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Abstract. This paper describes Multiple Interactive Outputs in a Single
Tree (MIOST), a new form of Genetic Programming (GP). Our approach
is based on two ideas. Firstly, we have taken inspiration from graph-GP
representations. With this idea we decided to explore the possibility of
representing programs as graphs with oriented links. Secondly, our indi-
viduals could have more than one output. This idea was inspired on the
divide and conquer principle, a program is decomposed in subprograms,
and so, we are expecting to make the original problem easier by breaking
down a problem into two or more sub-problems. To verify the effective-
ness of our approach, we have used several evolvable hardware problems
of different complexity taken from the literature. Our results indicate that
our approach has a better overall performance in terms of consistency to
reach feasible solutions.
Kerwords: Multiple Interactive Outputs in a Single Tree, Genetic Pro-
gramming, Graph-GP representations.

1 Introduction

Genetic Programming (GP) [9] is a heuristic search technique, which has its
inspiration from the theories of genetic inheritance and natural selection. This
technique has been proved to be a suitable tool for solving problems in many ap-
plications. Usually, in GP programs are expressed as syntax trees. However, this
form of GP has some limitations. So, some researchers have proposed different
type of representations of GP.

For example, Koza [10] proposed Automatically Defined Functions (ADFs).
ADF is a function that is dynamically evolved during a run of a GP. The problem
with this approach is discovering good ADFs. So, in order to discover if an ADF
is good, GP has to spend computation time to discover with which parameters
the ADF can be used properly.

Angeline and Pollack [3] proposed a method called Evolutionary Module
Acquisition (EMA). The idea of this method is to build and evolve modules
(which are the reuse of code) during the evolution process. Because there is
not a general method of identifying what portions of the individual should be
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compressed, the composition of each module is selected randomly. The same
authors extended this work in [2]. The authors refer to the method as Genetic
Library Builder (GLiB).

Montana [13] proposed Strongly Typed Genetic Programming (STGP). He
started from the definition of closure (which means that all elements take argu-
ments of a single data type and return values of the same data type). The main
characteristic of STGP is to build an individual as a parse tree and the data
type of the nodes not necessarily should be the same type.

Teller and Veloso [15] were one of the first researchers to use a graph-based
GP. Their method, Parallel Algorithm Discovery and Orchestration (PADO), is
a combination of GP and linear discriminator which was used to obtain a parallel
classification programs for signals and images.

Poli [14] proposed an approach called Parallel Distributed Genetic Program-
ming (PDGP). Poli stated that PDGP can be considered as a generalisation
of GP. However, PDGP can use more complex representations and evolve finite
state automata, neural networks and more. PDGP is based on a graph-like repre-
sentation for parallel programs which is manipulated by crossover and mutation
operators and guarantee the syntactic correctness of the offsprings.

Angeline [1] proposed a representation called Multiple Interacting Programs
(MIPs). This representation is a generalization of a recurrent neural network
that can model any type of dynamic system. Each program in a given set is
unique and stored in the form of a parse tree. Using this technique an individual
is virtually equivalent to a neural network where the computation performed at
each unit is replaced with an independent evolved equation.

Miller [12] proposed Cartesian Genetic Programming (CGP). This technique
was called Cartesian in the sense that the method considers a grid of nodes
that are addressed in a Cartesian coordinate system. In CGP the genotype is
represented as a list of integers that are mapped to directed graphs rather than
trees.

Kantschik and Banzhaf [6] proposed a different representation of GP named
Linear-Tree. The main idea was to give flexibility to a program to choose different
execution paths for different inputs. In this method each program is represented
as a tree. Later on, the same authors proposed a representation called Linear-
Graph [7]. They argued that graphs come one step nearer to the control flow of
a hand written program.

As it can be seen, different ideas have raised in GP to make it more efficient.
The aims of this study are: (a) to study how GP behaves with and without the
presence of graph-like structures, (b) to incorporate multiple outputs in individ-
ual’s structures, and, (c) to combine both properties (graph-like structures and
multiple outputs in individual’s structures) and to see what the effects are.

The paper is organised as follows. In the next section we describe our ap-
proach. Section 3 provides details on the experimental setup used and presents
results. In section 4 we analyse the results found by our approach and in Section
5 we draw some conclusions.
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Fig. 1. (a) GP-based representation of graphs without multiple outputs, (b) multiple
outputs in a single tree (MOST) without links ,and, (c) multiple interactive outputs in
a single tree (MIOST).

