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Abstract. In the field of Genetic Programming (GP) a question exists
that is difficult to solve; how can problem difficulty be determined? In
this paper the overall goal is to develop predictive tools that estimate
how difficult a problem is for GP to solve. Here we analyse two groups of
methods. We call the first group Evolvability Indicators (EI), measures
that capture how amendable the fitness landscape is to a GP search.
The second are Predictors of Expected Performance (PEP), models that
take as input a set of descriptive attributes of a problem and predict
the expected performance of a GP system. These predictive variables
are domain specific thus problems are described in the context of the
problem domain. This paper compares an EI, the Negative Slope Coeffi-
cient, and a PEP model for a GP classifier. Results suggest that the EI
does not correlate with the performance of GP classifiers. Conversely, the
PEP models show a high correlation with GP performance. It appears
that while an EI estimates the difficulty of a search, it does not neces-
sarily capture the difficulty of the underlying problem. However, while
PEP models treat GP as a computational black-box, they can produce
accurate performance predictions.

Keywords: Genetic Programming, Performance prediction, Classifica-
tion

1 Introduction

Genetic Programming (GP) deals with the development of evolutionary algo-
rithms (EA’s) for automatic program induction [10], However, as for every EA,
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2 Lecture Notes in Computer Science: Authors’ Instructions

GP systems are stochastic search process, with many degrees of freedom and
heuristic components. Therefore, as of yet, it is not possible to derive, from first
principles, weather GP can solve a particular problem or task. A current goal
within the GP community is to estimate how hard a problem instance might be
for a specific GP. Such a measure could allow researchers to correctly choose and
tune a GP search without the need of actually executing the code [24], which
usually is computationally expensive.

If we want to measure the difficulty of a problem in GP, we can consider at
least two different frames of reference. The first is the problem domain, which is
independent of the method used to solve the problem [7]. The second frame of
reference is to consider a perspective directly related to the process used to find
a solution; in the case of GP this frame of reference corresponds with the search
space and fitness landscape [9]. Let us first describe the latter.

The concept of a fitness landscape has dominated the way geneticists think
about biological evolution and has been adopted by the EA community as a
way to visualize evolution dynamics. Formally, a fitness landscape, as specified
in [19], can be defined as a triplet (x, χ, f): (a) a set x of configurations, (b) a
notion χ of neighbourhood, distance or accessibility on x, and finally, (c) a fitness
function f . The local and global structure of the fitness landscape describes the
underlying difficulty of a search. In general, most meta-heuristics work under
the assumption that the fitness of a candidate solution, a point on the fitness
landscape, is positively correlated with the fitness of (some) of its neighbours.
Such a property can be defined as the evolvability of a landscape [1, 16]. Hence,
some researchers have proposed measures that characterize the evolvability of a
fitness landscape, what are here referred to as evolvability indicators (EI).

Another approach is to use the problem domain as the frame of reference,
and characterize the difficulty of a problem based on the expected performance
the GP search, a quantity that is derived from domain specific features of each
problem instance [6, 21, 22]. This is a more pragmatic approach, the evolutionary
search is taken as a black-box process and the performance of GP on a set of
training problems is used to build predictors of the expected performance on
unseen problems, following a machine learning methodology. In what follows, we
refer to such measures of problem difficulty as Predictors of Expected Perfor-
mance (PEPs).

The remainder of this paper proceeds as follows. Section 2 gives an overview
of related work. Then, Section 3 describes how GP can be used for classifica-
tion and presents the GP classifier used to perform the comparative analysis.
The experimental results and analysis are given in Section 4. Finally, Section 5
contains a summary and conclusions.

2 Background

Landscapes and problem difficulty have been the subject of a good deal of re-
search regarding EA’s. For instance, researchers have developed work on land-
scape correlation [25], autocorrelation [13], epistasis [4] and monotonicity [15].
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Lecture Notes in Computer Science: Authors’ Instructions 3

For GP, locality has been used to measure problem difficulty based on geno-
type to phenotype mappings [3, 12, 11]. However, this paper focuses on one of
the most successful EI in GP literature, the Negative Slope Coefficient (NSC).
The following discussion presents the NSC and reviews its predecessor, Fitness
Distance Correlation (FDC).

