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We analyze optical encryption systems using the techniques of conventional cryptography. All conventional
block encryption algorithms are vulnerable to attack, and often they employ secure modes of operation as one
way to increase security. We introduce the concept of conventional secure modes to optical encryption and ana-
lyze the results in the context of known conventional and optical attacks. We consider only the optical system
“double random phase encoding,” which forms the basis for a large number of optical encryption, watermark-
ing, and multiplexing systems. We consider all attacks proposed to date in one particular scenario. We analyze
only the mathematical algorithms themselves and do not consider the additional security that arises from em-
ploying these algorithms in physical optical systems. © 2008 Optical Society of America
OCIS codes: 060.4785, 100.4998, 070.2580, 070.4560.
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. INTRODUCTION
nformation security has been receiving increasing atten-
ion in recent years. Because optical processes have the
istinct advantage of sending 2-D complex data in paral-
el and carrying out otherwise time costly operations at
reat speeds, they have found growing importance in data
ncryption. In [1] an optical encryption scheme is pro-
osed called “double random phase encoding” (DRPE),
hich involves multiplying by two random phases in the

nput plane and in the Fourier domain. The authors show
hat if these random phases are statistically independent
hite noises, then the encrypted image is also a white
oise. The random phase key located in the Fourier plane
erves as the only key in this encryption scheme.

The properties of this system and systems like it have
een investigated extensively [2–7]. Various other linear
ptical systems have also been proposed in similar en-
ryption architectures [8–19]. For example, the fractional
ourier transform has been utilized in encryption algo-
ithms in conjunction with random phase keys [8–12] and
y randomly shifting sections of the image in some frac-
ional domain [13,14]. The Fresnel transform has also
een used with random phase keys [15–18] and with ran-
om shifting applied in some Fresnel domain [19]. The
ost general form of the linear canonical transform,

mplemented with any arbitrary quadratic phase system,
as also been used in an encryption system that uses ran-
om phase as a key [19].
The DRPE method has been shown to have application

n holographic data storage [20,21]. It has been success-
ully applied with angular multiplexing [22–25], and it
as been observed that this methodology offers an im-
roved performance over traditional angular multiplexing
n terms of storage capacity [24] and angular selectivity
25]. This improvement is attributed to cross talk between
djacent images being reduced and has recently been
1084-7529/08/102608-10/$15.00 © 2
oth qualified and quantified using a Wigner-based ap-
roach [26].
In recent years there have been a number of proposed

ttacks on DRPE-type encryption systems [27–32]. In an
ffort to gain a deeper understanding of this system, and
o overcome the vulnerability of DRPE systems to attack,
e attempt to investigate the parallels between this opti-

al system and conventional cryptography [33–38]. All
extbook conventional computer science encryption sys-
ems are vulnerable to attack. One way to counteract this
s to use secure modes of operation. In this paper we in-
roduce the concept of modes to optical encryption and
nalyze the results in the context of known attacks. We
onsider only DRPE, but consider all attacks proposed to
ate (as described in Section 3) in one particular scenario.
s is usual in cryptanalysis, we consider only key secu-
ity; we assume there is no security in the mechanism
nd that any potential attacker will know precisely how
he key is used to effect encryption/decryption.

We introduce modes in the following scenario. Consider
sequence of m images that is to be optically encrypted,

r equivalently, a stream of data that is very large com-
ared to the input space of the DRPE apparatus. The out-
ut corresponding to such an input will be a sequence of
ncrypted images. The most secure way of encrypting
hese data is to use a separate encryption key for each im-
ge. However, using a separate key for each image is often
mpractical. In the scenario we describe here, the sender
an transmit securely at most one or two phase masks to
he receiver before sending the encrypted images over an
nsecure communication channel. The sender is therefore
orced to reuse the same key for each image to be en-
rypted. What can the sender do? The most straightfor-
ard approach is to encrypt each with the same key. How-
ver, this is vulnerable to attack. In this paper, we
resent several modes of operation, of increasing sophis-
008 Optical Society of America
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ication, that allow the sender some level of defense
gainst the known attacks upon DRPE.
In Section 2 we briefly review the DRPE system, and in

ection 3 we present a summary of these attacks on the
ystem that have been proposed in the literature. In Sec-
ion 4 we discuss the concept of secure modes in conven-
ional cryptography systems and outline a number of sug-
estions on how the concept of modes can be incorporated
nto the DRPE optical encryption system. In Section 5 we
iscuss briefly implementation issues, and we conclude in
ection 6.

