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Abstract: In this work, we explore and study the implication of having more than one output on a Genetic Programming (GP)
graph-representation. This approach, called, Multiple Interactive Outputs in a Single Tree (MIOST) is based on two ideas: (a) Firstly,
we defined an approach, called Interactivity Within an Individual (IWI), which is based on a graph-GP representation. Secondly, we
add to the individuals created with the IWI approach multiple outputs in their structures and as a result of this, we have MIOST. As
first step, we analyse the effects of IWI by using only mutations and analyse its implications (i.e., presence of neutrality). Then, we
continue testing the effectiveness of IWI by allowing mutations and the standard GP crossover in the evolutionary process. Finally,
we tested the effectiveness of MIOST by using mutations and crossover and conduct extensive empirical results on different evolvable
problems of different complexity taken from the literature. The results reported in this work, indicate that the proposed approach has
a better overall performance in terms of consistency reaching feasible solutions.

Keywords: Interactivity Within an Individual (IWI), Multiple Interactive Outputs in a Single Tree (MIOST), Neutrality, Evolvable
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1 Introduction

Genetic Programming (GP) [1] is a heuristic search tech-
nique, which has its inspiration from the theories of genetic
inheritance and natural selection. This technique has been
proved to be a suitable tool for solving problems in many
applications. Usually, in GP programs are expressed as syn-
tax trees. Despite the vast number of good results reported
when using GP [1], there are some researchers that have
proposed different types of representations or additions to
the traditional form of GP (i.e., tree-like structures).

For example, Koza [2] proposed Automatically Defined
Functions (ADFs). ADF is a function (subprogram, proce-
dure or module) that is dynamically evolved during a run
of a GP. Typically, the ADFs process one or more dummy
arguments. The problem with this approach is discovering
good ADFs. ADFs behave differently in different parts of a
program when they have different arguments. So, in order
to discover if an ADF is good, GP has to spend computa-
tion time to discover with which parameters the ADF can
be used properly.

Angeline and Pollack [3] proposed a method called Evo-
lutionary Module Acquisition (EMA). The idea of this
method is to build and evolve modules (which are the reuse
of code) during the evolution process. To identify appropi-
ate module(s) in the evolving individuals, the authors add
two operators to the reproduction process. The first opera-
tor, called compress, selects a portion of the offspring to pre-
serve for future manipulation. The second operator, called
expand, is the opposite to the former operator. Because
there is not a general method of identifying what portions
of the individual should be compressed, the composition of
each module is selected randomly. The same authors ex-
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tended this work in [4]. In this work the authors refers
to the method as Genetic Library Builder (GLiB). This li-
brary is a collection of all created modules and serves only
as reference symbol for GLiB. During either a genotype’s
execution or the expansion of the compressed module, GLiB
retrieves the definitions of symbols from the genetic library.

Montana [5] proposed a variation of GP called Strongly
Typed Genetic Programming (STGP). He started from the
definition of closure (which means that all elements, func-
tions and terminals, take arguments of a single data type
and return values of the same data type). Koza [1] describes
a way to relax this constraint of closure with the concept
of constrained syntactic structures. He uses tree generation
routines which only generate legal trees and uses operator
which maintain legal syntactic structures. However, the
main characteristic of STGP is to build an individual as a
parse tree and the data type of the nodes not necessarily
should be the same type.

Teller and Veloso [6] were one of the first researchers to
use a graph-based GP. Their method, Parallel Algorithm
Discovery and Orchestration (PADO), is a combination of
GP and linear discriminator which was used to obtain a
parallel classification programs for signals and images.

Poli [7] proposed an approach called Parallel Distributed
Genetic Programming (PDGP). Poli stated that PDGP can
be considered as a generalisation of GP. However, PDGP
can use more complex representations and evolve finite state
automata, neural networks and more. PDGP is based on
a graph-like representation for parallel programs which is
manipulated by crossover and mutation operators and guar-
antee the syntactic correctness of the offsprings. Poli’s ap-
proach was inspired by the parallel distributing processing
performed in neural networks.