2 Approach

Our approach, which we have denominated Multiple Interactive Outputs in a
Single Tree (MIOST), is based on two ideas. Firstly, we have taken inspiration
from graph-GP representations. With this idea we decided to explore the pos-
sibility of representing programs as graphs with oriented links, see Figure 1(a).
The idea was to replace a function node by other element that represents links
which determine what’s need to be evaluated. We hope in this way to find parts
of an individual that can be more useful in other part(s) of the same individual.
Secondly, in our approach a program is represented as a tree as suggested by
Koza with the main difference that a program could has more than one output,
see Figure 1(b). Let us call this Multiple Outputs in a Single Tree (MOST). This
idea was inspired on the Divide and Conquer principle, a program is decomposed
in subprograms, and so, we are expecting to make the original problem easier by
breaking down a problem into two or more sub-problems. In Figure 1(c), we can
see a typical individual created with MIOST, which is the result of combining
both ideas (graph-gp representation and MOST).

2.1 Output Set

Apart of considering function and terminal sets, as usual, we also consider an-
other set which contain outputs. So, when we create an individual, we choose
randomly from the set of outputs any of these and we eliminate it from this set.
Once we have created an individual, we check if it contains all the outputs, if
not we repeat the process until we have created a valid individual. It is worth
mentioning that when we create an individual we do not specify which output
will be in the root, so our approach has the power to place the most complex
output in the root (results confirm this statement).
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2.2 P Symbol

The method proposed in this paper does not only allow having more than one
output in a single tree but it also allows evolving graph-like structures. This is
the result of using the p function symbol, which works as follows:

– Once the individuals in the populations have been generated with its corre-
sponding outputs, we use a probability to replace a function with a p symbol
which is a function of arity 2 (This is not a restriction because p could be of
any arity).

– If an individual contains this p symbol, this will point to code somewhere
in the program, so when p is executed, the subtree rooted at that node is
ignored.

– If p symbol points to a function symbol, the p symbol effectively represents
the sub-tree rooted at that function.

– If p symbol points to a terminal symbol, the p symbol simply represents that
node.

2.3 Genetic Operators

The crossover operator used in MIOST works as usual but an important dif-
ference is that, if the sub-tree swapped contained a p symbol, the p symbol’s
pointer is not changed3. Another difference is that once we have created our ini-
tial population, we classify each node of each individual in order to know which
nodes can be used to apply crossover. With this we assure that an individual will
contain the number of outputs that must contain. Of course, this classification
is only applied when the individual has more than one output. The mutation
operator is applied as usual on a per node basis. The only restriction is that a p
symbol is not allowed to be mutated.

2.4 Fitness Function

To test the effectiveness of our approach, we have used several evolvable hardware
problems of different complexity taken from the literature. The fitness function
works in two stages: at the beginning of the search, the fitness of a genotype
is the number of correct output bits (raw fitness). Once the fitness has reached
the maximum number of correct outputs bits, we try to optimize the circuits by
giving a higher fitness to an individual with shorter encodings.

2.5 Features

The approach detailed above has interesting features. For instance, the presence
of p symbols in our representation, assure us that there are inactive code in the
3 There is an exception to this rule: we prevent a p symbol from referring to a sub-tree

that contains the same p since this would lead to an infinite loop. We do this by
reassigning the position to which the p in question is pointing to.
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Table 1. Truth table of
the second example.

A B C D O1 O2

0 0 0 0 1 0

0 0 0 1 1 0

0 0 1 0 1 0

0 0 1 1 0 0

0 1 0 0 1 0

0 1 0 1 1 0

0 1 1 0 0 0

0 1 1 1 0 0

1 0 0 0 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 0 1 1 0 1

1 1 0 0 0 0

1 1 0 1 0 0

1 1 1 0 0 1

1 1 1 1 0 1

Table 2. Truth table of the third example.

A B C D E O1 O2 O3 A B C D E O1 O2 O3

0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0

0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 0

0 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0

0 0 1 0 0 1 1 1 1 0 1 0 0 0 1 1

0 0 1 0 1 1 0 1 1 0 1 0 1 0 0 1

0 0 1 1 0 1 1 0 1 0 1 1 0 0 1 0

0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0

0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0

0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0

0 1 0 1 0 1 1 0 1 1 0 1 0 0 1 0

0 1 0 1 1 1 0 0 1 1 0 1 1 0 0 0

0 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1

0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1

0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0

0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0

individual. This has two advantages: when a mutation takes place in inactive
code there is no need to evaluate an individual since there is a change at genotype
level but not at phenotype level, and, it allows to study neutrality [8] which is
an area of controversial debate on Evolutionary Computation (EC) systems.

