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Edgar Galván-López and Riccardo Poli

University of Essex, Colchester, CO4 3SQ, UK,
egalva,rpoli@essex.ac.uk

Abstract. The effects of neutrality on evolutionary search have been
considered in a number of interesting studies, the results of which, how-
ever, have been contradictory. We believe that this confusion is due to
several reasons. In this paper, we shed some light on neutrality by ad-
dressing these problems. That is, we use the simplest possible definition
of neutrality, we consider one of the simplest possible algorithms, we
apply it to two problems (a unimodal landscape and a deceptive land-
scape), which we analyse using fitness distance correlation, performance
statistics and, critically, tracking the full evolutionary path of individuals
within their family tree.

1 Introduction

Natural selection is a powerful theory which can explain the existence of adap-
tation in nature. However, it is unlikely that natural selection is the only force
that directs evolution. Indeed, at molecular scale there is support for the idea
that most evolutive variations are neutral [10]. This Neutral theory does not
affirm that during evolution the genes are not making something useful, rather
it suggests that different forms of the same gene are indistinguishable in their
effects. The theory argues that mutations occurring during evolution are neither
advantageous nor disadvantageous to the survival and reproduction of individu-
als, but that such random genetic drift should be considered in the study of the
evolutionary process.

Some EC researchers have found neutrality to be beneficial for the evolution-
ary process while others have found it either useless or worse. We believe there
are various reasons of these contradictory results and, by addressing them, we
can start clarifying the effects of neutrality. The aims of this study are: (a) to
understand how population flows in the search space are affected by the pres-
ence of neutrality in the evolutionary process, and (b) to identify under what
circumstances neutrality may improve performance.

The paper is organised as follows. In the next section, we review previous
work on neutrality. In Section 3 we describe our approach. In Section 4 the
fitness distance correlation is computed for landscapes with neutrality. Section 5
provides details on the experimental setup used. In Sections 6 and 7 we present
and discuss the results of experiments with unimodal and deceptive landscape
problems and draw some conclusions.
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2 Previous Work

Harvey and Thompson studied some effects of neutral networks in an evolvable
hardware problem [7]. They defined the concept of potentially useful junk that
refers to loci in a genotype that are functionless within the current context, but
which may become functional with different values elsewhere in the genotype.
They argued that with neutrality it is possible to reach a global optimum without
worrying about premature convergence.

Banzhaf [2] proposed an approach where a genotype-phenotype mapping was
used in the context of constrained optimisation problems. He argued that, very
often, constraining the solution space leads to local optima which are difficult
to escape from with traditional methods. He used high variability of neutral
variants to escape from local optima on saddle surfaces.

Barnett [3] proposed a variant of NK landscapes which he called NKp land-
scapes. The idea was to introduce a parameter, p, which could vary the degree
of neutrality present in the landscape and study the effects of neutrality in the
evolutionary process. He claimed that with the presence of neutral networks with
certain properties, it is possible to avoid to get stuck in local optima.

Shipman et al. [12] explored the benefits of neutrality in the context of a
mapping based on an abstraction of genetic regulatory networks — a random
boolean network. The mapping used in their experiments provided a very large
degree of neutrality. They concluded that neutral drift allowed the discovery of
many more phenotypes than would be the case with a direct encoding without
redundancy. In [13] they proposed four different redundant mappings to study
how neutrality influences the search. They found that redundancy was useful in
three of their mappings and concluded that some kind of neutrality is crucial.

Smith et al. [14] analysed how evolvability was affected by the presence of
neutral networks. For this purpose they used a system with an extremely com-
plex genotype-to-fitness mapping. They concluded that the existence of neutral
networks in the search space does not necessarily provide advantages because
the population does not evolve any faster with neutrality. In [15] the same au-
thors looked at the dynamics of the population rather than just the fitness, and
argued that neutrality did not perform a useful role in an evolutionary robotic
task.

Yu and Miller [18] showed that neutrality improves the evolutionary search
process for a Boolean benchmark problem. They used Miller’s Cartesian GP
to measure explicit neutrality in the evolutionary process. They argued that
mutation on active genes is adaptive because it exploits accumulated beneficial
mutations, while mutation on inactive genes has a neutral effect on a genotype’s
fitness, yet it provides exploratory power by maintaining genetic diversity. Fur-
thermore, in [19] they showed that neutrality was helpful and that there is a
relationship between neutral mutations and success rate in a Boolean function
induction problem. However, Collins [5] claimed that the conclusion that, in this
problem, neutrality is beneficial is flawed. In [20] Yu and Miller also investigated
neutrality using the simple OneMax problem. They used a theoretical approach
and showed that neutrality is advantageous because it provides a buffer to absorb
destructive mutations.
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Igel and Toussaint [8] claimed that neutrality is necessary for self-adaptation
and classified self-adaptation to classical and generalized self-adaptation. Both
definitions are inspired from the genotype-phenotype mapping. They argued
that neutrality could have benefit when the mapping is done in such a way that
desirable phenotypes are represented more often than other ones.

