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Abstract—Monte Carlo Tree Search (MCTS) is a relatively
new sampling method with multiple variants in the literature.
They can be applied to a wide variety of challenging domains
including board games, video games, and energy-based problems
to mention a few. In this work, we explore the use of the vanilla
MCTS and the MCTS with Rapid Action Value Estimation
(MCTS-RAVE) in the game of Carcassonne, a stochastic game
with a deceptive scoring system where limited research has
been conducted. We compare the strengths of the MCTS-based
methods with the Star2.5 algorithm, previously reported to yield
competitive results in the game of Carcassonne when a domain-
specific heuristic is used to evaluate the game states. We analyse
the particularities of the strategies adopted by the algorithms
when they share a common reward system. The MCTS-based
methods consistently outperformed the Star2.5 algorithm given
their ability to find and follow long-term strategies, with the
vanilla MCTS exhibiting a more robust game-play than the
MCTS-RAVE.

Index Terms—Carcassonne, MCTS, MCTS-RAVE, expectimax,
Star2.5, stochastic game.

I. INTRODUCTION

Monte Carlo Tree Search (MCTS) is a sampling method
for finding optimal decisions by performing random samples
in the decision space and building a tree according to partial
results. In a nutshell, Monte Carlo methods work by approx-
imating future rewards that can be achieved through random
samples. The evaluation function of MCTS relies directly
on the outcomes of simulations. Thus, the accuracy of this
function increases by adding more simulations. The optimal
search tree is guaranteed to be found with infinite memory
and computation [21]. However, in more realistic scenarios
(e.g., limited computer power), MCTS can produce very good
approximate solutions.

MCTS has gained popularity in two-player board games
partly thanks to its recent success in the game of Go [24],
which include beating professional human players. The space
of solutions (10170) and the large branching factor (up to 361
legal moves per turn for each player) makes the game of
Go a highly difficult problem for Artificial Intelligence (AI),
considered much harder than Chess. The diversification of
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MCTS in other research areas is extense. For instance, MCTS
has been explored in energy-based problems [10], [11] and in
the design of deep neural network (DNN) architectures [26]
(an active research area in evolutionary algorithms (EAs),
see [15] for a recent comprehensive literature review of EAs in
DNNs). The use of MCTS in different research areas, as well
as the use of its mechanics employed in other methods [8],
can give a good idea of the success of MCTS on challenging
problems. Other relevant methods for game playing are EAs,
for example in Ms. PacMan [9], [13] and board games such
as Sudoku [12], [14].

The versatility and wide applicability of MCTS is due to
its different variants [3]. For example, a Parallel MCTS [4]
has been proposed to take advantage of modern multi-
core processors. A single-player based MCTS has also been
proposed in board games where no opponent is necessary
(e.g., SameGame) to estimate potential winning positions
(actions) [23]. Other variants of the algorithm include the
modification of some of the core components of MCTS (these
components are presented in Section II) specifically in trying
to improve its selection mechanism [5].

The goal of this work is to compare the particularities of
the strategies adopted by the vanilla MCTS, MCTS-RAVE and
Star2.5 when they share a common reward system, explained
in Section III. The Star2.5 algorithm with a hand-crafted
heuristic has been reported to perform better in the game
of Carcassonne when compared to the MCTS with limited
simulations [19]. The game of Carcassonne has a relatively
high state-space and game-tree complexities, estimated to be
5 · 1040 and 8.8 · 10194, respectively [19]. Furthermore, an
element that makes this game complex to play by means
of MCTS or indeed any other AI method, is the fact that
the scores in Carcassonne can be deceptive, resulting in the
algorithms being mislead to non-optimal solutions.

The structure of this paper is as follows. Section II outlines
the background of the game of Carcassonne, Monte Carlo Tree
Search (MCTS), MCTS with Rapid Action Value Estimation,
and *-minimax. Section III presents the proposed approach.
Section IV explains the experimental setup used and Section
V illustrates and discusses the results obtained by the various
methods used in this study, including minimax and MCTS-
based methods. The final section offers concluding remarks.978-1-7281-2547-3/20/$31.00 c©2020 IEEE
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Fig. 1. Example of the board of the game of Carcassonne after 2 turns of
play. The starting tile (a) is the same for each game and is on the board when
the game begins. Player 1 played tile b and placed a meeple on the field.
Player 2 played tile c with a meeple also on the field. The city in tile a was
completed when tile c was played because it cannot be expanded any further.
The road in tiles a and b is still incomplete.