Angeline [8] proposed a representation called Multiple
Interacting Programs (MIPs). This representation is a gen-
eralisation of a recurrent neural network that can model
any type of dynamic system. Each program in a given set
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is unique and stored in the form of a parse tree. Using this
technique an individual is virtually equivalent to a neural
network where the computation performed at each unit is
replaced with an independent evolved equation.

Miller [9] proposed Cartesian Genetic Programming
(CGP). This technique was called Cartesian in the sense
that the method considers a grid of nodes that are addressed
in a Cartesian coordinate system. In CGP the genotype is
represented as a list of integers that are mapped to directed
graphs rather than trees. CGP had his original motivation
from the effectiveness of the approach in learning Boolean
functions [10].

Kantschik and Banzhaf [11] proposed a different repre-
sentation of GP named Linear-Tree. The main idea was to
give flexibility to a program to choose different execution
paths for different inputs. In this method, each program is
represented as a tree. Each node in the tree has two parts,
a linear program and a branching node. The linear pro-
gram can be executed when the node is reached during the
interpretation of the program. The branching node indi-
cates the possible program flow. The authors claimed that
their representations have better performance than with the
tree-based representation. Later on, the same authors pro-
posed a representation called Linear-Graph [12]. They ar-
gued that graphs come one step nearer to the control flow
of a hand written program. In their approach they have
shown that this method is better than the linear-tree rep-
resentation.

As it can be seen from the previous summaries, many
and diverse ideas have raised in Evolutionary Computation
systems (ECs), specifically in the paradigm of GP to make
it more powerful and efficient.

The main purpose of the present work is to present a
new GP technique, called Multiple Interactive Outputs in

a Single Tree (MIOST), which allows evolving graph-like
structures and it allows to have more than one output in
an individual structure. To study this form of GP, we have
sub-divided our study in two different sections:

• Firstly, we explore the idea of a graph-GP representa-
tion by introducing pointers in the individuals.

• Secondly, we add to the above representation, as many
outputs as the user requieres.

In this work we will use evolvable hardware problems to
test MIOST.

2 Approach

Our approach, called Multiple Interactive Outputs in a

Single Tree (MIOST), is the result of two main ideas:

1. Using a rich graph-GP representation by allowing
pointers in individuals.

2. Defining in an individual as many outputs as the user
requieres.

To verify the efficiency of our approach, we study it in
two stages. That is, we first study the impact of having
pointers within the individuals, let’s call this Interactivity

Within an Individual (IWI). Once we have studied the im-
plications of allowing pointers in the individuals (IWI), we
add multiple outputs to the individuals (MIOST).

2.1 Interactivity Within an Individual
(IWI)

Fig. 2.1 A typical individual created using Interactivity
Within an Individual (IWI).

2.1.1 Terminal and Function Set

The representation used in our work is a tree-like struc-
ture as suggested in [1]. The terminal set consists of the
inputs of the circuit (i.e., T = {a, b, c, · · · }). The function
set is composed by the typical operators used in these type
of problems (i.e., AND, OR, NOT , etc.). The function set
includes also a special function, p. By using the p symbol,
we have taken inspiration from graph-GP representations.
We decided to use and explore the posibility of represent-
ing programs as graphs with oriented links (Fig. 2.1 depicts
this idea).

The idea was to replace a function node by other ele-
ment that represents links which determines what needs to
be evaluated. We hope in this way to find parts of an indi-
vidual that can be more useful in other part(s) of the same
individual. Notice that the role of the function node is very
different from ADFs [2] where a function can be a subpro-
gram, procedure or module. The main difference, is that
in IWI a function node just refers to a place where that
function will follow the execution.

Let us discuss more in detail how the p symbol works:

• Once the individuals in the population have been gen-
erated, we use a probability to replace any function
with a p symbol which is function of arity 2 1.