3 Approach

We believe that the confusion regarding neutrality has several sources:(a) many
studies have based their conclusions on performance statistics (e.g., on whether
or not a system with neutrality could solve a particular problem faster than a
system without neutrality) rather than a deep analysis of population dynamics,
(b) studies often consider problems, representations and search algorithms that
are relatively complex and, so, results represent the composition of multiple
effects (e.g., bloat or spurious attractors in genetic programming), (c) there is
not a single definition of neutrality and different studies have added neutrality
to problems in radically different ways, and, (d) the features of a problem’s
landscape change when neutrality is artificially added, but rarely an effort has
been made to understand exactly how.

In this paper, we shed some light on neutrality by addressing these problems.
Firstly, we use the simplest possible definition of neutrality: a neutral network
of constant fitness, identically distributed in the whole search space. Neutrality
is “plugged into” the original non-redundant representation by adding an extra
bit to the representation: when the bit is 1 the individual is on the neutral
network (and, so, its fitness has a pre-fixed constant value), when the bit is 0,
the fitness of the individual is determined by the coding bits as usual. Secondly,
we consider one of the simplest possible algorithms (a mutation-only, binary
genetic algorithm). Thirdly, we analyse population flows from and to the neutral
network and the basins of attraction of the optima. Fourthly, we compare the
percentage of success to find the optimum solution and the difficulty of the
problem using fitness distance correlation. Finally, we use two problems with
significantly different landscape features: a unimodal landscape (OneMax) where
we expect neutrality to always be detrimental and a deceptive landscape (a trap
function with different degrees of difficulty), where there are conditions where
neutrality is more helpful than others.

In the presence of the form of neutrality discussed previously, the landscape
is therefore divided into two areas of identical size: the neutral layer and the
normal layer. However, we still only have one global optimum. So, the addition
of neutrality comes at a cost since we are expanding the size of the search space
without correspondingly expanding the solution space. Thus, we should expect
to see benefits of neutrality (e.g., improved performance) only when neutrality
modifies the search bias of an algorithm-problem pair in such a way to make it
much more likely to (eventually) sample the global optimum. If this does not
happen, or worse, if the original search bias is modified in such a way to make it
harder to reach the global optimum, then we can be certain that neutrality will
not help.
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Neutrality is often reported to help in multimodal landscapes. So, in the
case of our multimodal deceptive problem, should we expect a uniform neutral
network to increase performance? And what sort of population dynamics should
we expect? For analysis purposes, we further divide the normal and neutral
layers into two regions depending on which of the two basins of attraction a
string belongs to. We will term the resulting four areas “global neutral”, “local
neutral”, “global normal” and “local normal”.

Let us now consider whether a uniform neutral network could provide a per-
formance improvement in the case of a trap landscape. We must first consider
whether or not the neutral layer acts as an attractor or a repellent and for what
proportion of the local and global areas. If, for example, the neutral layer has a
very low fitness, then it should become harder for individuals to use it as a “tun-
nel” between the large basin of attraction of the local optimum and the narrow
basin of attraction of the global optimum. In this case, the neutral layers would
provide no advantage and, given that it doubles the search space, we should see
a marked decrease in performance. If, instead, the neutral layers had a relatively
high fitness, we should expect to see more individuals moving towards it. This
means that there could be a flow of individuals from one basis of attraction to
the other. This, however, would not in itself provide a performance improvement
w.r.t. the case where no neutrality is used, because the flow is bidirectional and,
so, individuals already in the global area may end up performing a random walk
which leads them outside it. In addition, because the search space is still twice as
big as the original while the solution spaces has still size 1, in order to beat the
performance of the no-neutrality case, neutrality would need to provide a very
significant “improvement” in search bias. These considerations have motivated
our analysis and experiments. These are described in more detail in the following
sections.

4 Fitness Distance Correlation

The fitness distance correlation (fdc) [9] measures the hardness of a landscape ac-
cording to the correlation between the distance from the optimum and the fitness
of solutions. The definition of fdc is quite simple: given a set F = {f1, f2, ..., fn}
of fitness values of n individuals and the corresponding set D = {d1, d2, ..., dn}
of distances to the nearest optimum, we compute the correlation coefficient r,
as:

r =
CFD

σFσD
,

where:

CFD =
1
n

n∑
i=1

(fi − f)(di − d)

is the covariance of F and D, and σF , σD, f and d are the standard deviations
and means of F and D, respectively.

