Artificial Intelligence Review (2005) 24:415-429 © Springer 2005
DOI 10.1007/s10462-005-9002-x

Framework for Task Scheduling in Heterogeneous Distributed
Computing Using Genetic Algorithms

ANDREW J. PAGE* & THOMAS J. NAUGHTON

Department of Computer Science, National University of Ireland, Maynooth, County
Kildare, Ireland (*author for correspondence, e-mail: andrew.j.page@nuim.ie)

Abstract. An algorithm has been developed to dynamically schedule heterogeneous
tasks on heterogeneous processors in a distributed system. The scheduler operates in
an environment with dynamically changing resources and adapts to variable system
resources. It operates in a batch fashion and utilises a genetic algorithm to minimise
the total execution time. We have compared our scheduler to six other schedulers,
three batch-mode and three immediate-mode schedulers. Experiments show that the
algorithm outperforms each of the others and can achieve near optimal efficiency, with
up to 100,000 tasks being scheduled.

Keywords: distributed computing, genetic algorithms, task scheduling

1. Introduction

Distributed computing is a promising approach to meet the increasing
computational requirements of scientific research. However, a num-
ber of issues arise that are not encountered in sequential processing
that, if not properly handled, can nullify the benefits of parallelisa-
tion. We believe that task scheduling is the most important of these
issues because inappropriate scheduling of tasks can fail to exploit
the true potential of a distributed system due to excessive communi-
cation overhead or under-utilisation of resources, and can offset the
gains from parallelisation. Thus it falls to one’s scheduling strategy to
produce schedules that efficiently utilise the resources of the distrib-
uted system and minimise the total execution time. The problem of
scheduling heterogeneous tasks onto heterogeneous resources, other-
wise known as the task allocation problem, is an NP-hard problem for
the general case (Garey and Johnson, 1979).

Many heuristic algorithms exist for specific instances of the task
scheduling problem, but are inefficient for a more general case
(Kasahara and Narita, 1984). The use of Holland’s genetic algorithms
(GAs) (Holland, 1992) in scheduling, which apply evolutionary strate-
gies to allow for the fast exploration of the search space of schedules,

416 PAGE AND NAUGHTON

allows good solutions to be found quickly, and for the scheduler to be
applied to more general problems. Many researchers have investigated
the use of GAs to schedule tasks in homogeneous (Hou et al., 1994;
Zomaya and Teh, 2001) and heterogencous (Maheswaran et al., 1999;
Ahmad et al., 2001; Theys et al., 2001; Zomaya et al., 2001) multi-
processor systems with notable success.

Unfortunately, assumptions are often made which reduce the gen-
erality of these solutions, such that scheduling can be calculated off-
line in advance and cannot change (Hou et al., 1994; Ahmad et al.,
2001; Theys et al., 2001; Zomaya et al., 2001), all communications
times are known in advance (Hou et al., 1994; Ahmad et al., 2001;
Theys et al., 2001; Zomaya et al., 2001), networks provide instanta-
neous message passing (Zomaya and Teh, 2001), and that all proces-
sors have equal capabilities and are dedicated to processing tasks from
the scheduler (Kasahara and Narita, 1984; Hou et al., 1994; Siegel
et al., 1996; Zomaya et al., 1998, 1999, 2001; Ahmad et al., 2001;
Theys et al., 2001; Zomaya and Teh, 2001). These assumptions limit
the generality of these scheduling strategies in real-world distributed
systems. It would be more preferable to make no assumptions about
the homogeneity of the processors, or about the availability of system
resources.

In this paper, a scheduling strategy is presented which uses a GA
to schedule heterogeneous tasks on to heterogeneous processors to
minimise the total execution time. It operates dynamically, allowing
for tasks to arrive for processing at arbitrary intervals, and consid-
ers variable system resources, which has not been considered by other
dynamic GA schedulers.

Section 2 reviews related work and gives an overview of how a
GA operates. Section 3 describes our scheduling algorithm. Section 4
presents the results of our performance experiments and we conclude
in Section 5.

