
Multi-Tiered Distributed Computing Platform

Andrew Page, Thomas Keane,
Richard Allen, Thomas J. Naughton

Department of Computer Science
National University of Ireland, Maynooth

County Kildare, Ireland

{andrew.j.page, tom.naughton}@may.ie

John Waldron
Department of Computer Science

Trinity College Dublin
Dublin 2, Ireland

ABSTRACT
A simple programmable Java platform-independent distrib-
uted computation system has been developed to exploit the
free resources on computers linked together by a network.
It is a multi-tiered distributed system model, which is un-
bounded in principal. The system consists of an n-ary tree
of nodes where the internal nodes perform the scheduling
and the leaves do the processing. The scheduler nodes com-
municate in a peer-to-peer manner and the processing nodes
operate in a strictly client-server manner with their respec-
tive scheduler. The independent schedulers on each tier dy-
namically allocate resources between jobs based on the con-
stantly changing characteristics of the underlying network.
The system has been evaluated over a network of 90 PCs
with a bioinformatics application.

1. INTRODUCTION
Currently there are a few notable distributed comput-

ing platforms such as SETI@home [1], distributed.net [3],
and United Devices [9]. They work on the principle of a
user donating their machine to the system so that its free
resources can help to process computationally large prob-
lems. The widespread success of the Internet has meant
that these distributed systems have been able to harness a
huge amount of computational resources from the donors’
machines, which would otherwise have not been utilised to
their full potential. These distributed systems rely on a
client-server model, where the distributed system has one
server and many clients. In practice it has been used by the
SETI@home distributed system very successfully, with up
to three million client machines as part of the system [1].
However, since there is only one server (single machine or
cluster) for all of the clients there is thus a finite limit on the
number of clients the system can handle at any one time,
with this limit depending on the network resources and com-
putational resources at the server. A common solution is to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2003,16-18 June 2003, Kilkenny City, Ireland.
Copyright 2003 ISBN: 0-9544145-1-9 ...$5.00.

increase the bandwidth of the server’s Internet connection
and to upgrade the power of the server, but this can be
expensive.

The Berkley Open Infrastructure Networking Computing
(BOINC) [2] is a programmable successor to SETI@home.
Although it is programmable, there are a number of pre-
conditions on the types of computations that will be run on
the system, which limits its usability. The problems must
be appealing, so that users will be interested in donating
their free resources to the project. Also, only problems that
can be structured such that there is no interdependency be-
tween different pieces of data are considered. This is because
BOINC retains a client-server architecture, and implements
a one-step processing stage. If a computation requires fur-
ther processing of intermediate results, separate dedicated
machines must be used.

Our aim is to design a programmable distributed com-
puting platform that is unrestricted in terms of the type or
structure of computations that can be performed. We retain
aspects of the client-server model, but introduce peer-to-
peer communication within a tree of scheduling nodes that
serves to overcome the scalability limitations of employing a
single server. Java is used to ensure platform independence
for both scheduler nodes and processing nodes.

In Sect. 2, we introduce the multi-tiered model. In Sect. 3,
the designs of the main components of the system are pre-
sented. Implementation and performance evaluation are dis-
cussed in Sect. 4, and we conclude in Sect. 5.

2. OVERVIEW OF THE SYSTEM
The foundations for the multi-tiered distributed computa-

tion system were laid in the Java Distributed Computation
Library (JDCL) [4] and its extensions [7], which provide an
emulated MIMD pipeline processor. The JDCL provided
a simple development platform for developers who wished
to quickly implement a distributed computation system. It
arose out of the need for a platform-independent distributed
system that was easy to create, adapted to system changes,
and was easy to deploy. Systems such as SETI@home did
not address these issues very well and were designed to be
platform dependant and for a single purpose only. The
JDCL does, however, suffer from similar scalability prob-
lems to those of SETI@home in that it has one server (single
machine or cluster). The design of the current multi-tiered
system aims to address this concern.

Scheduling node

Processing node

Figure 1: Example topology of multi-tiered dis-
tributed computing system.

2.1 Multi-tiered Model
The multi-tiered distributed computing system was cre-

ated with the intention of utilising the maximum computa-
tional resources of the machines under its control, while not
placing any limitations on the maximum size of the system.
The client-server model alone was not sufficient, so a hybrid
model was created that combines the advantages of peer-to-
peer and client-server architectures within the one model.
The system consists of an n-ary tree of nodes where the in-
ternal nodes perform the scheduling and the leaf nodes do
the processing, as shown in Fig. 1. The scheduler nodes com-
municate in a peer-to-peer fashion, which permits top-down
reconfigurability, extensibility, and tree balancing. The pro-
cessing nodes operate in a strictly client-server fashion with
their respective scheduler, which promotes donors’ trust in
the system (anonymity, security) and admits a simple and
robust design.

