

Table 2. Parameters.

Parameter Value

Length of the genome 14

Population Size 80

Generations 100

Mutation Rate (per bit) 0.01, 0.06, 0.1

Number of n bits encoded 5, 6, 7, 8

Independent Runs 1,000

position 000 · · ·000, the remaining peaks are randomly distributed. This last
feature makes the problem easier than the trap function. For the trap function
we used the following parameters: umin = 13, a = 39, b = 40. Figure 2 depicts
this trap function. For the three problems we have used a sample size 4,000 to
calculate fdc.

The experiments were conducted using a GA with fitness proportionate se-
lection and bit-flip mutation. Runs were stopped when the maximum number of
generations was reached. The parameters used are given in Table 2.

Let’s start by analysing fdc for the problems used in our experiments. Ta-
ble 3 reports fdc for a representation without neutrality and for various forms
of neutral encoding. As predicted in Section 4, for the three problems, the Par-
ity and Truth Table encodings leave the fdc unchanged w.r.t. whatever value it
had in the absence of neutrality.2 On the contrary, as predicted, Majority moves
slightly the fdc of a problem towards zero, thereby making easy problems harder
and hard problems easier. The question now is: will actual search performance
be similarly affected?

2 This is not unexpected, since, as discussed in Section 2, the Parity encoding is a case
of trivial neutrality (where the evolution of phenotypic bit strings can be modelled
without referring to the corresponding genotypes). Also, the Truth Table encoding
effectively becomes a case of trivial neutrality for sufficiently large n.
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Fig. 2. The trap function used in our experiments (umin = 13, a = 39, b = 40).

In Table 4, we show the average number of generations required to reach the
optimum of OneMax and the percentage of successes in finding the optimum
measured in 1,000 independent runs of a GA. Let us analyse these results.

When pmut = 0.01 we can see a good match between the predictions of fdc

and problem difficulty. In particular, the Parity and Truth Table encodings show
almost exactly the same performance both in terms of percentage of runs where
the problem was solved and average number of generations required to solve it.
Also, we can see that, as predicted by our fdc analysis, the problem is easy and
remains easy under all encodings, being solved in almost 100% of cases in all
configurations. In addition, we can see that under Majority more generations are
required to solve the problem than under Parity and Truth Table, which again
confirms the predictions of the fdc analysis. There is, however, one element that
is unexpected. In the absence of neutrality, runs take longer to find the optimum
than with Parity and Truth Table. In fact, they take approximately as long as
for Majority.

When pmut = 0.06 the situation becomes less clear. Here Parity and Truth
Table do not perform identically any more, with Truth Table still being able
to solve the problem in almost all runs, while Parity does so only in between
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Table 3. Fitness Distance Correlation estimated for the OneMax problem, the Multi-
modal Problem generator and the Trap function.

Type of OneMax Multimodal Trap
redundancy Problem Problem Function

No neutrality -1 0.5114 0.9979
Parity (n = 5) -1 0.5190 0.9925
Parity (n = 6) -1 0.5190 0.9999
Parity (n = 7) -1 0.5144 0.9999
Parity (n = 8) -1 0.5086 0.9999

Truth Table (n = 5) -0.9999 0.5102 0.9999
Truth Table (n = 6) -1 0.5374 0.9925
Truth Table (n = 7) -1 0.5264 0.9999
Truth Table (n = 8) -0.9999 0.5233 0.9925

Majority (n = 5, T = 2.5) -0.8488 0.4444 0.8434
Majority (n = 7, T = 3.5) -0.8308 0.4471 0.8308

70 and 90% of the cases. This was not predicted by the fdc analysis. What is
particularly surprising here is that in all cases Parity and Truth Table take longer
to solve the problem than Majority and the no-neutrality case. So, Parity and
Truth Table effectively make the problem harder, while the other two encodings
are still performing approximately the same and their performance seems to be
unaffected by the increase in mutation rate. fdc analysis also did not predict
that performance would vary with n when using the Parity encoding.

These rather confusing trends continue also at the highest genotypic muta-
tion rate, pmut = 0.1. Now also the performance with Truth Table varies with
n. Furthermore, in the no-neutrality case the problem is now solved in fewer
generations than with the Majority encoding.

In summary, it is clear that while fdc captures some of the characteristics of
a problem in relation to its difficulty for a GA, it does not capture all.

To explain these results one really needs to look at our second descriptor:
the phenotypic mutation rates. As one can see in Table 1, when pmut = 0.01 the
encodings considered induce phenotypic mutation rates in the range 1.5-7.5%.
At these mutation rates the GA solves the problem almost equally easily as it
does without neutrality.