2. Related Work

There are many examples in the literature of artificial intelligence
techniques being applied to task scheduling (Hou et al., 1994; Siegel
et al., 1996; Zomaya et al., 1998, 1999, 2001; Maheswaran et al.,
1999; Ahmad et al., 2001; Theys et al., 2001; Zomaya and Teh, 2001).
Meta-heuristic search techniques such as GAs (Holland, 1992), tabu
(Glover, 1986), and ant colony search (Colorni et al., 1992) are most

FRAMEWORK FOR TASK SCHEDULING 417

applicable to the task scheduling problem because we wish to quickly
search for a near optimal schedule out of all possible schedules. Effi-
cient solutions have resulted from the use of GAs in task scheduling
algorithms (Hou et al., 1994; Siegel et al., 1996; Zomaya et al., 1998,
1999, 2001; Maheswaran et al., 1999; Ahmad et al., 2001; Theys et al.,
2001).

A GA is a meta-heuristic search technique which allows for large
solution spaces to be non-deterministically searched in polynomial
time, by applying evolutionary techniques from nature (Holland,
1992). The GAs use historical information to exploit the best solutions
from previous searches, known as generations, along with random
mutations to explore new regions of the solution space. In general, a
GA repeats three steps (selection, crossover, and random mutations)
as shown by the pseudo code in Figure 1. Selection according to fit-
ness (efficiency in our case) is a source of exploitation, while crossover
and random mutations promote exploration.

A generation of a GA contains a population of individuals, each of
which corresponds to a possible solution from the search space. Each
individual in the population is evaluated with a fitness function which
indicates the goodness of a solution. Selection takes a certain num-
ber of individuals in the population and brings them forward to the
next generation. Crossover takes pairs of individuals and uses parts
of each to produce new individuals. The random mutation step swaps
parts of an individual to prevent the GA from getting caught in a
local minimum.

Much work has been done on using GAs for static scheduling (Hou
et al., 1994; Ahmad et al., 2001; Theys et al., 2001; Zomaya et al.,
2001), where schedules are created before runtime. However, the state
of all tasks and system resources must be known a priori and cannot
change. This limits these schedulers to specific problems and systems.

Dynamic GA schedulers (Maheswaran et al., 1999; Zomaya and
Teh, 2001; Zomaya et al., 1999) create schedules at runtime, with

initialise population of individuals
do to population{
crossover
random mutation
selection
}while(no individuals have met stopping conditions)

return fittest individual

Figure 1. Pseudo code for a genetic algorithm.

418 PAGE AND NAUGHTON

knowledge about the properties of the system and tasks possibly
not known in advance. This allows for variable system and task
properties to be considered. Dynamic GA schedulers are thus more
practical than static schedulers for real-world distributed systems. Cur-
rent dynamic GA schedulers have been shown to produce near opti-
mal schedules in simulations (Zomaya et al., 1999; Zomaya and Teh,
2001), although assumptions that have been made limit their gener-
ality. For example, instantanecous message passing (Zomaya and Teh,
2001), homogeneous processing resources (Zomaya et al., 1999; Zo-
maya and Teh, 2001), variable communications costs and variable pro-
cessing resources are not considered (Zomaya et al., 1999; Zomaya
and Teh, 2001).

3. Scheduling Algorithm

The algorithm presented in this paper is based on the state-of-the-art
homogeneous GA scheduler developed by Zomaya et al. (1999) and
Zomaya and Teh (2001). We wish to schedule an unknown total num-
ber of tasks for processing on a distributed system with a minimal
total execution time, otherwise known as makespan.

The processors of the distributed system are heterogeneous. The
available network resources between processors in the distributed sys-
tem can vary over time. The availability of each processor can vary
over time (processors are not dedicated and may have other tasks
which partially use their resources). Tasks are indivisible, independent
of all other tasks, arrive randomly, and can be processed by any pro-
cessor in the distributed system.