• If an individual contains in its structure a p symbol,
this will point to code somewhere in the program so,
when p is executed, the subtree rooted at that node is
ignored.

• If the p symbol points to a function symbol, the p sym-
bol effectively represents the subtree rooted at that
function.

• If the p symbol points to a terminal symbol, the p

symbol simply represents that node.

1This is not a restriction because p could be of any arity.
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2.2 Multiple Interactive Outputs in a Sin-
gle Tree (MIOST)

Fig. 2.2 A typical individual created using Multiple Interactive
Outputs in a Single Tree (MIOST).

Multiple Interactive Outputs in a Single Tree (MIOST)
is an extension of the previous approach (IWI). Fig. 2.2
depicts an individual created with MIOST. Individuals cre-
ated with MIOST, could have in their structures p symbols
and also more than one output. For this purpose, it is
necessary to define an extra set apart of the terminal and
function set. This is explained in the following paragraphs.

2.2.1 Output Set

When we create an individual using MIOST, it is nec-
essary to define an Output set which will contain as many
outputs as the user requieres. That is, if we need to create
individuals of four outputs then the Output set will look
like O = {O1, O2, O3, O4}. Once the Output set has been
defined, the individual is created using the three sets: Ter-
minal, Function and Output set.

When an individual is created, the first set that must
be used is the Output set and so, the system will choose
randomly any element from the Output set and the chosen
element can’t be selected again for the current individual
and so on until the individual is created. Once an individual
has been created, we check if it contains all the outputs de-
fined in the Output set, if not the process is repeated until
a valid individual has been created. It is worth mentioning
that when we create an individual we do not specify which
output will be in the root, so our approach has the advan-
tage to place the most complex output in the root (results
confirm this).

2.3 Genetic Operators

The crossover operator used in IWI and MIOST works
as usual but an important difference with the traditional
crossover used in GP is that, if the subtree swapeed con-
tains a p symbol, the p symbol’s pointer is not changed 2.
Moreover, in the case of MIOST there is another difference:
once we have created our individual in the population, we
classify each node of each individual in order to know which
nodes can be used to apply crossover. With this, we assure
that an individual will contain the number of outputs that
must contain.

The mutation operator is applied as usual on a per node
basis. The only restriction is that a p symbol is not allowed

to be mutated.

2.4 Fitness Function

To test the effectiveness of IWI and MIOST, we have used
several evolvable hardware problems of different complexity
taken from the literature. The fitness function works in two
stages:

1. At the beginning of the search, the fitness of a geno-
type is the number of correct output bits (raw fitness).

2. Once the fitness has reached the maximum number of
correct output bits, we try to optimise the circuits by
giving a higher fitness to an individual with shorter
encodings.

2.5 Features

The previous approaches have interesting features. For
instance, the presence of p symbols in the representations,
assure us that there are inactive code in the individuals.
This has at least two advantages:

1. when a mutation takes place in inactive code, there
is no need to evaluate an individual since there is a
change at genotype level but not at phenotype level
and

2. it allow to study neutrality [13] which is considered
an area of controversial debate on EC systems. There
are, however, some works that have shed some light on
neutrality [14-17].

3 Effects of Graph-GP Representation

Before testing the approach explained earlier, MIOST, we
will conduct simple experiments (mutation based, tree-like
GP system without crossover) using different p rates and
mutation rates. We used a well-known benchmark problem
(6-bit Multiplexer Boolean function) to conduct our analy-
sis.

To obtain meaningful results, we performed 20 indepen-
dent runs for each of the different mutation and p rates
used in our studies. We have used 200 individuals, depth
= 8 and 400 generations. For these experiments, we have
used the full initialisation method to create the individuals
in the population. Crossover operator was not used.

2There is an exception to this rule: we prevent a p symbol from referring to a subtree that contains the same p since this would lead to an
infinite loop. We do this by reassigning the position to which the p in question is pointing to.
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Table 1 Results found using the graph-GP representation

using only the mutation operator. P and Mutation rates are

shown in the first and second column, respectively. Feasible

Circuits (Success Rate) and Average of Generations (this refers

to the average number of generations that are necessary to

reach the feasible zone) are shown in the last two columns.