. DRPE
he method of DRPE [1] makes use of the optical Fourier
ransform (OFT). Two phase masks are used in the en-
ryption scheme, which are in the form of two statistically
ndependent white sequences uniformly distributed in
0,1]. We will denote these random functions as k1 and k2,
hich are often displayed on spatial light modulators

SLMs) that can display amplitude and phase informa-
ion. An optical encryption implementation can be seen in
ig. 1. The scheme works as follows: The input image to
e encoded is multiplied by one random phase mask. The
esulting complex wave field is optically Fourier trans-
ormed using a convex lens, and in the Fourier domain it
s multiplied by the second phase mask displayed on a
econd SLM. The resulting image is again Fourier trans-
ormed through the use of a second lens. This is equiva-
ent to a convolution operation, where the encrypted im-
ge can be represented by

C�x� = E�P�x��, �1a�

E�P�x�� = �P�x�exp�j2�k1�x��� � h�x�, �1b�

F�h�x�� = exp�j2�k2�x��. �1c�

he * denotes the convolution operation, P�x� represents
he signal to be encrypted (plaintext), C�x� denotes the en-
rypted image (ciphertext), E� � denotes the encryption
rocess that is DRPE, and F denotes the Fourier trans-
orm operator. One-dimensional functions are used for
implicity.

ig. 1. (Color online) General optical encryption/decryption
etup for DRPE. OFT, optical Fourier transform; k, random
hase mask represented on a SLM.
The resulting encrypted image, which is complex val-
ed, can be shown to be a stationary white noise [1]. The
rst random phase mask serves to make the input image
hite but nonstationary and not encrypted. The second

erves to make the image stationary and encoded. Be-
ause the encrypted image is complex valued, both the
eal and imaginary parts are needed to decode the image.
n order to record such a wave field (magnitude and
hase), we must use holographic interferometric methods
39–43].

Decryption is defined as

P�x� = D�C�x��, �2a�

D�C�x�� = �C�x� � h�− x��exp �− j2�k1�x��, �2b�

here D� � denotes decryption. To decrypt we apply the
xact inverse of what was done to encrypt the image:
irst, return to the Fourier domain through the action of
lens. Next, multiply by a phase mask, which is the con-

ugate of the corresponding phase mask used in the en-
ryption process. A last Fourier transforming lens follows
his. In most cases the input image is a real amplitude
mage. After this last OFT, the resulting wave field will
ave an amplitude distribution equal to the original im-
ge, so holographic techniques are not necessary to cap-
ure it. Furthermore, since we are interested only in the
mplitude of the image in the output plane, we need not
ultiply by the conjugate of the first phase mask, since

his will have no effect on the amplitude. Thus, we can
rop the exponential term in Eq. (2b), and there is only
ne key in this decryption scheme, the second random
hase function, without which, blind decryption is very
ifficult [6].
The properties of such an encryption–decryption sys-

em have been investigated [2–7]. It is worth noting that
ince the system is linear, it exhibits behavior identical to
hat of the Fourier transform with regard to additive and
ultiplicative noise in optical implementations. DRPE
as also been extended to use a complex signal as the in-
ut to the system instead of an amplitude-based image
4]. Such a system can be shown to have an improvement
n robustness to additive noise. However, unlike the case
f the input real only image, the first phase mask must be
ncluded during decryption and Eq. (2b) must include the
xponential term and the final decrypted image must be
ecorded using interferometric methods.

We note that in DRPE, the first random phase plane
erves to make the input image white but nonstationary
nd not encrypted [1]. The second serves to make the im-
ge stationary and encoded. Thus, the random phase key
ocated at the Fourier plane of this system, k2, serves as
he only key in this encryption scheme. In the following
ections we attempt to apply the concept of modes of en-
ryption to DRPE. In the next section we discuss a num-
er of attacks that have been proposed in the literature to
ack into the DRPE system.

. EXISTING ATTACKS ON DRPE SYSTEMS
wo classes of attack have been proposed to date on
RPE: one class seeking an exact solution to the phase
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asks and the other seeking an approximate solution.
he most relevant of the attacks summarized below are

isted in Table 1.

. Exact Solutions
xact attacks are analytic in nature.