When tasks arrive they are placed in a queue of unscheduled tasks.
Batches of tasks from this queue are scheduled on processors during
each invocation of the scheduler. Each idle processor in the system
requests a task to process from the scheduler, which it processes and
returns. The scheduler contains a queue of future tasks for each pro-
cessor, and when a request for work is received the task at the head
of the corresponding queue is sent for processing. We wish to avoid
repeatedly issuing the same task multiple times (e.g., a machine could
be switched off) because network resources are limited and processing
resources are not dedicated. To achieve this the processors do not con-
tain a queue of tasks.

Each task has a resource requirement which is measured in mil-
lions of floating point operations (MFLOPs). The available processing

FRAMEWORK FOR TASK SCHEDULING 419

resources, or execution rate, of each processor is measured in MFLOPs
per second, which we write as Mflop/s. The execution rate is mea-
sured using Dongarra’s Linpack benchmark (Dongarra et al., 1979).
This is a recognised standard used to benchmark systems for inclu-
sion in the list of Top 500 Supercomputers (2005). Available process-
ing and network resources vary over time, so a smoothing function
is used to minimise localised fluctuations, thus allowing for a more
realistic processing environment. A single processor is dedicated to
scheduling.

The queue of unscheduled tasks could contain a large number of
tasks and if all where to be scheduled at once, the scheduler could
take a long time to find an efficient schedule. To speed up the sched-
uler, and reduce the chance of processors becoming idle, we only con-
sider a subsequence of the unscheduled tasks, which we call a batch.
A larger batch will usually result in a more efficient schedule (Zomaya
and Teh, 2001). We must thus trade the batch size with running time.
To do this we dynamically set the batch size according to the esti-
mated amount of time until the first processor becomes idle.

3.1. Encoding

Each individual in the population represents a possible schedule for
a batch of tasks. Figure 2 shows the encoding used. Each character
is a mapping between a task and processor. Each character contains
the unique identification number of a task, with —1 being used to
delimit different processor queues, where P; is processor i. Thus the
length (number of characters) of each schedule is N + M — 1, where
N is the number of tasks in the batch, and M is the total number of
processors.

3.2. Fitness function

A fitness function is used to measure the closeness of the makespan of
each individual in the population to a lower bound on the makespan.

P1 P2 P3

-—> > >
1356(-1127|-11489

Figure 2. Encoding of an individual representing mappings of tasks to processors.

420 PAGE AND NAUGHTON

The finishing time of each processor j is calculated as 6; = L;/P;,
where L; is its previously assigned load in MFLOPs, and P; is its cur-
rent processing power in Mflop/s.

A lower bound on the makespan is defined as

-1

where #; is the processing requirement of task i in the batch (in
MFLOPs) and where M and N are defined in Section 3.1.

The difference between the makespan of individual i and the lower
bound on makespan is given by

N 172

M N
E; = Z Y — Lj,i+2((t>’/Pj)+F(c>*,j)) ’
j=1

y=1

where I'(| ;) is the communication cost of scheduling task y on proces-
sor j. The fitness value of individual i is F;=1/E;, and F; =[0, oc]. A
larger value indicates a better or fitter schedule.

3.3. Selection, crossover and mutation

We choose to use the standard weighted roulette wheel method of
selection which is widely used by previous researchers who have
applied GAs to task scheduling (Hou et al.,, 1994; Siegel et al.,
1996; Zomaya and Teh, 2001). Each individual i in the population is
assigned a slot between 0 and 1. The size of slot i is

-1

0
si=Fix ZF]' ,
=1

where Y ¥ | ;=1 and p is the number of individuals in the popula-
tion. After the selection process is complete, we use the cycle cross-
over method (Oliver et al., 1987) to promote exploration as used in
Zomaya and Teh (2001).

We have chosen to use two types of mutation to promote explora-
tion of the search space. First, we randomly swap elements of a ran-
domly chosen individual in the population. We allow the delimiters

FRAMEWORK FOR TASK SCHEDULING 421

between processor queues to be swapped, which allows for the lengths
of queues within an individual to be randomly mutated. Then we use
a re-balancing heuristic to mutate and improve the population.