2.1 Evolvability Indicators

FDC is a measure for problem difficulty originally proposed for genetic algo-
rithms (GA’s) [8] and later extended to GP [20]. The logic behind FDC pro-
ceeds as follows. Assume that we can compute the genotypic distance between
each valid individual and the (global) optimum to a problem. If this distance is
negatively correlated with the fitness of each individual then the search problem
should be characterized as easy, and it should be characterized as difficult if no
correlation is detected. Moreover, a problem should be considered to be decep-
tive if the correlation is positive. While FDC has shown to be reliable in many
test cases, its more glaring weakness is that the optimal solution must be known
a priori, somewhat not realistic for real-world problems.

Following the same general assumptions of FDC, Vanneschi et al [23] propose
the NSC. In the case of NSC, knowledge about the global optimum is not re-
quired. Instead, NSC relies on the concept of fitness clouds, a scatter plot where
for each genotype x a point is plotted on a 2-D plane, where the horizontal axis
corresponds with the fitness of x given by f(x), and the vertical axis represents
the fitness f(y) of a neighbouring genotype y. The hypothesis behind NSC is
that the fitness cloud shape provides a meaningful description of the evolvability
of a problem for GP-based search. The NSC is computed by assuming a piece-
wise linear relationship between f(x) and f(y) for a sample of M individual
genotypes and computing the slope of the scatter points within a set of equally
spaced segments of the f(x) axis. In the original implementation, individuals
are sampled using the Metropolis-Hastings algorithm, neighbours are generated
using standard sub-tree mutation, and the representative neighbour y for each
genotype x is chosen using tournament selection. The NSC is given in the range
of (−∞, 0], where a value of 0 represents a highly evolvable (assumed to be easy)
problem, and a negative NSC indicates a less evolvable (more difficult) problem.

2.2 Predictors of Expected Performance

Another way to characterize problem difficulty is to attempt to predict the ex-
pected performance that a GP search will achieve on a given problem instance,
a more direct approach. Following this line of thought, two approaches have
been proposed in GP literature. First, consider the work of [5], where the frame
of reference of the problem and of the search method are combined to derive
Predictors of Expected Performance (PEP’s) for GP. In [5], the authors propose
linear predictive models based on a sampling of the fitness landscape, given by

P (t) ≈ a0 +
∑

p∈S

ap · d(p, t) , (1)
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4 Lecture Notes in Computer Science: Authors’ Instructions

where P (t) is the predicted performance, t is the target functionality, d(p, t) is a
distance measure (such a distance measure is a common fitness function for many
application domains of GP), S is the set of all possible program behaviours, and
where each behaviour p represents the set of program outputs obtained from
the set of fitness cases for a particular problem. Hence, PEP’s are derived by
sampling the space S of possible program behaviours, which can also be seen as
the space of possible programs. These models were tested on symbolic regression
problems and 4-input Boolean problems for GP, achieving good results.

The second, more recent work, is more tightly centered within the problem
frame of reference [6, 21, 22], and proceeds as follows. Given a problem p, for
which we want to compute a performance prediction, extract a feature vector
βββ = (β1, β2, ...βN ) of N distinct features that describe the properties of p. Then,
a PEP P is given by a kernel function K,

P (βββ) ≈ K(βββ) . (2)

Notice that the form of K is not restricted in any way. For instance, [6] uses a
linear function similar to the one proposed in [5]. However, [21] tests more com-
plex linear models and also non-linear models. Moreover, using this approach the
feature vector βββ should be designed specifically for the domain of p. For exam-
ple, [6] propose problem features for symbolic regression and Boolean problems,
and their results show that the predictive accuracy surpasses that of the fitness-
based models of [5]. In the case of [21], the authors predict the performance of a
GP-classifier and use descriptive features that describe the geometry of the class
samples. In that work, a quadratic linear model and symbolic regression models
achieve the best performance.