II. BACKGROUND

A. The game of Carcassonne

In this work, the competitive-based version of the game of
Carcassonne for two players is considered. This version is a
turn-based, perfect information, stochastic, adversarial game
with high complexity and wide strategic opportunities.

Carcassonne is a game where players take alternate turns
with the goal to score more points than the opponent. To score
points, the players use figures called meeples. The game begins
with the starting tile on the board and a stack of 71 tiles
to randomly draw from. The board grows after each turn as
the players add tiles to it and the game finishes when the
tiles are exhausted or if there are no legal actions for the tiles
that are remaining. One example of the board of a game of
Carcassonne is shown in Figure 1.

Each player’s turn consists of three phases:
• Placing a tile: A tile is drawn from the stack of tiles

at random. Then, the player chooses any valid spot on
the board to play the tile (if there are no legal actions
available, the tile is returned to the stack of tiles and a new
random tile is drawn). Tile placement follows two rules:
(i) the tile must be played in contact with at least one tile
that is already on the board, and (ii) all the features on
the edges of the played tile that are in contact with other
tiles must match the features on the edges of those tiles.
Features can be roads, cities, monasteries, or fields, each
one with their unique scoring and completion rules.

• Placing a meeple: The player can choose whether or not
to play a meeple in a feature in the played tile unless that
feature already has a meeple in it.

• Scoring a feature: All the features with meeples that
were completed with the tile placement are scored and
the meeples in them are returned to their owners.

The meeples are the only way to score points and are limited
to 7 tiles for each player. If a meeple is played, it remains on
the board and cannot be used again until the related feature

is completed. A completed feature gives points to the player
with more meeples in it or to both players if their meeples in
the feature are the same.

When the game finishes, all the incomplete features with
meeples in them are scored and the player with the most
points is declared the winner of the game. The virtual scores
can be calculated at any point in the game by scoring all the
incomplete features on the board as-if-the-game-is-finished.
Virtual scores and the final scores are the same in the last
turn of the game. The virtual scores are more useful than the
raw scores to judge the state of the game and are the ones
that are going to be used to evaluate game-states in this work,
which is explained with deeper detail in Section III.

B. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [21] is a sequentially
best-first tree search algorithm that grows a tree as it collects
data from the state space using Monte Carlo simulations.
MCTS iterates four steps and converges to a full tree with min-
imax values at a polynomial rate if allowed to run indefinitely.
The MCTS returns the most promising action from the current
state according to a recommendation policy. In the selection
step of the MCTS, the algorithm chooses the best child node
at each level of the tree according to a tree policy starting
from the root node until a leaf node is reached, referred to
as the selected node. The expansion step adds an unexplored
child of the selected node to the tree. The newly added node
becomes the expanded node. The simulation step simulates
entire sequences of actions from the expanded node until a
final state is reached. The nodes visited during the simulation
step are not stored in the tree and are chosen following a
default policy. The rewards collected from the simulations are
used in the backpropagation step to update the statistics of
all the nodes that connect the expanded node to the root. The
updated statistics help the tree policy to make more informed
decisions in the upcoming selection steps, allowing the MCTS
to converge to an optimal decision from the root as more
iterations are performed.

MCTS uses the Upper Confidence Bounds (UCB1) policy
[1] as the tree policy (UCT) [6], which behaves optimistically
in the face of uncertainty. The UCT policy is attracted to the
less explored nodes because their values are relatively uncer-
tain and it is optimistic about their potential. The parameter C
is a scalar constant that balances exploration and exploitation
in the UCT function (Eq. 1),

UCT =
rj
nj

+ C

√
ln(ni)

nj
(1)

The tree stores the number of visits nj and the reward rj
of each node j, where j �= root node and i is the parent of
node j. The tree policy in the vanilla MCTS selects the child
node with the highest UCT value.
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C. Monte Carlo Tree Search with Rapid Action Value Estima-
tion

The Rapid Action Value Estimation (RAVE) [16] is an all-
moves-as-first (AMAF) heuristic that assumes that there will
be a similar outcome from an action regardless of when it
is performed. It has been applied to several games, such as
the game of Go [17] [22] [25], havannah [22], hex [20], and
General Video Game Playing [7], to mention some examples.