The more the phenotypic mutation rate is increased, the more the search
will be expected to become undirected and random, leading to a worsening of
performance. Indeed, when the genotypic mutation rate is increased to 0.06, the
Truth Table encoding provides a phenotypic mutation rate which is significantly
smaller than for Parity (see Table 1, second column). As expected, in these
conditions the performance with Parity is worse than with Truth Table (see
Table 4). The phenotypic mutation rates for Majority are even smaller than for
Truth Table. So, it is not surprising to see that the GA performs better with
Majority than with all other encodings.

When pmut = 0.1, the phenotypic mutation rates for all encodings are fur-
ther increased, leading to an even more undirected search. Note how, in these
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Table 4. Performance of a mutation-based GA on the OneMax problem. Pairs of
numbers in boldface, underline, italics or sans serif represent situations with almost

identical phenotypic mutation rates.

pmut = 0.01 pmut = 0.06 pmut = 0.1
Avr. Gen % Suc. Avr. Gen % Suc. Avr. Gen % Suc.

No neutrality 21.35 100% 14.39 100% 16.58 100%
Parity (n = 5) 14.55 100% 36.06 90.1% 44.02 62.7%

Parity (n = 6) 14.46 100% 38.38 82.6% 45.14 54.4%
Parity (n = 7) 14.49 100% 40.09 73.3% 42.12 49.7%
Parity (n = 8) 15.06 100% 43.26 68.2% 44.56 47.6%

Truth Table (n = 5) 16.63 99.9% 20.02 99.5% 29.21 95.0%
Truth Table (n = 6) 16.89 100% 22.87 99.4% 33.14 90.5%
Truth Table (n = 7) 15.89 100% 24.41 97.5% 35.49 84.5%
Truth Table (n = 8) 15.01 100% 28.16 97.4% 38.89 78.8%

Majority (n = 5, T = 2.5) 23.39 99.8% 17.26 99.7% 22.08 99.3%
Majority (n = 7, T = 3.5) 23.51 99.8% 17.93 100% 22.50 98.6%

conditions, the phenotypic mutation rates for Truth Table are similar to those
observer at pmut = 0.06 for Parity, and how performance is similar for these
two cases (see Table 4). Similar phenotypic mutation rates and similar perfor-
mance can also be observed for Majority (at pmut = 0.1) and Truth Table (at
pmut = 0.06). At a mutation rate of 0.1, Parity presents high phenotypic muta-
tion rates, reaching 41.6% in the case n = 8. In these conditions the search is
almost random and so performance is poor.

Increasing further the genotypic mutation rate will lead the Parity and Truth
Table encodings near a phenotypic mutation rate of 50%. There the search is ef-
fectively a random search. We do 8,000 trials (80 individuals for 100 generations)
in each run, which represent 48.82% of the search space size, 2`, since ` = 14.
However, because of resampling we should only expect to find the optimum with
probability 38.3%. (This can be computed using the theory for the coupon col-
lector problem, see [11].) This is the limit performance for high mutation rates.

Let us now consider our second problem: the multimodal problem. For this
problem, we tuned the parameters in such a way to make the problem hard,
but still easier than the trap problem. Again, at the lowest mutation rate, the
predictions of fdc are roughly correct: the problem is hard (fdc > 0) and remains
hard irrespective of the encoding used and Parity and Truth Table lead to the
same level of difficulty. Again, however, at the higher mutation rates the situation
becomes rather more confusing, with Parity showing improved performance over
the other encodings and a dependency of performance on n. Effectively, we can
observe the opposite effects as in the OneMax problem. However, the confusion
again disappears if we look at the mutation rates corresponding to each encoding.

Finally, let us consider the Trap problem. For this problem, the bigger the
value of the slope-change location umin, the harder the problem. In our exper-
iments we chose ` = 14 and umin = 13 and, so, the problem is very hard.
The behaviour of the evolutionary search in this problem is a mirror image of
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Table 5. Performance of a GA on the Multimodal function. Pairs of numbers in bold-

face, underline, italics or sans serif represent situations with almost identical phenotypic

mutation rates.

pmut = 0.01 pmut = 0.06 pmut = 0.1
Avr. Gen % Suc. Avr. Gen % Suc. Avr. Gen % Suc.