The initial population is generated using a list scheduling heuristic,
as follows. A percentage of the tasks are randomly assigned to pro-
cessors, with the remaining tasks being assigned to the processors that
will finish processing them the earliest. This leads to a well balanced
and randomised initial population.

3.4. Stopping conditions

The GA will evolve the population until one or more stopping con-
ditions are met. The individual with the lowest makespan is selected
after each generation and if it is less than a specified minimum, the
GA stops evolving. The maximum number of generations is set at
1000, because the quality of the schedules returned with more than
that number does not justify the increased computation cost (as in
Zomaya and Teh, 2001). The GA will also stop evolving if one of the
processors becomes idle, in which case it will return the best schedule
found so far.

3.5. Exponential smoothing function

A smoothing function, finds a single representative value for a sequence
of values. As each new value is added to the sequence, this representative
value is updated. For the first i values of a sequence of values ay, as, ...,
this representative value would be denoted I'{, and defined recursively
as I't =T'{" | +v(a; —T'{"_|), where the smoothness of the sequence of
representative values is controlled by v €[0, 1], and where we let I'§ =a;.
The function allows one to vary the influence of more recent sequence
values on the representative value, from no influence (v =0) to com-
plete dominance (v =1). The smoothing function is employed in several
instances in our scheduler. In this paper, we describe the application of
the smoothing function to the first i values of an arbitrary sequence
X1, X2, ... with the notation I'}.

3.6. Most-Into-Least
An initial population is generated using the Most-Into-Least (MIL)

list scheduling heuristic, which has been successfully used in other GA
task schedulers (Correa et al., 1999; Greene, 2001). A random number

422 PAGE AND NAUGHTON

of tasks, are assigned to processors in a round robin fashion. The
remaining tasks are then sorted, using Quicksort (Hoare, 1962), and
allocated in a round robin fashion to the processors which will finish
processing them the earliest, taking into account existing and assigned
tasks for each processor. This leads to a well balanced randomised ini-
tial population.

3.7. Dynamic batch size

We wish to define batch sizes that are large enough so that the pro-
cessor hosting the scheduler is utilised fully (and to achieve low make-
spans), but not too large that any processors become idle before the
schedule has been fully computed. The GA takes ®(H?) time to cre-
ate a schedule, where H is the number of tasks in a batch (batch
size). After the pth batch has been scheduled, the first processor will
become idle after sp:min;v: 1(8;/Pj), where §; is the total processing
time in MFLOPs of the tasks waiting to be processed by processor j,

and M is the number of processors. We choose H, 1= (I‘fDJH)l/2

as a simple approximation of the optimal size for batch p+ 1. Once a
schedule has been assigned the batch size is recalculated.

4. Experiments

The scheduling algorithm described in Section 3 has been implemented
and applied to simulated data, with up to 50 heterogeneous pro-
cessors, and up to 100,000 randomly generated heterogeneous tasks.
Each experiment was repeated a number of times and an average
result was calculated for each point. We also implemented the origi-
nal algorithm that our algorithm is based on, developed by Zomaya
and Teh (2001), which is the current state of the art dynamic GA
task scheduler for homogeneous distributed computing. It was easily
adapted to work with heterogeneous processors by using Mflop/s as
the measure of the rate of execution rather than time. We compare
our scheduler to six other schedulers, and evaluate the results using
two different but related metrics, makespan and efficiency. Makespan
is the total execution time of a schedule. Efficiency is the percentage
of the time that processors actually spend processing rather than com-
municating or idling.

Tasks are scheduled across 50 heterogeneous processors with a pro-
cessing resource range of 10 to 100 Mflop/s. We assume that all of the

FRAMEWORK FOR TASK SCHEDULING 423

tasks arrive for processing at the beginning of the simulation, for these
experiments. A representative set of heterogeneous computing task
benchmarks does not exist as yet, as noted by Theys et al. (2001). We
have decided to generate random sets of tasks for scheduling using the
Poisson distribution. We use randomly generated task sets because: we
wish to demonstrate the algorithms effectiveness over a broad range
of conditions, a set of heterogeneous computing benchmark tasks do
not exist, and it is not clear what characteristics a ‘typical’ task would
exhibit (Theys et al., 2001).