RAVE works as follows; let S be the list of nodes that share
node i as a parent with node j, and let a be the action that
led to node j from the parent node i. In the MCTS-RAVE, the
UCT (Eq. 1) is updated to include the AMAF value as shown
in Eq. 2 via [17],

UCTRAV E = (1− βj) · rj
nj

+ βj · r̃j
ñj

+ C

√
log(ni)

nj
(2)

where r̃j is the accumulated reward from the total of ñj

simulations performed from all the nodes in S that included
the action a and β is a weighting parameter.

The parameter βj is the minimum MSE schedule [17] that
minimises the mean squared error between the UCT’s reward
and the reward including the AMAF values. The minimum
MSE schedule has a empiric parameter b called RAVE bias
and is defined in Eq. 3,

βj =
ñj

nj + ñj + 4nj ñjb2
(3)

The UCTRAV E with the minimum MSE schedule uses the
AMAF values to greater influence the search when a few
simulations have been performed and switches back to the
normal UCT behaviour as there is more confidence in the
expected rewards.

D. *-minimax

The classic minimax search is expanded for stochastic
games as the expectimax algorithm [2] [18]. Expectimax
handles chance nodes by weighting their minimax values
according to the probabilities of the respective events. The
*-minimax family of algorithms, including Star1, Star2, and
Star2.5, are expectimax variants that use an alpha-beta pruning
technique adapted for stochastic trees.

In the Star1 algorithm, the theoretical maximum value U
and the theoretical minimum value L are used as the guess for
the worst and best scenarios of the chance nodes that have not
been evaluated in an attempt to prune the tree if the predicted
values fall outside an αβ window as in alpha-beta pruning. In
the worst-case scenario, no nodes are pruned and the search
behaves as the normal expectimax.

Star2 is meant for regular *-minimax games, in which the
actions for each player are influenced by a stochastic event at
the beginning of each turn. Examples of regular *-minimax
games are Backgammon, Catan, Monopoly, and Carcassonne.
A regular *-minimax game-tree is shown in Figure 2. In Star2,
the first node is evaluated and used as a guessing value for

Fig. 2. Example of a regular *-minimax game-tree. The root node in level
a is the game-state right after a random event happened (rolling the dice in
Backgammon or drawing a tile in Carcassonne) and a decision is to be made
from there. Edges at levels b and f are actions, and edges at level d are
the stochastic events. The depth of the tree reflects the number of decisions
that are needed from either player to reach the corresponding game-states.
Diamond-shaped nodes are called chance nodes.

the rest of the sister nodes to prune, in the probing phase
as in Star1. Thus, ordering of the actions is required to get
more reliable results and to prune more often, leading to a
faster computational calculation. The actions available from
each state are ordered as soon as each state is reached for the
first time according to how promising they are (best to worst).
The ordering is done following a heuristic that is cheaper than
the simulation of the action and the evaluation of the resulting
state. If the probing phase fails to achieve a cut-off, the search
behaves as the Star1.

A probing factor f > 1 can be predefined in the Star2.5
algorithm. The probing factor determines the number of nodes
to be evaluated during the probing phase. In other words,
f = 0 stands for Star1, f = 1 refers to Star2 and f > 1
is the Star2.5 method. The Star2.5 method prunes regular *-
minimax trees by evaluating the first f > 1 children, referred
to as the probed nodes, of each of the chance events from
a node during the probing phase. The algorithm assigns the
minimum (in case of a max node) or the maximum (in case
of a min node) found in the probed nodes to each of their
not-evaluated siblings, which is a safe bet assuming that the
nodes are ordered, meaning that no minimum or maximum
values are hidden in the not-evaluated nodes. The evaluations
are multiplied by the probability of each of their corresponding
events to get a weighted sum that is compared to the αβ
window. If the value falls inside of the window, all the children
nodes are evaluated to get an accurate value, otherwise, the
sub-tree can be pruned. To the best of our knowledge, the
sequential Star2.5 algorithm from [2] is state-of-the-art in the
game of Carcassonne using a heuristic to evaluate each node
instead of the raw scores or the virtual scores [19].
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TABLE I
HYPOTHETICAL GAME RESULTS