. Chosen Plaintext Attack
he simplest type of cryptographic attack is the chosen
laintext attack. In this attack the attacker obtains the
ncrypted version of a plaintext of their choosing and uses
he plaintext–ciphertext pair to deduce the encryption
ey. It has been demonstrated [27,28] that if the attacker
an induce a centered [27] or noncentered [28] delta func-
ion to be encrypted, then the second phase mask can be
ound. This is sufficient to decrypt a real-valued plaintext.
or convenience, we call this the delta attack. Only a
ingle chosen plaintext–ciphertext pair is required, a real-
alued plaintext is assumed, and holographic recording of
he output is assumed. The delta attack has a simple de-
ense due to Carnicer et al.: simply do not allow delta
unctions to be encrypted [27]. However, a refinement of
his attack, which we call the delta-H attack, allows the
elta function to be hidden within any set of innocuous
mages whose linear combination is a shifted delta func-
ion [28]. For the delta-H attack, as few as two chosen
laintext–ciphertext pairs are required and the simple
efense to the delta attack is overcome. Simple extensions
o the defense (such as subtracting the current plaintext
rom each previously encrypted plaintext to search for a
elta function) will protect against this attack when it is
nown that the delta function is hidden within only two
airs. However, if the delta function is hidden within the
inear combination of an arbitrary sequence of plaintexts,
hen it will be impractical to check for all possible linear
ombinations over any subset of previously encrypted
laintexts. Therefore, we regard the delta-H attack as not
aving been properly defended against by straightfor-
ard extensions to the defense of Carnicer et al.
Variants of DRPE that employ phase encoding of their

RPE inputs [44] are also susceptible to the delta-H at-
ack [28]. As an extension, Frauel et al. [28] have shown
hat if the second phase mask is known, then one further

Table 1. List o

ttack Refs. Classa Pairs Required Timeb

elta [27,28] Ex-Ch 1 O(1)
elta-H [28] Ex-Ch 2 O�N�
elta-C [28] Ex-Ch 3 O�N�
elta-P [27] Ex-Ch N O�N�
A1 [28] Ex-Kn N O�N3�
A2 [28] Ex-Kn 2 O�N3�
elta-P [27] Ap-Ch N O�N�
A [30] Ap-Kn 1 O�N�
R [31] Ap-Kn 1 O�N�

aEx/Ap, Exact/Approximate decryption; Ch/Kn, Chosen/Known plaintext.
bFor the complexity analysis �where N is the number of pixels�, we assume that ea

nd PR are approximated as requiring a linear number of iterations.
cDenotes whether attack can cope with phase-encoded inputs.
dThe weakest mode that protects against this attack.
hosen plaintext–cipertext pair (where the plaintext is an
mage with constant complex amplitude) will allow the
rst phase mask to be found, allowing complex-valued
laintexts (including phase-encoded plaintexts) to be de-
rypted. We call this the delta-C attack.

If only the intensity of the ciphertext in each chosen
laintext–cipertext pair can be measured, but if it is pos-
ible to obtain many chosen plaintext–cipertext pairs,
arnicer et al. [27] have shown that N pairs can be used

o decrypt the N pixels of the second phase mask. In this
ttack, the plaintexts are composed of delta functions,
nd we call it the delta-P attack. The delta-P attack can
e combined with the delta-C attack to decrypt complex-
alued plaintexts. A delta-P-type attack has also been de-
cribed for Fresnel encryption [29].

. Known Plaintext Attack
nown plaintext attacks are more sophisticated attacks
ecause it is not necessary for the attacker to choose the
articular plaintext(s) to be encrypted; they only need to
now their values. Frauel et al. [28] have shown that with
he knowledge of N linearly independent plaintext images
that constitutes a base of the N-pixel input space) and
nowledge of their corresponding ciphertexts, an attacker
s able to directly decrypt all other images encrypted with
he same masks, where N is the number of pixels in the
laintext. We refer to this attack as the LA1 (linear alge-
ra 1) attack, because its basic step is a matrix inversion.
lthough it can cope with complex-valued and phase-
ncoded plaintexts in additional to regular amplitude-
ncoded plaintexts, its practicality is limited by the fact
hat for DRPE systems operating over images with N pix-
ls, the attacker must wait for N linearly independent in-
uts (and their corresponding outputs).
For the same computational cost, one can obtain the

ame result with only two plaintext–ciphertext pairs.
rauel et al. [28] have shown that given two pairs en-
rypted with the same phase masks, one can construct a
ystem of N linear equations with N unknown variables,
here N is the number of pixels in each mask. Solving

his system using classical system-solving techniques
such as Gauss elimination or lower triangular–upper tri-
ngular (LU) decomposition] gives the first phase mask.