% P % Mutation Feasible Circuits Avr. Gen.

0.01 0.02 100% 80.6

0.01 0.03 90% 155.66

0.01 0.04 70% 138.62

0.01 0.05 55% 146.65

0.01 0.06 30% 203.5

0.02 0.02 75% 91.46

0.02 0.03 65% 136.66

0.02 0.04 50% 141.5

0.02 0.05 35% 163.71

0.02 0.06 35% 243.14

0.03 0.02 85% 122.7

0.03 0.03 85% 109.64

0.03 0.04 45% 179.5

0.03 0.05 50% 237.5

0.03 0.06 30% 157.56

0.04 0.02 65% 109.65

0.04 0.03 60% 117

0.04 0.04 65% 132.45

0.04 0.05 45% 220.54

0.04 0.06 30% 164

From Fig. 3, we can see the success rates using the graph-
GP representation using different mutation and p rates.
The highest success rate found was 100% when set p=0.01
and mutation rate = 0.02. Keeping constant this p value
and increasing the mutation rates, the success rate tends to
decrease. Similar behaviour can be observed with different
p rates. We can conclude that regardless the value of p, the
higher the mutation rate is, the lower the success rate will
be.
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Fig. 3 Success rates obtained using different mutation and p
rates on the 6-bit Multiplexer Boolean function.

At this point, one question arises: what happen if we do
not allow the presence of the p element in our individuals.
To answer this question, we need to take a look to Fig. 3.
In no case, the system was able to reach a success rate of
100% in the absence of the p symbol. Moreover, the perfor-
mance of the GP system without the presence of p is poor
comparing it when it is present. In fact, the perfomance of
the GP system when p is not present in the individuals is
the worst for all mutation rates, except when mutation rate
is 0.03.

As mentioned previously, one of the features of the pro-
posed approach is the presence of neutrality (theory pro-
posed by Kimura [13]). Kimura put forward the theory
that the majority of evolutionary changes at molecular level
are the result of random fixation of selctively neutral muta-
tions. In other words, the mutations that take place in the
evolutionary process are neither advantageous nor disad-
vantageous to the survival of individuals. Kimura’s theory
considers a mutation from one gene to another as neutral if
this modification does not affect the phenotype.

The results presented previously show how the individ-
uals in the population tend to behave in the presence of
p in their structures. Fig. 3 summarises this behaviour
on four different p rates. The highest success rates were
found when mutation rates were set with the lowest value
(0.02), regardless of the p rates. At the beginning of the
evolutionary process, the number of individuals affected by
neutral mutations is high but it tend to decrease after few
generations (see Figs. 4-7). In other words, individuals
with p elements in their structures tend to disappear at the
beginning of the process. We think this happens because
at the beginning of the evolutionary process the solution
needs to be protected by allowing the presence of p in their
structures.

Around generation 50 - 60, it is when the number of in-
dividuals affects by neutral mutations becomes stable. As
can be observed in all plots of Figs. 4-7, the best perfor-
mance is achieved when the number of individuals affected
by neutral mutation is in the range of 90-100 (notice that
this range is close to half of the size of the population). On
the other hand, the worst performance was found when the
number of individuals affected by neutral mutation is below
80.

From this analysis, it is clear that the presence of p in
the individuals can make the solution avoit to get stuck in
local optima. However, a fine balance between p rate and
mutation rate is needed in order to improve the exploration
of the search space.

Using this example and carrying out experiments us-
ing only mutations, we can see that the best performance
achieved is when setting p = 0.01 and mutation rate = 0.02
and so, these are the values that we have used to conduct
our experiments in more complex problems. Moreover, the
previous analysis has helped us to get a good indicator that
the graph-GP representation performs well.
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Fig. 4 Individuals affected by neutrality (p = 0.01).
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Fig. 5 Individuals affected by neutrality (p = 0.02).
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Fig. 6 Individuals affected by neutrality (p = 0.03).
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Fig. 7 Individuals affected by neutrality (p = 0.04).