Game
Final score
of the agent

Final score of the
agent’s opponent rp1 Outcome

1 70 40 30 1
2 120 90 30 1
3 80 80 0 0

III. PROPOSED APPROACH

In Carcassonne, the player who plays first has an advantage.
Thus, to be fair, the agents are faced against each other in
matches of g games, where each agent plays as the first player
in half of the games and as the second player in the second
half of the games. To guarantee equality of circumstances, the
stochastic events from the first half of the match are repeated
in the second half.

The goal of each agent is to maximise the reward rp1
, Eq. 4,

which is proportional to the winning chances in the game of
Carcassonne. The reward rp1

of the agent p1 is the difference
between the virtual scores vp1 and vp2 , where p2 refers to the
opponent’s score. Note that the virtual scores and the final
scores are the same when the game is finished.

rp1 = vp1,i − vp2,i (4)

Using rp1 as the reward is more consistent than directly
maximising the virtual score or returning the outcome of the
game (1 for a win, 0 for a draw, and -1 for a loss). To illustrate
this point, a list of hypothetical game results are presented
in Table I. For example, despite the agent attaining a higher
final score in Game 2 compared to its opponent, it cannot be
concluded that the agent performed better than its opponent
in Game 1. The agent also performed worse in Game 3 than
in Game 1, showing that the final scores can be misleading.
One can argue that naively maximising the final score would
increase the winning chances, but this is not the case in
Carcassonne. The game of Carcassonne allows challenging
strategies to emerge where the player focuses his attention
on hindering the opponent’s scoring chances. For instance,
if a player has the opportunity to score the same amount of
points with two different actions, the action that interrupts
the opposing player’s strategy can be the best option. Using
the outcome instead of the reward rp1 would make the agent
blind to opportunities to increase or reduce the gap between
the scores, which is desired to ensure winning a game with
an advantage or to fight for a come back when losing.

All the algorithms used in this work, including Vanilla
MCTS, MCTS-RAVE, and Star2.5, use Eq. 4 to evaluate
game-states.

IV. EXPERIMENTAL SETUP

The stochastic nature of Carcassonne only influences the
order in which the tiles are drawn by the players. A set of
100 sequences of tiles were predefined at random, where each
sequence represents the order of the 71 tiles in the stack of
tiles for a game. If a match consists of g games, the first half

and the second half of the match ( g2 games each) is played
with the same g

2 predefined stacks of tiles. In this way, the
stochastic events from each game with the agent p as the first
player (first half of the match) are repeated in the games where
the agent p is playing as second (second half of the match).
When a tile that cannot be played is drawn by a player, that tile
is returned to the bottom of the stack and a new tile is drawn
from the top of the stack, this occurred in approximately 2.3%
of the total number of games in all the experiments carried out
in this work. The sequence of the tile stack is restored after
that game is finished.

All MCTS-based agents returned the child node with the
most visits as their recommendation policy. The value rp1

(Eq.
4) is returned as the reward in the MCTS simulations. When
more than one simulation is performed in the same simulation
step, the mean value r̄p1

of rp1
is returned. It is possible to

return the reward from Eq. 4 or to use a heuristic function
instead of simulating entire games to evaluate any state that is
not a final state, which is proposed as future work. Some of
the benefits of the Monte Carlo simulations are sensitivity to
long-term strategies and robustness against potential deceptive
scenarios as discussed previously, which would need to be
reflected in a well-crafted heuristic function.

A random agent (RA) was used for parameter tuning. On
its turn, the RA chooses the location to play the drawn tile
uniformly at random, then it decides between all the available
meeple placements or not playing a meeple at all with uniform
probabilities. The default policy of the MCTS-based agents
makes decisions similar to the RA.

The exploration parameter C was set to 3 as in [19]. The
number of simulations s (also called rollouts) per simulation
step for the vanilla MCTS agent is set to 100. For the MCTS-
RAVE agent, the best parameters were s = 100 and the RAVE
bias b = 10 from Eq. 3. These values were obtained with
preliminary experiments against the RA.