3 Experiments

As stated earlier, our approach is based on two ideas. So, for the first problem
we will test the first idea. That is, we have used only the graph-like presenta-
tion (Figure 1(a)). We used only mutation operator and we have defined differ-
ent mutation and p rates. For this example, we used the following set of gates
{AND,OR,NOT}.

As a consequence of the results obtained from the first example, we have
decided to test MIOST on three different hardware problems with different de-
grees of complexity. Our results were compared with those obtained by MGA [4],
EAPSO [16], EBPSO [11], BPSO [11], EGP [5] and MOST. For these examples,
we used the following set of gates {AND, OR, XOR, NOT}. After a series of
preliminary experiments we have decided to use crossover rate of 0.7%, mutation
rate of 0.02%, and p rate of 0.08% for all examples except for example 1 where
we have defined different values. To make a fair comparison with the previous
methods, we used the same number of generations and population size.

Runs were stopped when the maximum number of generations was reached.
For all examples, we performed 20 independent runs.
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Table 3. Truth table of the fourth example.

A B C D O1 O2 O3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

3.1 Example 1

For our first example, we have used the well-known 6-bit Multiplexer Boolean
function to verify the idea of graph-like representation (without multiple out-
puts).

For our first example we have used Population Size (PS) = 200, and Maxi-
mum Number of Generations (MNG) = 400, p = {0.01, 0.02, 0.03} and mut =
{0.02, 0.03, 0.04}.

In Table 4 we can see the results found by the gp-graph representation. In
this table we present the percentage of feasible circuits (success rate) and the
average number of generations that were necessary to reach the feasible zone4.

As can be seen, regardless the value of p, the best results were found when
mutation rate = 0.02. Does this mean that the presence of p is useless on the
evolutionary process? To answer this question, we remove p from the evolution-
ary search and keep the same mutation rates. The success rates for mutation
rates 0.02, 0.03 and 0.4 were 65%, 75%, 45%, respectively.

From these results, it seems to be that the addition of p symbols to the
individuals’ structures aid the evolutionary search.

3.2 Example 2

For our second example we have used the truth table shown in Table 1. The
parameters used in this example are the following: PS = 380 and the MNG = 525
(i.e., a total of 199,500 fitness function evaluations). The same values parameters

4 The feasible zone is the area of the search space containing circuits that match all
the outputs of the problem’s truth table.
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Table 4. Results found using the gp-graph representation on the 6-bits Multiplexer
problem. P and mutation rates are shown in the first and second row, respectively.
Feasible Circuits (Success Rate) and Average of Generations (this refers to the average
number of generations that were necessary to reach the feasible zone) are shown in the
last two rows, respectively.

% p = 0.01 % p = 0.02 % p = 0.03
%mut= %mut= %mut=

0.02 0.03 0.04 0.02 0.03 0.04 0.02 0.03 0.04

% of feasible circuits 100% 90% 70% 75% 65% 50% 85% 85% 45%
Average of generations 80.6 155.66 138.62 91.46 136.66 141.5 122.7 109.64 179.5

Table 5. Comparison of results between BPSO, EAPSO, EBPSO, MGA, EGP, MOST
and MIOST on the second example.

Feasible circuits Avg. # of gates Avg. of gen.

BPSO 95% 10.05 -

EAPSO 70% 13.45 -

EBPSO 100% 7.75 -

MGA 75% 13.4 -

EGP 55% 9.7 122.9

MOST 85% 14.98 53.29

MIOST 100% 12.9 109.55

were used by EGP and MOST. BPSO, EAPSO and EBPSO performed 200,000
fitness function evaluations, while MGA performed 201,300. As we can see in
Table 5, the only algorithms able to converge to the feasible region in 100% of
the runs were EBPSO and MIOST.

3.3 Example 3

For our third example we have used the truth table shown in Table 2 (Notice
that this truth table was split in two due to space limitations). The parameters
used in this example are the following: PS = 1,200 and the MNG = 832 (i.e., a

Table 6. Comparison of results between BPSO, EAPSO, EBPSO, MGA, GP, EGP,
MOST and MIOST on the third example.

