
Refactoring in Requirements Engineering:

Exploring a methodology for formal verification

of safety-critical systems

Oiśın Sheridan
Supervisor: Rosemary Monahan

June 2025

Abstract

Guaranteeing the trustworthiness of autonomous safety-critical soft-
ware presents a significant challenge for developers. Industry often relies
on manual testing and simulation to verify such systems, but these tech-
niques are time-consuming, expensive, and error-prone. These problems
can be solved through the use of formal methods - mathematically-based
techniques which can verify correctness through proof of the system’s
properties and exhaustive checks over its state space.

The formal verification of safety-critical software requires formal re-
quirements. Software requirements are often written in natural-language,
which then needs to be translated into a formal language for use in verifi-
cation. However, as a requirements set becomes larger and more defined
over the course of a project, an ever-increasing amount of work is re-
quired to ensure consistency, readability and traceability across the set.
Often, dependencies and duplication of information between requirements
emerges, which then requires additional work from engineers to update all
of the affected requirements when changes need to be made.

We propose that these issues can be mitigated by applying refactoring
to requirements. Refactoring is a software engineering technique where
code is reorganized to improve its internal structure without changing its
behavior; in the case of requirements, we can reduce duplication of infor-
mation and improve the readability of the requirements without changing
the behavior that the requirements specify for the system.

This project aims to provide a working implementation of requirements
refactoring in Mu-FRET, a fork of the Formal Requirements Elicitation
Tool (FRET) which allows for requirements to be written in a structured
natural-language, which is then translated automatically into temporal
logic. In addition, we will provide a theory of refactoring that can be
generalized to other requirements languages.

1