Star2.5 uses the following move order:
• 1st: All actions that place a meeple in a city.
• 2nd: All actions that place a meeple in a monastery.
• 3rd: All actions that place a meeple in a road.
• 4th: All actions with no meeple placement.
• 5th: All actions that place a meeple in a field.
The rest of the parameters for the Star2.5 algorithm are

shown in Table II. The move order and the parameters of the
Star2.5 agent were inspired by the work carried out in [19].
The game-states are evaluated with the reward shown in Eq. 4
instead of the hand-crafted heuristic function suggested in [19]
for the game of Carcassonne. The time that the Star2.5 agent
takes for each decision is highly sensitive to the branching
factor. A depth of 3 was the maximum that allowed the Star2.5
agent to return an action. After some testing, we found out that
setting the depth to 4 or 2, resulted in never getting a result
due to the computational power required (depth 4) as well as
yielding poor performance (depth 2). The Star2.5 algorithm
was allowed to run for as long as it needed to search in the tree.
Due to the nature of the MCTS, the depth is not a constraint.
Thus, we let the MCTS-based algorithms to make a move in
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TABLE II
STAR2.5 PARAMETERS

Symbol Definition Value
b Probing factor 5
L Theoretical minimum value -100
U Theoretical maximum value 100
dmax Max depth 3

TABLE III
SUMMARY OF EXPERIMENTS WITH THEIR ASSOCIATED EXECUTION

TIMES.

Experiment
Total

games
Time per

game (min)
Total

time (min)
MCTS vs RA

(parameter tuning) 300 36 10800
MCTS-RAVE vs RA
(parameter tuning) 900 31 32400

Star2.5 vs RA 100 20.58 2058
MCTS vs Star2.5 140 55.79 7811

MCTS-RAVE
vs Star2.5 140 55.79 7811

MCTS-RAVE
vs MCTS 200 71 14200

Total 1780 N/A 75080

relatively the same amount of time. A summary of all the
experiments with their associated execution times is shown in
Table III. To execute this large number of experiments, we
used a computer with 336 nodes operated by Irish Centre for
High-End Computing.

V. ANALYSIS AND RESULTS

We provide here a discussion of the results, including win-
ning rates, obtained by the proposed approach using MCTS,
MCTS with RAVE, and Star2.5. Other relevant domain-
specific measurements, not known by the agents, are also
quantified and reported in this section:

• Meeples per game (mpg): The meeples that the agent
plays throughout the whole game is expected to be
maximised. Playing meeples is the only way to score in
the game and are a limited resource that is desired to be
exploited and recycled as much as possible. The game
rewards the most when features are completed, and a
greater feature completion rate would mean more meeples
becoming available again.

• Turns with meeples (twm): The rate of turns in which
the player has at least one meeple available to play is
expected to be maximised to 1. We propose this metric
based on two objectives: maximising immediate-scoring
opportunities and ensuring the ability to compete for
valuable features. Immediate-scoring opportunities are
those where a meeple is played and collected in the
same turn if the related feature is completed, normally
giving a few but risk-free points to the owner. Immediate-
scoring opportunities are normally available in every turn
of the game as long as the player has available meeples to
claim them. One can argue that if a feature becomes too
valuable, it can be worth using the last meeple to claim
it. Such scenarios are more likely to happen as the game

TABLE IV
MCTS, MCTS RAVE, AND STAR2.5 AGENTS vs. THE RANDOM AGENT
(RA). COMPARISON OF THE RESULTS OF 100 GAMES WITH THE RA AS

THE FIRST PLAYER AGAINST THE MCTS-BASED AGENTS AND THE
STAR2.5-BASED AGENT. r̄p1 AND v̄p1 ARE THE MEAN OF THE rp1 AND
vp1 VALUES FROM EQ. 4. m̄pg AND ¯twm ARE THE MEAN OF THE mpg

AND twm SCORES AS EXPLAINED IN THE BEGINNING OF THIS SECTION

Agent r̄p1 v̄p1 m̄pg ¯twm
Vanilla MCTS 93.45 107.44 14.98 0.57
MCTS-RAVE 95.74 109.42 15.47 0.59