According to [9] a problem can be classified in one of three classes, depending
of the value of r: (1) misleading (r ≥ 0.15), in which fitness tends to increase
with the distance from the global optimum, (2) difficult (−0.15 < r < 0.15),
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for which there is no correlation between fitness and distance, and (3) easy
(r ≤ −0.15), in which fitness increases as the global optimum approaches.

There are some known weakness in the fdc as a measure of problem hard-
ness [1, 11]. However, it is fair to say that the method has been generally very
successful [9, 4, 17, 16]. The distance used in the calculations is, for binary search
spaces, the Hamming distance.

In this work we will use fdc to evaluate problem difficulty with and with-
out neutrality. Since we only consider problems where the fitness function is a
function of unitation, we can rewrite CFD in a more useful form.

For a search space of binary strings of length l, if we sample the whole search
space in order to compute CFD, we have:

CFDf =
1
2l

l∑
u=0

(
l

u

)
(f(u)− ff )(u− uf )

where:

ff =
∑l

u=0

(
l
u

)
f(u)

2l

uf =
l

2
where u represent the unitation class of strings.

As mentioned in the previous section, the form of neutrality we consider here
is one where an extra bit is added to the representation. When the bit is set we
say that an individual is in the neutral layer and its fitness is the constant value
flayer. So, when neutrality is present the size of the landscape is 2l+1. Now CFD

is given by:

CFDneu =
1

2l+1

l∑
u=0

(
l

u

)[
(f(u)−fneu)(u−uneu)+(flayer−fneu)(u+1−uneu)

]
where:

fneu =

Pl
u=0 ( l

u)f(u)

2l + flayer

2

uneu =
l + 1

2
These calculations indicate that the introduction of neutrality does not nec-

essarily imply a reduction of fdc. So, whether or not a problem is easier with
neutrality depends on landscapes features and on flayer.

5 Experimental Setup

We have used two problems to analyse neutrality. The first one is the OneMax
problem which consist in maximizing the number of ones of a bitstring. Seen as
a function of unitation the problem is represented by f(u) = u.



6 Edgar Galván-López and Riccardo Poli

Table 1. Parameters
Parameter Value

Length of the genome 10, 14 (+1 for neutrality)

Population Size 80

Generations 100

Mutation Rate (per bit) 0.02

Independent Runs 1,000

The second problem is a trap function, which is a deceptive function of uni-
tation [6]. For this example, we have used the function:

f(X) =
{ a

z (z − u(X)) if u(X) ≤ z,
b

k−z (u(X)− z) otherwise

where a is the deceptive optimum, b is the global optimum, and z is the slope-
change location. Basically the idea is that there are two optima, a and b, and by
varying the parameters k and z, we can make the problem easier or harder.

For the OneMax problem we have used chromosomes of length l = 10 while
for the trap function we have used chromosomes of length l = 14, k = 14,
z = {8, 9, 10, 11, 12, 13}, a = 39, b = 40, and sample size 4,000 to calculate fdc.

The experiments were conducted using a GA with fitness proportionate se-
lection and bit-flip mutation. Runs were stopped when the maximum number of
generations was reached. The parameters used are given in Table 1.

6 Results and Analysis

6.1 Performance comparison

In this section, we describe empirical evidence which corroborates the discussion
presented above. Let’s start by analysing the results for the OneMax problem.
In Table 2 we show the fdc, the number of generations required to reach the
optimum solution and the percentage of success in finding the optimum. As
expected the problem is more difficult in the presence of neutrality. However,
the degree of difficulty varies flayer. fdc is a good heuristic measure of difficulty
as one can see by comparing the fdc against the percentages of successes for
different values on the neutral layer. In the case considered here (l = 10) the
maximum achievable fitness is 10, and so a neutral layer with fitness 9 turns
the search into a set of parallel random walks. It is not surprising then that,
performance decreases so much with neutrality.