4 Comparison of Results

We used several evolvable hardware problems of differ-
ent complexity taken from the literature to test IWI and
MIOST. Our results were compared with those obtained by
MGA [18], EAPSO [19], EBPSO [20], BPSO [20], EGP [21]
and the traditional GP. For all the examples, we performed
20 independent runs. As we will see in the next paragraphs,
in all the experiments we improve the percentage of feasible
region 3 compared against the other techniques.

4.1 Results Using IWI

After a series of prelimary experiments, we have decided
to use a crossover rate of 70%, mutation rate of 0.02% and
p rate of 0.01.

4.1.1 Example 1

For our first example, we have used the truth table shown
in Table 2. The paremeters used in this example are the
following: Population Size (PS) = 190 and the Maximum
Number of Generations (MNG) = 525 (i.e., a total of 99,750
fitness function evaluations). The same values parameters
were used by GP. BPSO, EAPSO and EBPSO performed
100,000 fitness function evaluations, while MGA performed
102,000. As we can see in Table 3, the only algorithms able
to converge to a feasible region in 100% of the runs were
BPSO, EBPSO and IWI. Moreover, in IWI the average of
generations at which it solved the circuit was 35.61, while
in GP the average of generations was 56.05. However, the
average number of gates is IWI was 10.4, while the average
number of gates in EBPSO was 6.15.

3The feasible region is the area of the search space containing circuits that match all the outputs of the problem’s truth table.
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Table 2 Truth table of the first example.

A B C D O1

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

Table 3 Comparison of results between BPSO, EAPSO,

EBPSO, MGA, GP, EGP and IWI on the first example.

Method Feasible Circuits Avg. # of gates Avg. of gen.

BPSO 100% 6.75 -

EAPSO 95% 7.3 -

EABPSO 100% 6.15 -

MGA 90% 9.3 -

GP 90% 11.05 56.05

EGP - - -

IWI 100% 10.4 35.61

4.1.2 Example 2

For our second example we have used the truth table
shown in Table 4. The parameters used in this example
are the following: PS = 240 and MNG = 415 (i.e., a to-
tal of 99,600 fitness function evaluations). The same values
parameters were used by GP. BPSO, EAPSO and EBPSO
performed 100,000 fitness function evaluations, while MGA
performed 102,000. As we can see in Table 5, the only al-
gorithms able to converge to a feasible region in 100% of
the runs performed were EBPSO and IWI. Moreover, in
IWI the average of generatiosn required to solve the cir-
cuit was 28.88, while in GP the average og generations was
49.23. However, the average number of gates in EBPSO
was slightly smaller (5.9).

Table 4 Truth table of the second example.

A B C D O1

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

Table 5 Comparison of results between BPSO, EAPSO,

EBPSO, MGA, GP, EGP and IWI on the second example.

Method Feasible Circuits Avg. # of gates Avg. of gen.

BPSO 85% 10.4 -

EAPSO 90% 8.25 -

EBPSO 100% 5.9 -

MGA 70% 13.7 -

GP 90% 9.22 49.23

EGP - - -

IWI 100% 8.6 28.88

4.1.3 Example 3

For our third example we have used the truth table shown
in Table 6. The parameters used in this example are the
following: PS = 550 and the MNG = 900 (i.e., a total of
495,000 fitness function evaluations). The same values pa-
rameters were used by GP. BPSO, EAPSO and EBPSO
performed 500,000 fitness function evaluations, while MGA
performed 528,000. As we can see in Table 7, IWI is the
algorithm with the highest percentage of feasible solutions
reached (70%). Moreover, in IWI the average of generation
at which it solved the circuit was 156.57, while in GP it
was 791. However, the average number of gates in IWI was
32.28, while the average number of gates in EBPSO was
much smaller (12.15).
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Table 6 Truth table of the third example.