Star2.5 69.93 85.41 12.91 0.47

TABLE V
MCTS vs. STAR2.5. COMPARISON OF RESULTS OF 140 GAMES BETWEEN
THE VANILLA MCTS-BASED AGENT vs. THE STAR2.5-BASED AGENT. IN
70 GAMES, VANILLA MCTS WAS THE FIRST PLAYER AND STAR2.5 WAS

THE FIRST PLAYER IN THE REMAINING GAMES

Criteria
MCTS as
1st player

Star2.5 as
1st player

MCTS as
2nd player

Star2.5 as
2nd player

Win rate 88.57% 22.86% 77.14% 2.86%
r̄p1 20.29 -16.82 16.82 -20.29
v̄p1 80.54 60.29 77.11 60.26
m̄pg 13.10 11.63 12.72 11.03
¯twm 0.48 0.41 0.49 0.41

is closer to its end. This measurement is proposed as
an indicator of awareness of future scoring opportunities.
The formula to calculate it for the agent p1 is shown in
Eq.5 where t is the number of turns where p1 started with
at least one available meeple and the constants 28 and 29
are the total turns in a game of Carcassonne where each
player can potentially have no meeples available.

twm =

{
t
28 , if p1 was first to play
t
29 , if p1 was second to play

(5)

Table IV shows the results of the games between the best
configurations of the MCTS-based agents and the Star2.5-
based agent playing as second against the random agent. The
MCTS-based agents achieved similar results among them-
selves, showing the robustness of our approach for these
techniques. It is also noteworthy to observe how these MCTS-
based agents achieve a high number of meeples per game
compared to Star2.5 explaining the high scores achieved in
the reward and virtual scores (shown in the second and third
columns, from left to right in Table IV). The random agent
was always beaten by all the algorithms shown in Table IV.

We now consider scenarios by comparing each of the
intelligent agents used in this work, including Star2.5 and the
MCTS-based techniques, against each other. Given that the
first player in the game of Carcassonne has an advantage over
the second player, each match is divided in two sets of games
(in the second set, the player who went first in all the games
of the first set now goes second). The same sequence of tiles
(generated at random) from the first set of experiments is also
used in the second set for fairness. Tables V, VI and VII show
the win rate, the mean of the difference of the final scores
(Eq. 4) r̄p1, the final score vp1, the meeples per game mpg
and the turns with available meeples twn, as explained in
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Section III, achieved by each agent when competing against
each other, starting with MCTS vs. Star2.5 (Table V), MCTS-
RAVE vs. Star2.5 (Table VI) and MCTS-RAVE vs. MCTS
(Table VII). Note that a draw is a possible outcome in the
game of Carcassonne and is not reflected in the winning rates
of the Tables V, VI and VII. Thus, a few of the winning rates
in these tables do not equate to 100%.

As can be seen in Table V, the vanilla MCTS agent can beat
the Star2.5 agent consistently: in 88.57% of the games, MCTS
won when playing first and 77.14% when playing second,
shown in the second row from top to bottom in Table V. These
results can be explained when one takes a look to the results
yielded by MCTS and Star2.5 when considering the rest of
the elements computed in this study. For example, the final
scores attained by the MCTS-based agents are consistently
better against those yield by Star2.5. This is aligned with the
results obtained when computing the number of meeples per
game. In cases when some of the latter results are close to each
other (for example 13.10 and 11.63), when MCTS is the first
player and Star2.5 is the opponent, their impact is significant
in their final scores, 85.54 vs. 60.29 for MCTS and Star2.5,
respectively.

From this analysis, it is clear that playing first has an
advantage in the game of Carcassonne as seen by the results
shown in Table V. However, it is unclear how each of these
two algorithms behave during the game. To shed some light on
this, we keep track of the performance, measured in terms of
virtual scores, when MCTS plays first (Figure 3) and when
Star2.5 plays first (Figure 4). It is interesting to note that
MCTS clearly dominates Star2.5 when the former plays first
throughout the game. This situation, however, changes when
Star2.5 plays first. The MCTS-based agent performs worse
compared to Star2.5 for the first half of the game ultimately
dominates Star2.5. We hypothesise that the strength of the
Star2.5-based agent is to find the best actions that grant the
most points in the short term, but it fails in the long term.