We have decided to use a population size of 20, which is known as
a micro GA (Chipperfield and Flemming, 1996) and used in (Zomaya
et al., 1999; Greene, 2001; Zomaya and Teh, 2001), which speeds up
computation time without impacting greatly on the final result.

4.1. Other schedulers

We have also compared our scheduling algorithm against a number of
well known batch and immediate mode heuristic schedulers. An imme-
diate mode scheduler only considers a single task for scheduling on
a first come, first served (FCFS) basis while a batch mode scheduler
considers a number of tasks at once for scheduling. We will compare
our algorithm to three immediate mode and three batch mode sched-
ulers (Maheswaran et al., 1999; Theys et al., 2001).

The earliest first (EF) algorithm is an immediate mode scheduler.
When a task is presented for processing, the scheduler considers the
existing load on each processor and allocates the task to the processor
which will finish processing it the earliest. The EF algorithm uses the
available information about the task and the processors when making
a scheduling decision. It has a worst case complexity of ® (M), where
M is the number of processors, when scheduling a single task.

The lightest loaded (LL) scheduler is an immediate mode scheduler
which allocates tasks to the processor with the lowest current load,
measured in our case as MFLOPs. It does not consider the size of a
task when scheduling. It has a worst case complexity of ®(M).

The round robin (RR) scheduler is the most basic of the immediate
mode schedulers used in these experiments, where tasks are assigned
to processors in a round robin fashion. No load or task information
is used when making a scheduling decision. It has a worst case com-
plexity of ®(1).

The max-min (MX) scheduler is a batch mode heuristic sched-
uler. It takes batches of tasks on a FCFS basis. These tasks are then

424 PAGE AND NAUGHTON

sorted according to task size in a descending order. The largest task
is then allocated to the processor that will finish processing it first
(same as EF). This is repeated until the batch is empty, after which
another batch is considered. The main aim of this scheduler is to have
the largest tasks scheduled as early as possible, with smaller tasks at
the end filling in the gaps. It has a complexity of ®(max(M, nlogn)),
where n is the size of the batch.

The min-min (MM) scheduler is similar to the MX scheduler,
except tasks are sorted in ascending order according to size.

The scheduler proposed by Zomaya et al. (ZO) in Zomaya and
Teh (2001) has been implemented for this paper. It is the current
state-of-the-art homogeneous GA scheduler and the basis for our
scheduler. The ZO scheduler was easily converted from a homoge-
neous scheduler to a heterogencous scheduler by using the Mflop/s
benchmark for task sizes rather than time. It is a batch scheduler
which uses GAs to create schedules. We have validated our imple-
mentation of this scheduler by reproducing some of the performance
results in Zomaya and Teh (2001) (not included here).

4.2. Setup

We simulated the performance of our scheduler against the perfor-
mance of six other schedulers, described in Section 4.1, for these
experiments. All of the tasks arrived for scheduling at the beginning of
the simulation. Each experiment was repeated 50 times and an average
result was calculated for each point on the resulting graphs.

We scheduled up to 100,000 heterogeneous tasks onto 50 het-
erogeneous processors. For these experiments each processor was
assumed to have a fixed execution rate, measured in Mflop/s. The
aim of these experiments is to show that predicting the commu-
nication costs in advance will improve the efficiency, compared to
heuristics which adapt to communication costs after they have been
incurred. All schedulers were presented with the same set of tasks for
scheduling and all schedulers have the same information available to
them.

We have decided to use a population size of 20, which is known as
a micro GA (Chipperfield and Flemming, 1996) and used in Zomaya
and Teh (2001) and Zomaya et al. (1999), which speeds up computa-
tion time without impacting greatly on the final result.

FRAMEWORK FOR TASK SCHEDULING 425

4.3. Communication

We wish to show that our algorithm provides greater efficiency in a
system with variable communication costs. To demonstrate its effec-
tiveness we vary the ratio of the task processing requirement to com-
munications costs, and measure the efficiency achieved. We fix the
available processing resources and the size of the batch, to allow for
the effect of communication costs to be demonstrated. We wish to
schedule 100,000 tasks with a view to maximising the efficiency of the
processing resources in the distributed system.