A B C D E O1

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 1 1 1

0 0 1 0 0 0

0 0 1 0 1 1

0 0 1 1 0 1

0 0 1 1 1 0

0 1 0 0 0 0

0 1 0 0 1 1

0 1 0 1 0 1

0 1 0 1 1 0

0 1 1 0 0 1

0 1 1 0 1 0

0 1 1 1 0 0

0 1 1 1 1 0

1 0 0 0 0 0

1 0 0 0 1 1

1 0 0 1 0 1

1 0 0 1 1 0

1 0 1 0 0 1

1 0 1 0 1 0

1 0 1 1 0 0

1 0 1 1 1 0

1 1 0 0 0 1

1 1 0 0 1 0

1 1 0 1 0 0

1 1 0 1 1 0

1 1 1 0 0 0

1 1 1 0 1 0

1 1 1 1 0 0

1 1 1 1 1 0

Table 7 Comparison of results between BPSO, EAPSO,

EBPSO, MGA, GP, EGP and IWI on the third example.

Method Feasible Circuits Avg. # of gates Avg. of gen.

BPSO - - -

EAPSO 50% 13.8 -

EBPSO 55% 12.15 -

MGA 25% 21.4 -

GP 5% 90 791

EGP - - -

IWI 70% 32.28 156.57

In the following paragraphs, we will continue towards the
same idea: verifying the effectiveness of using a graph-GP
representation and allowing more than one output in the
individual’s structure. For this purpose, we will use several
evolvable hardware problems of more than one output of
different complexity taken from the literature.

4.2 Results Using MIOST

4.2.1 Example 4

For our fourth example we have used the truth table
shown in Table 8. The parameters used in this example
are the following: PS = 380 and the MNG = 525 (i.e., a

total of 199,500 fitness function evaluations). The same val-
ues parameters were used by EGP and IWI. BPSO, EAPSO
and EBPSO performed 200,000 fitness function evaluations,
while MGA performed 201,300. As we can see in Table 9,
the only algorithms able to converge to the feasible region
in 100% of the runs were EBPSO and MIOST.

Table 8 Truth table of the fourth example.

A B C D O1 O2

0 0 0 0 1 0

0 0 0 1 1 0

0 0 1 0 1 0

0 0 1 1 0 0

0 1 0 0 1 0

0 1 0 1 1 0

0 1 1 0 0 0

0 1 1 1 0 0

1 0 0 0 1 0

1 0 0 1 0 0

1 0 1 0 0 0

1 0 1 1 0 1

1 1 0 0 0 0

1 1 0 1 0 0

1 1 1 0 0 1

1 1 1 1 0 1

Table 9 Comparison of results between BPSO, EAPSO,

EBPSO, MGA, GP, EGP, and MIOST on the fourth example.

Method Feasible Circuits Avg. # of gates Avg. of gen.

BPSO 95% 10.05 -

EAPSO 70% 13.45 -

EBPSO 100% 7.75 -

MGA 75% 13.4 -

EGP 55% 9.7 122.9

MIOST 100% 12.9 109.55

4.2.2 Example 5

For our fifth example we have used the truth table shown
in Table 10. The parameters used in this example are
the following: PS = 1,200 and the MNG = 832 (i.e., a
total of 998,400 fitness function evaluations). The same
values parameters were used by EGP. BPSO, EAPSO and
EBPSO performed 1,000,000 fitness function evaluations,
while MGA performed 1,101,040. As we can see in Table 11,
MIOST is the algorithm which has the highest percentage
of feasible solutions reached (75%). Moreover, in MIOST
the average of generations at which it solved the circuit was
104.67, while in EGP it was 149.5. Surprising, MIOST is
one of the algorithms with lowest average number of gates
with 11.6.
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Table 10 Truth table of the fifth example.