From the previous analysis it is clear that MCTS is stronger
than Star2.5, an algorithm reported to yield competitive results
in the Carcassonne game [19]. To see the robustness of
the approach proposed in this work, we now examine how
this behaves when used in MCTS-RAVE and compare the
results obtained by this algorithm against Star2.5. Table VI
shows these results. It can be observed that MCTS-RAVE
consistently beats Star 2.5 regardless of whether it is the first
or the second player as seen in the second and fourth column
in Table VI, where it wins 84.29% and 78.57% respectively.
This confirms how the agent that plays first has an advantage
over its opponent (see, for instance, how Star2.5 achieved a
win rate of 20% and 14.29%, respectively).

We have seen how the proposed method is consistent when
adopted in vanilla MCTS and MCTS-RAVE when each of
these is used independently in the game of Carcassonne against
Star2.5. We illustrate how these two MCTS-based algorithms
behave when competing against each other. The results of
these are shown in Table VII for 200 independent games.
When MCTS-RAVE plays first, it achieves 51% win rate and

Fig. 3. Mean of the virtual scores at each turn of play in the 100 games with
MCTS as the first player and Star2.5 as second.

Fig. 4. Mean of the virtual scores at each turn of play in the 100 games with
Star2.5 as the first player and MCTS as second.

falls short against MCTS when it starts as second player, as
shown in the fourth column, from left to right, in Table VII.
One would have expected for the MCTS-RAVE to outperform
the vanilla MCTS as the former is reported to generally do so
in domains with similarities with the game of Carcassonne.
An in-depth analysis of the associated games showed that
MCTS-RAVE agent behaved greedier than the vanilla MCTS,
illustrated by a lower twm score, which is a contrasting
result with the twm values from Table IV, where the vanilla
MCTS achieved lower twm than the MCTS-RAVE against the
RA. Both algorithms (MCTS and MCTS-RAVE) used their
meeples on each feature type in a similar fashion, but not in
the farms. The MCTS-RAVE used less meeples on farms than
the vanilla MCTS in average (2.8 for the MCTS-RAVE vs 3
from the vanilla MCTS). A farm is a peculiar feature in the
game of Carcassonne which can never be completed, meaning
that any meeple played on it cannot be retrieved again. It is
also a feature that can be easily extended with new tiles, or
connected with other existing farms, often becoming extense
and very valuable. Early into the game, it is not optimum to
use meeples on the farms, but as the game progresses the value
of the farms increases and it becomes harder to fight for them
if they are already claimed. We hypothesise that the vanilla
MCTS is more robust when it comes to assess the value of
the farms and when it is the right time to claim them.
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VI. DISCUSSION

To objectively compare the strengths of intelligent agents
created to play games with rich strategical game-play such
as the game of Carcassonne is not trivial. The MCTS-RAVE
agents showed a superior performance than the vanilla MCTS
in their games against the RA, but when faced against each
other, vanilla MCTS marginally outperformed the MCTS-
RAVE, generating seemingly conflicting results. This illus-
trates the need of a bigger sample of agents to make con-
clusions about the robustness of the algorithms with more
confidence. Robustness is a crucial characteristic for any agent
that is to play the game of Carcassonne, and exhaustive exper-
iments against agents with particular behaviours are needed to
measure their strength in the future.

Parameter tuning of the MCTS-based agents was performed
based on the results from games against a random agent, which
given what we stated above, could mean that the agents were
optimised to exploit the random agent mistakes instead of
developing a robust strategy. It is unlikely that a random agent
happens to follow long-term strategies by chance in the game
of Carcassonne given its immense state-space. By using the
RA for parameter tuning, the MCTS-based agents were unable
to optimise to face long-term strategies. The development of
multiple agents with particular behaviours in the game of
Carcassonne is then seen as a stepping stone to perform proper
parameter tuning and objective strength evaluations.