Now, let’s consider the second problem - the trap problem. In this problem,
the length of the genome is 14. As shown in Table 3, the bigger the value of
the slope-change location z the harder the problem. When the neutral layer is
present, regardless the value of flayer, the number of generations required to
reach the global optimum is bigger than when it is not present. This is easy
to explain if we consider that the search space without neutrality is of size 2l

whereas with the presence of it is 2l+1. When 8 ≤ z ≤ 11, the percentage of
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Table 2. Statistical information on the OneMax problem.
flayer fdc Avg. % of

Generations Success
Not present -1 8.07 100

6 -0.4922 10.68 100
7 -0.3010 12.72 100
8 -0.1604 21.73 94.7
9 -0.0650 35.02 34.2

Table 3. Statistical information on the trap problem.
Value fdc Avr. Generations % of Success

of No neutral flayer flayer No neutral flayer flayer No neutral flayer flayer

z layer 30 38 layer 30 38 layer 30 38
8 0.42 0.35 0.33 10.81 40.25 29.60 38.7 19.8 1.7
9 0.74 0.45 0.40 8.65 31.26 24.50 17.5 12.1 1.3
10 0.90 0.51 0.45 6.83 12.45 22.60 7.7 1.3 1.9
11 0.96 0.55 0.45 3.85 16.75 17.20 1.7 1.1 1.2
12 0.99 0.57 0.48 0.25 6.20 7.55 0.2 0.7 0.7
13 0.99 0.59 0.49 - 7.90 24.30 0 0.6 0.9

runs that reached the optimum solution is bigger when neutrality is not present.
However, the opposite happens when 12 ≤ z ≤ 13. Moreover, when neutrality is
not present the solution is either found after few generations or is not found at
all. This does not hold when neutrality is present, as can be seen in Table 3. This
means that there are complex dynamics going on between layers and regions of
the landscapes, and that only by understanding these one can understand the
effects of neutrality. We investigate them in the next section.

6.2 Family Tree

In a particular generation each individual can be in one of four areas: normal
layer close to the global value, normal layer close to the local value, neutral layer
close to the global value and neutral layer close to the local value. However,
so far we have not studied where an individual in a specific layer came from.
Fortunately, in a mutation based genetic algorithm each individual has only
one parent. This makes it possible to track the origin of a sample point, and,
in fact, the full evolutionary path of an individual within its family tree. This
has allowed us to collect detailed statistics of population flows from one layer
and region to another. To perform a full analysis we need to look at 24 = 16
different parent/offspring transitions: a parent could be in any of four areas and
his offspring could be in any of the same four areas.

In Figure 1 we show the result of the analysis of family trees for the trap
function using flayer = 38, l = 14 and z = 13. In all plots we can observe that the
majority of offspring in an area came from parents already in that area. These
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Fig. 1. Number of transitions to the normal global area (top left), normal local
area (top right), neutral global area (bottom left) and neutral local area (bottom
right), when the fitness of the neutral layer is 38.

are not the only sources, however, as shown in Figure 1 where can see that
a small proportion of individuals in the neutral layer near the global optimum
actually comes from neutral local area, indicating the presence of tunnelling.

7 Conclusions

There is considerable controversy on whether or not neutrality helps or hinders
evolutionary search. In this paper we have highlighted some possible reasons
for this situation. A particularly serious problem is that many studies are only
based on performance statistics, rather than more in-depth investigations, and
there is considerable variability in the problems, algorithms and representations
used for benchmarking purposes. Also, there is neither a single definition of
neutrality nor a unified approach to add neutrality to a representation. In this
paper, we have made an effort to address these problems. We used fdc to assess if
a problem gets easier or harder in the presence of neutrality. We complemented
this with statistical information (e.g. average number of generations required to
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solve a problem). We also recorded parent-offspring flows from and to the neutral
network and the basins of attraction of the optima.

We argue that neutrality may be beneficial in some cases, but when it comes
at the cost of an increased size of the search space without a corresponding
expansion of the solution space, then any benefits it may bring via search bias,
tunnelling ability, etc. may be insufficient to compensate for the additional search
effort required by a reduced density of solutions. It is clear that the modifica-
tions in the original search bias of an algorithm produced by the addition of
neutrality (at least of the form we have discussed here) are not always bene-
ficial. We brought, for instance, the example of a unimodal landscape, where,
as confirmed also experimentally, it is very hard to imagine any advantages in
adding neutrality. Neutrality-induced bias, may, however, be very beneficial (so
much so to fully overcome the inefficiencies due to an extended search space) in
certain circumstances, like, for example, when the population is initialised in the
wrong part of the search space. This is particularly common when dealing with
infinitely large search spaces (e.g., the space of variable length strings and the
space of computer programs), where it is impossible to initialise the population
uniformly at random across the whole search space. This may be a further rea-
son why certain studies have reported significant benefits when using neutrality
(albeit of forms very different from the one used here).

We have shown that it is very difficult to infer the effects (or benefits) of
neutrality without getting under the bonnet and looking at the population flows
induced by the presence of neutrality. For example, as we have shown, in exactly
the same conditions, a neutral network of low fitness changes the behaviour of
a genetic algorithm in very different ways than a high-fitness neutral network.
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