In both approaches described above, the task of deriving the predictive model
K is solved using a machine learning strategy that proceeds as follows, First,
generate a set Q of problems (for instance, symbolic regression or classification
problems), such that each sample p ∈ Q represents a distinct problem instance.
The problems in Q can be real world problems, however its more practical to
generate synthetic problems using a predefined probabilistic model. Second, from
each p ∈ Q extract a vector of descriptive features βββ. Third, solve each problem
in Q using a specific GP system, this generates a performance estimate ǫ for
each problem. In this formulation, ǫ could be the performance of a single GP
execution or a statistic computed from m independent runs. Then, the problem
is to find an optimal predictive model Ko of GP performance, such that

Ko = argm
K
in {Err[K(βi), ǫi]} ∀p ∈ Q, (3)

where Err[, ] represents an error measure, such as the root-mean-square error
(RMSE). In practice, in order to derive K, the set Q is divided into a training
set T , a validation set V and a testing set U . The learning problem can then be
solved with standard regression techniques [6, 21, 22] or with non-linear symbolic
regression [21, 22]. An important final observation regarding PEP’s is that they
can generalize quite easily, and can used to predict the performance of other
stochastic or black-box algorithms such as neural networks [5, 22].
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Lecture Notes in Computer Science: Authors’ Instructions 5

2.3 Discussion and Limitations

After reviewing the basic methodology of EI’s and PEP’s, one practical and com-
putational difference stands out. On the one hand, EI’s use a very large sampling
of the search space to derive an accurate measure. In effect, this means that for
every new problem instance it is necessary to perform this costly computational
step. However, executing the actual GP search might in fact be faster. Therefore,
the best use of EI’s would be to characterize a whole class of problems, where
the estimate of search difficulty provided by the EI could generalize to the entire
class of problems.

On the other hand, a PEP model is used quite easily and directly for each
new problem instance. Practically, the only possible bottleneck would be the
computational cost of calculating the set of descriptive features for each problem.
However, in order to learn a new PEP a very large number of experimental runs
must be carried to derive the training data. Moreover, each PEP is strongly
linked to a specific GP system and implementation, and even small deviations
from the configuration of the GP system might cause the predictive model to
break-down.

3 Classification with GP

In supervised classification a pattern x ∈ R
P has to be classified as belonging

to one of M distinct classes ω1, ..., ωM using a training set T of P-dimensional
patterns with a known classification. The idea is to build a mapping g(t) : RP →
M , that assigns each pattern t to a corresponding class ωi, where g is derived
based on evidence provided by T . GP can be used in different ways to solve
such classification tasks [10, 2]. However, this work uses the approach proposed
in [26], denoted as the Probabilistic GP Classifier (PGPC).

3.1 PGPC Classifier

In PGPC, GP is used to evolve a mapping h(x) : RP → R that transforms
each input pattern x into a point on the real line. Moreover, it is assumed
that the behaviour of h can be modeled using multiple Gaussian distributions,
each corresponding to a single class [26]. The distribution of each classN (µ, σ) is
derived from the examples provided for it in set T , by computing the mean µ and
standard deviation σ of the outputs obtained from h on these patterns. Then,
from the distribution N of each class a fitness measure can be derived using
Fisher’s linear discriminant; for a two class problem it proceeds as follows. After
the Gaussian distribution N for each class are derived, a distance is required.
In [26], Zhang and Smart propose a distance measure between both classes as

d =
|µ1 − µ2|
σ1 + σ2

, (4)

where µ1 and µ2 are the means of the Gaussian distribution of each class, and
σ1 and σ2 their standard deviations. When this measure tends to 0, it is the
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6 Lecture Notes in Computer Science: Authors’ Instructions

Table 1. Parameters for the PGPC system used in the experimental tests.

Parameter Description

Population size 200 individuals.

Generations 200 generations.

Initialization Ramped Half-and-Half,
with 6 levels of maximum depth.

Operator probabilities Crossover pc = 0.8; Mutation pµ = 0.2.

Function set
{

+,−, ∗, /,√,sin, cos, log, xy, | · |, if
}

Terminal set {x1, ..., xi, ..., xP } Where each xi is a
dimension of the data patterns x ∈ R

P

Bloat control Dynamic depth control.

Initial dynamic depth 6 levels.

Hard maximum depth 20 levels.

Selection Lexicographic
parsimony tournament

Survival Keep best elitism

worst case scenario because the mapping of both classes overlap completely, and
when it tends to ∞ it represents the optimal separation. To normalize the above
measure, the fitness for an individual mapping h is given by

fd =
1

1 + d
. (5)

After executing the GP, the best individual found determines the parameters for
the Gaussian distribution Ni associated to each class. Then, a new test pattern
x is assigned to class i when Ni gives the maximum probability.