It is worth indicating that our findings are not comparable
with those achieved by Heyden [19] given the differences in
the experimental setups; like the stopping criteria for each
agent (In [19] was given 6 minutes for the full game, with
no clarification on the number of iterations that the MCTS
agent was able to perform), the number of simulations s for
the vanilla MCTS (s = 1 in [19], compared to our s = 100
after parameter tuning), the evaluation of game states in the
Star2.5 algorithm (hand-made heuristic in [19] instead of the
reward r), and the forced equivalence of random events that
we used. The results from Table V compare the strengths of
the Star2.5 and the vanilla-MCTS agents in an even field when
no domain-specific knowledge is used, allowing us to visualise
the behaviour, strengths and weaknesses of each algorithm
in this particular game. As expected, the limited depth of
the Star2.5 algorithm allows it to find the good short-term
solutions but ignoring long-term consequences.

VII. CONCLUSIONS

We have shown that the MCTS-based algorithms (vanilla
MCTS and MCTS with Rapid Action Value Estimation) are
capable to find long-term strategies in the game of Carcas-
sonne, a complex and deceptive game. This is an advantage
when they are compared with the Star2.5 algorithm when no
domain-specific knowledge is involved, and suggest that a
MCTS-based agent enhanced with heuristics could be more
robust than any Star2.5 agent.

The strength of the agents in the game of Carcassonne
can be seen as relative when tested against a limited set
of opponents, given the variety of strategies that an agent

TABLE VI
MCTS-RAVE vs STAR2.5. COMPARISON OF THE RESULTS OF 140 GAMES

BETWEEN THE MCTS-RAVE AGENT AGAINST THE STAR2.5 AGENT. 70
GAMES HAD MCTS-RAVE AS THE FIRST PLAYER AND 70 HAD STAR2.5
AS THE FIRST PLAYER. r̄p1 AND v̄p1 ARE THE MEAN OF THE rp1 AND vp1
VALUES FROM EQ. 4. m̄pg AND ¯twm ARE THE MEAN OF THE mpg AND
twm SCORES AS EXPLAINED IN THE BEGINNING OF THIS SECTION.

Criteria
MCTS-RAVE
as 1st player

Star2.5
as 1st

player
MCTS-RAVE
as 2nd player

Star2.5
as 2nd

player
Win rate 84.29% 20.00% 78.57% 14.29%

r̄p1 18.30 -17.54 17.54 -18.30
v̄p1 80.66 62.46 80.00 62.36
m̄pg 13.33 11.48 13.17 11.11
¯twm 0.5 0.41 0.52 0.4

TABLE VII
MCTS-RAVE vs MCTS. COMPARISON OF THE RESULTS OF 200 GAMES

BETWEEN THE MCTS-RAVE AGENT AGAINST THE VANILLA MCTS
AGENT. 100 GAMES HAD MCTS-RAVE AS THE FIRST PLAYER AND 100

HAD VANILLA MCTS AS THE FIRST PLAYER. r̄p1 AND v̄p1 ARE THE MEAN
OF THE rp1 AND vp1 VALUES FROM EQ. 4. m̄pg AND ¯twm ARE THE MEAN

OF THE mpg AND twm SCORES AS EXPLAINED IN THE BEGINNING OF
THIS SECTION.

Criteria
MCTS-RAVE
as 1st player

MCTS
as 1st

player
MCTS-RAVE
as 2nd player

MCTS
as 2nd

player
Win rate 51% 64% 36% 49%

r̄p1 0.11 2.67 -2.67 -0.11
v̄p1 80.05 80.75 78.08 79.94
m̄pg 13.49 13.71 12.61 13.32
¯twm 0.5 0.51 0.48 0.51

can adopt to play. This study found that the MCTS-based
agents are more robust than the Star2.5 given their ability to
plan ahead, but with potential flaws. The MCTS-RAVE and
the vanilla MCTS present differences when evaluating plans
that involve playing with farms, which marginally favour the
vanilla MCTS agent when they are faced against each other.
This difference in behaviour favours the MCTS-RAVE when
both vanilla MCTS and MCTS-RAVE, are tested against an
agent making moves at random, indicating that their strategies
are not entirely robust. Despite this, the MCTS-based agents
are a promising approach for further research in the game of
Carcassonne, showing better characteristics than the Star2.5
algorithm in general.

Finally, the proposed turns with meeples (twm) metric,
designed to measure the awareness of long-term scoring op-
portunities by the agents, showed to align with the results in all
the experiments, and can be of use for heuristic development
or as an objective for multi-objective approaches in the game
of Carcassonne.
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