Feasible circuits Avg. # of gates Avg. of gen.

BPSO 25% 23.95 -

EAPSO 50% 18.65 -

EBPSO 45% 20.1 -

MGA 65% 17.05 -

EGP 60% 9.66 149.5

MOST 50% 11.3 94.5

MIOST 75% 11.6 104.67
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Table 7. Comparison of results between BPSO, EAPSO, EBPSO, MGA, GP, EGP,
MOST and MIOST on the fourth example.

Feasible circuits Avg. # of gates Avg. of gen.

BPSO - - -

EAPSO - - -

EBPSO - - -

MGA - - -

EGP 30% - -

MOST 10% 20 234.16

MIOST 35% 22.16 277.363

total of 998,400 fitness function evaluations). The same values parameters were
used by EGP and by MOST. BPSO, EAPSO and EBPSO performed 1,000,000
fitness function evaluations, while MGA performed 1,101,040. As we can see in
Table 6, MIOST is the algorithm which has the highest percentage of feasible
solutions reached (75%).

3.4 Example 4

For our fourth and last example (also know as Katz circuit) we have used the
truth table shown in Table 3. The parameters used in this example are the fol-
lowing: PS = 880 and the MNG = 4,000 (i.e., a total of 3,520,000 fitness function
evaluations). The same values parameters were used by EGP and MOST. As we
can see in Table 7, MIOST is the algorithm which has the highest percentage of
feasible solutions reached (35%).

4 Analysis

For analysis purposes, we have conducted our experiments in the following way:

1. Firstly, we have allowed to the individuals having p symbols in their represen-
tation and in this way, we have been able to have a gp-graph representation,

2. Secondly, we have used MOST which is form of GP that has allowed us to
define multiple outputs in each individual and

3. Thirdly, we have used MIOST, which is a combination of the previous ones.
In other words, the individuals in MIOST have p symbols in their structures
and multiple outputs.

Let us focus our attention on the first example. In this example we decided to
test an individual partially created with our approach. That is, we have specified
to build an individual with links without multiple outputs. To verify how good
this idea is, we used only mutation operator in this example. The presence of p
symbols in individuals’ structures is necessary to improve performance on the
evolutionary process (results confirm this statement). However, when p was not
present in any of our individuals, the performance of the GP was worst.
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From the results obtained in the first example, we decided to incorporate this
idea to the representation where an individual can have more than one output
(MOST). This combination of ideas gave us as a result MIOST representation
and it was tested on the last three examples which are more complex problems.

Our results indicate that MIOST has a better overall performance in terms
of consistency to reach feasible solutions in all the examples. Let us analyse
the results we have found with our approach for the last three examples. For
the example 2, the average number of generations to solve the problem using
MIOST is 109.55, while in MOST the average number of generations is 53.29.
Similar situation is observed in examples 3 and 4, where the average number
of generations to solve the problem using MIOST is 104.67 and 277.363, while
in MOST the average number of generations is 94.5 and 234.16, respectively.
As can be seen, the presence of p symbols in MIOST seems to require more
generations to find the feasible circuit. This can be explained, if we consider
that mutations could take place on inactive code that does not produce any
change at phenotype level. On the other hand, this inactive code can have a
role where partial solutions are protected against disrupted mutations. However,
further analysis needs to be done to give final conclusions.

5 Conclusions

In this paper we have presented MIOST which is a new form of genetic program-
ming which has two main features: (a) it allows to represent programs as graphs
with oriented links (graph-GP representation) and (b) a program can have more
than one output.

We have used four evolvable hardware problems of different complexity to
carry out our experiments with the proposed approach. Firstly, we used MOST to
see how good the idea was by using only multiple outputs in our individuals. Once
we saw that this gave us good results, we tested our approach (MIOST) which
incorporates the idea of gp-graph representation in the presence of p symbols in
individuals’ structure.

Our results indicate that MIOST has a better overall performance in terms of
consistency in reaching feasible solutions. However, our approach was not able to
improve previously published results in terms of number of gates. This is due two
reasons (a) our approach is not an optimization technique and (b) our approach
has the restriction that one or more outputs depend on the solution of one or
more outputs. This can be seen easily by analyzing Figure 1(c).
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