4 Comparative Analysis

The main goal of the experimental work is to evaluate and compare the predic-
tive accuracy of a state-of-the-art EI (NSC) and a PEP model for a GP-based
classifier PGPC. To this end, a large set of synthetic classification problems
are generated and solved with PGPC, executing 30 independent runs on each
problem and computing the average classification error as the estimate of the
expected performance of PGPC.

4.1 Classification Performance

Table 1 presents the setup for the PGPC system. A GP with Koza style crossover
and mutation and dynamic depth control to minimize bloat [18] was used. The
PGPC classifier is implemented using Matlab 2011a and the GPLAB toolbox
[17].

To evaluate the performance of PGPC, 300 two-class classification problems
are randomly generated using Gaussian mixture models (GMM’s), these conform
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Lecture Notes in Computer Science: Authors’ Instructions 7

set Q. Examples of the classification problems generated are shown in Figure 1,
depicting sample points of two different classes(circles and triangles), scattered
over the R

2 plane. The use of randomly generated GMM’s allows us to generate
either unimodal or multimodal classes, with different amounts of class overlap.
All class samples lie within the closed 2-D interval x, y ∈ [−10, 10], and 200
sample points were randomly generated for each class.
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(a) ǫ = 0.01, σ = 0.01
−10 −5 0 5
−6

−4

−2

0

2

4

6

(b) ǫ = 0.15, σ = 0.03
−6 −4 −2 0 2 4 6
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2

4

6
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(c) ǫ = 0.33, σ = 0.03

Fig. 1. Three classification problems and the average classification error ǫ achieved by
PGPC and standard deviation σ of 30 independent runs.

Then, for every problem p ∈ Q the average test error of PGPC is computed
from 30 independent runs, where the training (70% of the 200 samples) and
testing (30%) sets where randomly determined at the start of each run. Figure
1 also specifies the average classification error ǫ achieved by PGPC on each
problem and the corresponding standard deviation σ. In all three cases, and for
all problems, the average provides a useful performance estimate given the small
standard deviation.

4.2 Evolvability for Classification Problems

This section presents the results of computing the NSC on each of the classifica-
tion problems in set Q. The approach is quite straightforward, since it is possible
to directly apply the NSC algorithm to every problem. The algorithm described
in [23] is used her with the same parameters except for the total amount of sam-
pled individuals M . Whereas in [23] M = 40, 000, here M = 10, 000, a practical
choice to reduce computation time; however, some informal tests showed that
the results are consistently similar for both values in the group of experiments
reported here. Figure 2 presents a scatter plot where the horizontal axis is the
average classification error and the vertical axis is the NSC.

The results clearly suggest that the NSC does not correlate with PGPC
performance, in particular we can see how many problems are characterized as
easy (with NSC equal or close to zero) even when the performance achieved by
PGPC is quite poor. This suggests that an EI such as the NSC is limited as a
predictor of GP performance since it only considers the frame of reference of the
search process; i.e., it can only provide an approximate measure of the difficulty
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8 Lecture Notes in Computer Science: Authors’ Instructions
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Fig. 2. Scatter plot of the average classification error achieved by PGPC on each
problem and the corresponding NSC value. Pearson’s correlation coefficient ρ = 0.02.

of the search but tells us very little regarding the difficulty of the underlying
problem that the GP is intended to solve.

4.3 Prediction of Classification Performance

This section, we show how a PEP estimates the performance of PGPC on the
set of classification problems presented above. The PEP is derived following the
approach described in [21]. Therefore, the feature vector for each problem βββ is
composed of the following problem descriptors.

Problem Descriptors

– The geometric mean ratio of the pooled standard deviations to standard
deviations of the individual populations (SD), often used as part of a homo-
geneity test [14].

– Volume of Overlap Region (VOR) provides an estimate of the amount of
overlap between both classes in feature space [7]. This measure is computed
by finding, for each feature, the maximum and minimum value of each class
and then calculating the length of the overlap region. The length obtained
from each feature can then be multiplied in order to obtain a measure of
volume overlap. VOR is zero when there is at least one dimension in which
the two classes do not overlap.

– Feature efficiency (FE), measures the amount by which each feature dimen-
sion contributes to the separation of both classes. When there is a region of
overlap between two classes on a feature dimension, then data is considered
ambiguous over that region along that dimension. However, it is possible to
progressively remove the ambiguity between both classes by separating those
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Lecture Notes in Computer Science: Authors’ Instructions 9

points that lie inside the overlapping region. The efficiency of each feature is
defined as the fraction of all remaining points separable by that feature, and
the maximum feature efficiency (FE) is taken as the representative value for
a two-class problem.