No neutrality 8.56 3.2% 5.22 2.7% 11.54 1.9%
Parity (n = 5) 5.61 3.4% 41.2 5.8% 44.07 14.2%

Parity (n = 6) 4.76 3.4% 45.27 7.2% 50.41 19.4%
Parity (n = 7) 2.80 2.1% 44.41 9.9% 46.31 24.6%
Parity (n = 8) 4.85 2.1% 42.14 12.7% 46.94 23.2%

Truth Table (n = 5) 6.41 3.6% 15.86 2.5% 34.11 3.5%
Truth Table (n = 6) 8.18 2.5% 20.27 2.2% 34.32 4.8%
Truth Table (n = 7) 6.59 2.6% 24.07 3.1% 44.44 5.6%
Truth Table (n = 8) 4.95 3.6% 19.10 3.2% 33.03 7.9%

Majority (n = 5, T = 2.5) 11.41 2.0% 23.6 1.4% 15.62 1.9%
Majority (n = 7, T = 3.5) 9.76 2.3% 9.44 2.2% 25.42 2.4%

that observed on the OneMax problem (see Table 6). Again, we can see how
fdc makes reasonably good predictions of relative difficulty under different en-
codings when pmut = 0.01, but that the picture becomes less and less clear as
pmut increases. However, again, we can explain performance differences easily
by looking at phenotypic mutation rates. In this case, because the problem is
deceptive, the more random the search is, the more likely the global optimum is
found. So, performance improves as the phenotypic mutation rate increases.

The importance of considering the phenotypic mutation rates instead of the
classical genotypic mutation rates is shown in Figures 3 and 4. These figures
simply plot the success probabilities reported in Tables 4, 5 and 6 against the
corresponding genotypic and phenotypic mutation rates, totally ignoring dis-
tinctions between encodings. It is clear how the data strongly correlate with
the phenotypic mutation rates, while they correlate much more weakly with the
genotypic mutation rates. Note, for example, how the fairly ordinary genotypic
mutation rate of 0.1 leads the GA to perform very close to the random search
limit (38.3%). We believe this is one of the reasons why so much confusion is
present in the EC literature on neutrality.

From these results, it is apparent that fdc roughly provides an indication of
difficulty, but also that in order to obtain more accurate information one needs
to consider how the chosen representation translates genotypic mutation rates
into phenotypic mutation rates. With this information in hand, one should then
expect to see that for problems with negative fdc, performance degrades as the
phenotypic mutation rate increases, while the opposite happens for problems
with positive fdc.
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Table 6. Performance of a GA on the Trap function. Pairs of numbers in boldface,
underline, italics or sans serif represent situations with almost identical phenotypic muta-

tion rates.

pmut = 0.01 pmut = 0.06 pmut = 0.1
Avr. Gen % Suc. Avr. Gen % Suc. Avr. Gen % Suc.

No neutrality 0.6 0.3% 7.2 0.7% 4.55 0.7%
Parity (n = 5) 1 0.5% 47.77 10.4% 44.85 22.0%

Parity (n = 6) 1 0.8% 45.96 15.6% 44.73 23.8%
Parity (n = 7) 1 0.6% 48.62 15.4% 46.82 32.0%
Parity (n = 8) 13.57 0.7% 46.27 20.2% 46.69 31.5%

Truth Table (n = 5) 1 0.7% 13.05 1.4% 41.49 6.3%
Truth Table (n = 6) 1.25 0.6% 35.16 2.1% 47.19 7.8%
Truth Table (n = 7) 1 0.1% 32.36 3.5% 47.32 10.9%
Truth Table (n = 8) 1 0.9% 34.44 4.8% 58.54 13.0%

Majority (n = 5, T = 2.5) 1 1.1% 4.4 1.2% 19.91 2.3%
Majority (n = 7, T = 3.5) 1 0.5% 1.16 0.6% 28.15 1.9%

8 Conclusions

In the literature there is contradicting evidence as to whether or not neutrality
aids evolutionary search. We believe that, with notable exceptions (e.g., [32]),
the confusion often derives from the fact that different researchers use radically
different types of neutral encodings and neglect to consider the effect of im-
portant parameters such as the rate of application of genetic operators. As we
have shown in this paper, small changes in the representation used and search
parameters can turn a neutral encoding from being beneficial to being strongly
disadvantageous and vice versa.

In this paper we considered a form of neutrality induced by a genotype-
phenotype map where each phenotypic bit is obtained by transforming a group of
genotypic bits via an encoding function. By using explicit calculations for fitness
distance correlation, we showed under what conditions a neutral encoding has
the potential to induce big changes in problem hardness. We also studied how
phenotypic mutation rates change as a function of the genotypic mutation rate
for different encodings. We then performed extensive empirical experimentation.
We showed that the performance of a GA can change radically with different
types of neutrality and mutation rates. However, phenotypic mutation rates and
fdc allowed us to formulate simple explanations for why this happens.
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