A B C D E O1 O2 O3

0 0 0 0 0 1 1 0

0 0 0 0 1 1 0 0

0 0 0 1 0 1 1 0

0 0 0 1 1 1 0 0

0 0 1 0 0 1 1 1

0 0 1 0 1 1 0 1

0 0 1 1 0 1 1 0

0 0 1 1 1 1 1 0

0 1 0 0 0 1 1 0

0 1 0 0 1 1 0 0

0 1 0 1 0 1 1 0

0 1 0 1 1 1 0 0

0 1 1 0 0 1 1 1

0 1 1 0 1 1 0 1

0 1 1 1 0 1 1 0

0 1 1 1 1 1 1 0

1 0 0 0 0 0 1 0

1 0 0 0 1 0 0 0

1 0 0 1 0 0 1 0

1 0 0 1 1 0 0 0

1 0 1 0 0 0 1 1

1 0 1 0 1 0 0 1

1 0 1 1 0 0 1 0

1 0 1 1 1 0 1 0

1 1 0 0 0 0 1 0

1 1 0 0 1 0 0 0

1 1 0 1 0 0 1 0

1 1 0 1 1 0 0 0

1 1 1 0 0 1 1 1

1 1 1 0 1 1 0 1

1 1 1 1 0 1 1 0

1 1 1 1 1 1 1 0

Table 11 Comparison of results between BPSO, EAPSO,

EBPSO, MGA, GP, EGP and MIOST on the fifth example.

Method Feasible Circuits Avg. # of gates Avg. of gen.

BPSO 25% 23.95 -

EAPSO 50% 18.65 -

EBPSO 45% 20.1 -

MGA 65% 17.05 -

GP - - -

EGP 60% 9.66 149.5

MIOST 75% 11.6 104.67

4.2.3 Example 6

For our sixth example (also know as Katz circuit) we
have used the truth table shown in Table 12. The parame-
ters used in this example are the following: PS = 880 and
the MNG = 4,000 (i.e., a total of 3,520,000 fitness func-
tion evaluations). The same values parameters were used
by EGP and IWI. As we can see in Table 13, MIOST is
the algorithm which has the highest percentage of feasible
solutions reached (35%).

Table 12 Truth table of the sixth example.

A B C D O1 O2 O3

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 1 0 0

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 0 0 1

1 0 0 1 0 0 1

1 0 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 0 0 0 1

1 1 0 1 0 0 1

1 1 1 0 0 0 1

1 1 1 1 1 0 0

Table 13 Comparison of results between BPSO, EAPSO,

EBPSO, MGA, GP, EGP and MIOST on the sixth example.

Method Feasible Circuits Avg. # of gates Avg. of gen.

BPSO - - -

EAPSO - - -

EBPSO - - -

MGA - - -

EGP 30% - -

MIOST 35% 22.16 277.363

5 Conclusions

To analyse and verify the effectiveness of our ap-
proach, called Multiple Interactive Outputs in a Single Tree
(MIOST), we have conducted our experiments in the follow-
ing way:

• Firstly, we have proposed and used a graph-GP repre-
sentation (IWI) and used only mutation operators to
study the effects of allowing p symbols in the individ-
uals’ structures,

• Secondly, we allowed the use of the traditional
crossover operator on the IWI representation and con-
ducted extensive empirical results,

• Thirdly, the addition of multiple outputs in the
individuals has allowed us to study the approach
called Multiple Interactive Outputs in a Single Tree

(MIOST). In other words, MIOST is the result of IWI
and the additions of outputs in the individuals’s struc-
tures.

We have used six evolvable hardware problems of dif-
ferent complexity (plus the 6-bit multiplixer) to carry out
our experiments and analysis with the proposed approach.
Our results indicate that MIOST has a better overall perfor-
mance in terms of consistency in reaching feasible solutions.
Our approach, however, was not able to improve previously
reported results in terms of number of gates. This is due
to two rases: (a) our approach is not an optimisation tech-
nique and (b) our approach has the restriction that one or
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more output depends on the solution of one or more out-
puts. This can be seen easily by analysing Fig. 2.2
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