– The Class Distance Ratio (CDR) compares the dispersion within the classes
to the gap between the classes [7]. It is computed as follows: for each data
sample the Euclidean distance to its nearest-neighbour is computed, within
and outside its own class. Then, the CDR is the ratio of the averages of all
intraclass and interclass nearest-neighbour distances.

Predictors of Expected Performance: Two different PEP models are tested,
a linear model with quadratic terms (LQ-PEP) and a symbolic regression mod-
els derived with GP (GP-PEP), reported to achieve the best results in [21]. In
the case of the GP-PEP models, the problem descriptors are used as termi-
nal elements T = {SD, V OR,FE,CDR} , while the function set is defined as

F =
{

+,−, ∗, /,√,sin, cos, log, xy, | · |, if
}

. Moreover, fitness is computed by

the RMSE calculated on a set of n training problems, given by

f(K) =

√

√

√

√

√

n
∑

i=1

(K(βi)− ǫi)
2

n
. (6)

where βi is the vector of descriptive features and ǫi is the performance estimate
on a training problem i. Finally, the GP is executed with the following param-
eters: 200 individuals, 100 generations, ramped half-and-half initialization, 0.8
crossover probability, 0.2 mutation probability, dynamic depth bloat control with
a maximum depth of 12 levels, and lexicographic tournament selection.
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Fig. 3. Evolution of best fitness and fitness computed on the testing set, where both
plots show the median over 30 independent runs and Box plot comparison of both PEP
models.
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10 Lecture Notes in Computer Science: Authors’ Instructions

For both types of PEP models the set Q of classification problems is divided
into a training set and a testing set, each with 50% of the problems, and 30 runs
are executed with different random partitions.

For the GP-PEP models the evolution of best fitness and test fitness is pre-
sented in Figure 3(a), which shows that the learning process is not over-fitted
based on the similarity, with only a marginal difference, of both curves, which
represent the median value over all runs.

Figure 3(b) presents a box plot comparison of the 30 executions of the GP-
PEP and LQ-PEP models, based on the predictive accuracy achieved on the test
set of each run. In general, both PEP models exhibit a very good predictions,
with the median error around 5 and 7 percentage points of classification accuracy.
However, the figure also shows that the symbolic regression models achieve a
better performance, and a statistical t-test confirms this at the 1% significance
level. Another look at the predictive accuracy of the PEP models is shown in
the scatter plots of Figure 4. In these plots the predictive classification error
is plotted against the average error of PGPC on each problem, using the best
LQ-PEP and GP-PEP models. It is clear that the prediction of the PEP models
is strongly correlated with the average performance of PGPC, and the Pearson’s
correlation coefficient presented with each plot confirms this observation.
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(a) GP-PEP ρ = 0.86
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(b) LQ-PEP ρ = 0.77

Fig. 4. Scatter plots that show the average performance of PGPC (x-axis) and the
predicted performance of each PEP model (y-axis). The legend specifies Pearson’s
correlation coefficient ρ.

5 Concluding Remarks

Is it possible to predict how hard a problem is for a Genetic Programming
system without actually running the search process? This has been questioned at
considerable length within the GP community over the last twenty years, where
some good work has been done, with the development of promising proposals
and perspectives.

In this paper, two groups of problem difficulty prediction tools are analyzed,
named Evolvability Indicators and Predictors of Expected Performance. The
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Lecture Notes in Computer Science: Authors’ Instructions 11

former group of measures attempt to capture how amenable the fitness landscape
is to a GP, whereas the latter groups takes as input a set of descriptive features
of a problem and produces as output an estimate of the expected performance
of the GP search.

The key lessons of this study are the following. Firstly, while EIs (in this
work the Negative Slope Coefficient is considered) can give a good estimation
of the difficulty of the search problem, they are not necessarily correlated with
expected performance; Secondly, the results suggest that PEPs achieve a highly
accurate prediction of GP performance.
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11. E. G. López, J. McDermott, M. O’Neill, and A. Brabazon. Defining locality in
genetic programming to predict performance. In IEEE Congress on Evolutionary
Computation, pages 1–8. IEEE, 2010.
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