Figure 3 shows that PN consistently provides schedules with greater
efficiency over all of the other scheduling algorithms. The horizontal
axis in Figure 3 is the mean communication cost for all communica-
tion links between all clients and the scheduler. Each communications
link has its own randomly generated mean cost, which is normally
distributed. The consideration of communication costs allows the
improved scheduler to estimate a communications cost when creating

Efficiency

0 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

1/time spent communicating

Figure 3. Efficiency of schedulers varying communication to task size ratio.

426 PAGE AND NAUGHTON

a schedule, resulting in an overall improvement in efficiency of the
scheduler.

4.4. Task size distribution

We have randomly generated sets of tasks using a Poisson distribu-
tion and varied the mean of the set. Each set contained 10,000 tasks.
In Figure 4 we can see that PN performs the best followed by MM,
whilst MX performs quite badly, when the mean is small. When the
mean is increased to 100 MFLOPs (see Figure 5) the batch schedul-
ers all perform well, whilst the immediate mode schedulers do not per-
form as well.

5. Conclusion
A scheduling algorithm has been developed to schedule heterogeneous

tasks onto heterogeneous processors in a distributed computing sys-
tem. It provides efficient schedules and adapts to varying resource

10000 T T T T T T T

9000

8000

7000

6000

Time

5000

4000

3000

2000

1000

EF LL RR Z0 PN MM MX

Figure 4. Makespan when task sizes have a Poisson distributed with a mean of
10 MFLOPs.

FRAMEWORK FOR TASK SCHEDULING 427

14000 T T T T T T T

12000

10000

8000

Time

6000

4000

2000

EF LL RR Z0 PN MM MX

Figure 5. Makespan when task sizes have a Poisson distributed with a mean of
100 MFLOPs.

availability (processing resources and communication costs). The algo-
rithm also fully utilises the dedicated processor running the scheduler.
The GA employed a list scheduling heuristic to create a well-balanced
randomised initial population. The fitness function utilises the rela-
tive error metric internally to find schedules with a low makespan.
Roulette wheel selection is used to exploit past results to direct the
search for efficient schedules. Cycle crossover promotes exploration of
the search space, with random swaps and random re-balancing of pro-
cessor queues within individuals perturbing this exploration.

The Figures 3-5 show that our scheduler performs better than the
other schedulers. We can conclude that our scheduler gives better per-
formance over multiple different scenarios and would give consistently
better efficiency in unknown conditions compared to the other tech-
niques tested in this study. Our scheduler estimates the communica-
tion costs between each client and server using historical information,
so it can create better schedules and reduce the makespan. For the
other schedulers, the effect of communication is only considered after
tasks or batches of tasks have been scheduled, leading to less efficient
solutions.

428 PAGE AND NAUGHTON

The algorithm proposed in this paper consistently uses proces-
sors more efficiently than the current state-of-the-art GA algorithms
for the same problem. It is more suitable for real-world use because
it considers properties of distributed systems, such as variable com-
munication costs and variable availability heterogeneous processors,
which other algorithms for the task scheduling problem do not
consider.

Acknowledgement

Support is acknowledged from the Irish Research Council for Science,
Engineering, and Technology, funded by the National Development
Plan.

References

Ahmad, 1., Kwok, Y.-K., Ahmad, I. & Dhodhi, M. (2001). Scheduling Parallel Pro-
grams Using Genetic Algorithms. In Zomaya, A. Y., Ercal, F. & Olariu, S. (eds.)
Solutions to Parallel and Distributed Computing Problems. New York, USA: John
Wiley and Sons, Chapt. 9, pp. 231-254.

Chipperfield, A. & Flemming, P. (1996). Parallel Genetic Algorithms. In
Zomaya, A. Y. (ed.) Parallel and Distributed Computing Handbook. New
York, USA: McGraw-Hill, first edition, pp. 1118-1143.