The potential size of the distributed system, in width and
depth, is unlimited in principle due to the ability of the
system to dynamically add another scheduling node, tier
of scheduling nodes, or processing nodes. Also, since the
scheduling nodes are distributed, the potential for bottle-
necks is reduced, thus improving the performance of the sys-
tem. The distributed nature of the scheduling nodes means
that if one (other than the root) were to fail, the rest of the
system could always compensate for the loss of that branch.
By having multiple servers it means that the distributed sys-
tem is a MIMD architecture, as opposed to the previous ver-
sion, which only emulated a MIMD system using a pipeline
processor [7]. Although not an increase in capability, this
does increase the sophistication of the algorithms that can
be distributed over the system, and therefore increases the
user’s task in programming a distributed computation. We
have attempted to structure the programmers’ interface as
much as possible in this regard, to find a balance between
expressiveness and simplicity. For example, the program-
mer is required only to extend two classes to fully specify a
distributed computation, as explained later in Sect. 3.

2.2 Recursively Splitting up a Problem
Any problem that is run on our distributed system must

be parallelised by the user. The system dynamically breaks
up the problem into units, according to a user-defined algo-

communication

viewJobs

removeJob

addJob popUpMessage aboutBox

configureJob

connectToServer changeServer shutDownServer

GUIEngine Logger

remoteGUI

Figure 2: The design of the remote interface.

rithm, at each tier in the system. The system attempts to
get the mean processing time of each unit to be equal to the
user-defined optimal value. Given a problem, the maximum
speedup achievable is limited by the number of atomic units
that the problem can be broken into, and the number of
clients in the system.

2.3 User-defined Fair Round Robin Schedul-
ing

Each server has its own independent scheduler and decides
dynamically how the resources of the system are to be di-
vided up among the jobs in its queue. The scheduler employs
strategies based on a user-defined fair round robin schedul-
ing mechanism [6, 5]. The user sets an integer weighting for
each problem that specifies the relative proportion of paral-
lel computation time that should be allocated to that prob-
lem. The scheduler combines this weighting with the mean
unit processing time of each problem to ensure that parallel
computation time is allocated in the correct proportions.

3. DESIGN
There are three distinct parts to the multi-tiered distrib-

uted computation system. These are the client (processing
node), the server (scheduling node), and the remote inter-
face. The operation of server and client is explained in detail
in [7]. The user is required to extend two classes to create a
problem to run on the system. The DataManager class (in
the scheduler) specifies how the problem is to be broken up
and the intermediate results put together. The Algorithm
class (in the client) specifies the actual computation.

3.1 Remote Interface
The remote interface is a standalone application, which

communicates over TCP/IP and allows the administrator to
fully control all of the jobs and servers in the system. This
is achieved by using SUN Microsystems’ Remote Method
Invocation (RMI) communications technology. Jobs can be
added, removed, configured, and their current state viewed.
Likewise servers can be queried and shutdown.

The RemoteGUI object (see Fig. 2) launches and ini-
tialises the interface and sets up the logs files, which record
all system events and errors. The GUIEngine is the centre of
the application. The individual features are self-contained

communication

timerThread

DataStore

Scheduler

Logger

emptyFormatter Server

Figure 3: The design of the server.

in their own classes. The users of the system do not need
any knowledge of the topology or workings of the system in
order to submit jobs and get their processed results back.
Any commands sent from the remote interface get propa-
gated to all the servers in the system. The remote interface
can connect and disconnect from servers without affecting
the distributed system.

3.2 Server
The server (scheduling node), as shown in Fig. 3, is the

engine of the entire distributed system, controlling subor-
dinate servers (subordinate scheduling nodes) and clients
(processing nodes) and is largely described in [7]. There
have been a few modifications to the pervious version to
allow it to be a multi-tiered distributed system. A server
can be added to the distributed system very easily while the
system is running, and likewise can be removed from the sys-
tem without affecting the stability of the system or causing
running jobs to become corrupted. A new server contacts
the server above it and synchronises itself with the rest of
the system. If a server is removed or fails the rest of the
system compensates for this loss by reallocating the work it
had in its queue to another part of the system (the server
above the failing server will have a record of all jobs in the
failing server’s queue). This resilience to failure ensures the
system can perform in unknown operating conditions.

3.3 Scheduler
The scheduler is a central part of the server and indeed of

the entire distributed system. In the multi-tiered distributed
system the scheduler was created to allow a limitless number
(memory limits aside) of different jobs to run at the same
time in parallel on the system.

Each Job object (see Fig. 4) is self contained. It does not
depend on anything external to it and is contained in a node
in the queue, ensuring the complete encapsulation of each
Job in the system. These Job objects pass any requests
for units of work or processed results to the user-defined
DataManager to process [7]. Clients and servers both get
the same units when they request more work, although the
client processes the unit of work while the server breaks it up
further into more subunits. The generic nature of everything
that goes in and out of the Job object allows for maximum
flexibly in the design of the topology of the system. Each
scheduler is independent of every other in the distributed
system, optimising themselves to the computation resources
available. If the processing results of a unit sent by a server

pipeLineStage

Queue

communication

jobTimerThread
Node

dataManagerLoader

DataManager

Scheduler

Job

Compressor

Figure 4: The design of the scheduler.

are not returned within a specific period, the unit is said
to expire and the server resends it to the next requesting
server/client. Each Job also contains its own timer so that if
the unit is close to expiring the server requests an extension
from the server above.