Colorni, A., Dorigo, M. & Maniezzo, V. (1992). Distributed Optimization by Ant
Colonies. In Proceedings of the First European Conference on Artificial Life. Paris,
France, Elsevier, 134-142.

Correa, R., Ferreira, A. & Rebreyend, P. (1999). Scheduling Multiprocessor Tasks with
Genetic Algorithms. IEEE Transactions on Parallel and Distributed Systems 10(8):
825-837.

Dongarra, J., Bunch, J., Moler, C. & Stewart, G. (1979). LINPACK Users Guide. Phil-
adelphia, USA: SIAM.

Garey, M. R. & Johnson, D. S. (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York, NY: W. H. Freeman & Co.

Glover, F. (1986). Future Paths for Integer Programming and Links to Artificial Intel-
ligence. Computers and Operations Research 13: 533-549.

Greene, W. A. (2001). Dynamic Load-Balancing via a Genetic Algorithm. In 7/3th
IEEE International Conference on Tools with Artificial Intelligence. Dallas, Texas,
USA, 121-129.

Hoare, C. A. R. (1962). Quicksort. Computer Journal 5(1): 10-15.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. Cambridge, MA,
USA: MIT Press.

Hou, E., Ansari, N. & Ren, H. (1994). A Genetic Algorithm for Multiprocessor Sched-
uling. IEEE Transactions on Parallel and Distributed Systems 5(2): 113-120.

FRAMEWORK FOR TASK SCHEDULING 429

Kasahara, H. & Narita, S. (1984). Practical Multiprocessing Scheduling Algorithms
for Efficient Parallel Processing. IEEE Transactions on Computers 33(11):1023—
1029.

Maheswaran, M., Ali, S., Siegel, H. J., Hensgen, D. & Freund, R. F. (1999). Dynamic
Mapping of a Class of Independent Tasks onto Heterogeneous Computing Sys-
tems. Journal of Parallel and Distributed Computing 59(2): 107-131.

Oliver, I. M., Smith, D. J. & Holland, J. (1987). A Study of Permutation Crossover
Operators on the Traveling Salesman Problem. In Proceedings of the Second Inter-
national Conference on Genetic Algorithms on Genetic algorithms and their applica-
tion. Lawrence Erlbaum Associates, Inc, 224-230.

Siegel, H. J., Wang, L., Roychowdhury, V. & Tan, M. (1996). Computing with Het-
erogeneous Parallel Machines: Advantages and Challenges. In Proceedings on Sec-
ond International Symposium on Parallel Architectures, Algorithms, and Networks.
Beijing, China, 368-374.

Theys, M. D., Braun, T. D., Siegal, H. J., Maciejewski, A. A. & Kwok, Y.-K. (2001).
Mapping Tasks onto Distributed Heterogeneous Computing Systems Using a Genetic
Algorithm Approach, New York, USA: John Wiley and Sons, Chapt. 6, pp. 135—
178.

Top 500 Super Computers (2005). http://www.top500.org.

Zomaya, A. Y., Clements, M. & Olariu, S. (1998). A Framework for Reinforcement-
based Scheduling in Parallel Processor Systems. IEEE Transactions on Parallel and
Distributed Systems 9(3): 249-260.

Zomaya, A. Y., Lee, R. C. & Olariu, S. (2001). An Introduction to Genetic-Based
Scheduling in Parallel Processor Systems. In Zomaya, A. Y., Ercal, F. & Olariu S.
(eds.) Solutions to Parallel and Distributed Computing Problems. New York, USA:
John Wiley and Sons, Chapt. 5, pp. 111-133.

Zomaya, A. Y. & Teh, Y.-H. (2001). Observations on using Genetic Algorithms for
Dynamic Load-balancing. IEEE Transactions on Parallel and Distributed Systems
12(9): 899-911.

Zomaya, A. Y., Ward, C. & Macey, B. (1999). Genetic Scheduling for Parallel Proces-
sor Systems: Comparative Studies and Performance Issues. IEEE Transactions on
Parallel and Distributed Systems 10(8): 795-812.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