4. IMPLEMENTATION
The entire system was designed using objects at a high

level, thus when it came to implementation Java was chosen
because of its object orientated capabilities and also for its
platform-independence and ease of implementation. Almost
every operating system and hardware architecture supports
a Java Virtual Machine, from desktop PCs to mobile phones.
The computational resources available for this system’s de-
ployment were based on machines with varying operating
systems, such as Microsoft Windows NT/2000/98, GNU-
Linux, HP UNIX, and varying hardware architectures such
as those of Intel, SUN, and HP.

4.1 Applications
The multi-tiered distributed system has so far been used

to analyse tuberculosis and ecoli genomes searching for du-
plicated patterns. An advantage of this type of distributed
system is that the client machines will get upgraded over
time, and hence the computational power of the network will
grow even if the number of clients remains constant. Thus
certain problems, which at the moment seem to require too
much computational power, may become computationally
feasible over time.

4.2 Performance Evaluation
We carried out performance tests to evaluate the capabil-

ities of the multi-tiered distributed system. We set out to
show that adding more servers would increase the capacity
of the distributed system. These were carried out in a lab
with a dedicated network of 90 PCs connected by Ethernet.
Each had a 1GHz Pentium III with 256 MB of RAM and
20GB of hard disk space and was connected to a 10Mb/s
Ethernet LAN.

Figure 5 shows the speedup that can be achieved using
this system. The problem posed was an analysis of the ecoli
genome (five million nucleotides in length) to find duplicated
strings within the genome. Based on the speedup data, the
average efficency using 94 processors is 77%.

Since a server can handle in the order of thousands of

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Number of processors

S
pe

ed
up

Linear speedup (theoretical upper bound)
Experimental measurements
Mean

Figure 5: Speedup achieved with a bioinformatics
application.

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

Number of processors

P
ro

ce
ss

in
g

tim
e

(s
ec

on
ds

)

1 server
5 servers
Optimal performance

Figure 6: Processing time comparisons with 1- and
5-server distributed computation systems, in the
presence of simulated congestion.

clients we had to simulate congestion to demonstrate that
the multi-tiered distributed system can increase the number
of clients in a system. This was achieved by using Shunra’s
freeware Nimbus bandwidth throttling software [8]. The
bandwidth of each server was constricted to only 14.4 kb/s,
and in addition, each unit returned from a server or client
was bloated with extra data to make the returned results
larger. The size of this bloated data was proportional to
the size of the unit. The problem posed to the distributed
system was a pattern matching exercise with the tubercu-
losis genome (four million nucleotides in length) to find all
duplicated strings within the genome.

The problem was initially run with 1 server and n clients,

which is traditional for the client-server model. Next we
ran the problem using 5 servers, arranged as 1 server on top
with 4 servers underneath, with n clients. Figure 6 shows the
resulting plot for several values of n. This plot shows that
after a certain number of clients, network congestion at the
server causes the processing time to actually increase. As
the number of servers increases, this critical number can be
increased. Eventually, the multi-tiered system too reaches
its capacity but it can handle many more clients than the
single server system. The optimum was calculated assuming
linear speedup from the timing with one client.

5. FUTURE WORK
Future improvements to the system will allow for the dy-

namic rebalancing of the system to improve parallel effi-
ciency, and modification of the scheduling strategy. The
next problem to be run on the system will use Pollard-Rho
factorisation to test encryption strengths of selected algo-
rithms.

6. ACKNOWLEDGEMENT
Support is acknowledged from the Irish Research Coun-

cil for Science, Engineering, and Technology, funded by the
National Development Plan.

7. REFERENCES
[1] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and

D. Werthimer. Massively distributed computing for
SETI. Computing in Science & Engineering,
3(1):78–83, Feb. 2001.

[2] http://boinc.berkeley.edu.

[3] http://www.distributed.net.

[4] K. Fritsche, J. Power, and J. Waldron. A Java
distributed compution library. In 2nd International
Conference on Parallel and Distributed Computing
Applications and Technologies (PDCAT2001), pages
236–243, Taipei, Taiwan, July 2001.

[5] S. Hariri, H. Topcuoglu, and M. Wu.
Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE
Transactions on Parrallel and Distributed Systems,
13:260–274, Mar. 2002.

[6] S. Kanhere, A. Parekh, and H. Sethu. Fair and efficient
packet scheduling using elastic round robin. IEEE
Transactions on Parrallel and Distributed Systems,
13:324–326, Mar. 2002.

[7] T. Keane, R. Allen, T. J. Naughton, J. McInerney, and
J. Waldron. Distributed Java platform with
programmable MIMD capabilities. In N. Guelfi,
E. Astesiano, and G. Reggio, editors, Scientific
Engineering for Distributed Java Applications, volume
2604 of Springer Lecture Notes in Computer Science,
pages 122–131, Feb. 2003.

[8] http://www.shunra.com.

[9] http://www.ud.com.