cks on DRPE

se Inputsc Moded Brief Reminder of Type of Attack

ECB Centered delta, holographic recording
CFB Hidden delta function
CFB Obtain both phase keys
CFB Requires only intensity to be probed
CFB Linear algebra: matrix inversion
CFB Linear algebra: solve linear system
CFB Requires only intensity to be probed
OFB Simulated annealing
OFB Phase retrieval

al encryption/decryption operation requires just one computation step. Heuristics SA
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nce the first phase mask is known, the second mask can
e calculated directly. We refer to this attack as the LA2
linear algebra 2) attack. The complexity of this attack is
�N2� in space and O�N3� in time. For an image with N
104 pixels, the masks can be found in approximately 2 h
n a desktop computer using Gaussian elimination with
ack substitution [28]. Again, complex-valued and phase-
ncoded plaintexts are also susceptible in this attack.

Finally, we note that an attack by Lee et al. [32] on an
ncryption technique for holographic memory that is sim-
ler than DRPE is not considered here.

. Approximate Solutions
he advantage of using a heuristic to approximate phase
ask pixels rather than an analytical technique to deter-
ine exact solutions for the pixels is that a heuristic can

ake considerably less time to run. Furthermore, since the
ata routinely encrypted by optical encryption are image
ata, slight errors in the decrypted data can often be tol-
rated, and so an exact solution is not generally required.
he simplest type of attack is a brute force attack in
hich the key is approximated by trying all in a restricted

et of possibilities [28]. It has been shown that this kind of
ttack is not feasible [6].

. Chosen Plaintext Attack
he delta-P attack of Carnicer et al. [27] can be utilized so
hat with M plaintext–ciphertext pairs, a subset M of the
ixels of the second phase mask can be retrieved. It has
een widely shown that DRPE is tolerant to a large num-
er of missing pixels in the phase masks [27,28]. A delta-
-type attack has also been described for Fresnel encryp-
ion [29].

. Known Plaintext Attack
opinathan et al. [30] describe a known plaintext attack

hat uses a heuristic to estimate the second phase mask
n a DRPE scenario. Their algorithm is given a single
laintext–ciphertext pair. It is assumed that the plaintext
s real valued, and so only the second phase mask is
ought. They use a simulated annealing algorithm to find
phase mask that decrypts the output with arbitrarily

ow error. They show that the technique is not guaranteed
o return an acceptable solution but can detect when the
echnique is failing to converge and demonstrate that at
ost three parallel runs of the technique are required to

cceptably decrypt with a probability of 0.9995. Three
arallel runs would require approximately 1 h for a 32
32 pixel input, rising to 17 h for a 64�64 pixel input

30].
Peng et al. [31] also assume they are in possession of a

ingle plaintext–ciphertext pair (a real-valued plaintext a
nd a complex-valued encrypted image b). Peng et al. [31]
bserve that the amplitude of the signal immediately be-
ore the second phase mask is identical to the amplitude
f the Fourier transform B of the encrypted image b. To-
ether, �B�2 and �a�2 constitute a pair of intensity measure-
ents related by a Fourier transform, which can be used

o derive the first phase mask using standard phase-
etrieval techniques. Once the first phase mask is known,
he second mask can be calculated directly. The accuracy
ith which the first phase mask is found is dependent on
oth the sophistication of the phase-retrieval algorithm
mployed and the length of time it is run.

. CONVENTIONAL MODES OF OPERATION
OR BLOCK ENCRYPTION SYSTEMS

n this section we review the concept of secure modes in
odern conventional cryptography for block encryption

ystems and apply these concepts to DRPE. This will pro-
ide a means to overcome the attacks reviewed in the pre-
ious section.

. Modes
ryptographic block ciphers partition messages into data
locks before transmission. These blocks are then pro-
essed, one at a time. Questions arise as to what is the
est way to do this and can extra desirable properties be
ntegrated into this procedure. These questions are usu-
lly addressed by using standard modes of operation
long with the basic cryptographic algorithm. These
odes of operation can be used to incorporate nondeter-
inism into a block cipher algorithm. Nondeterminism is
ecessary but not always sufficient to protect against
odern adaptive cryptographic attacks. Modes of opera-

ion can also be used to pad in a more secure way, control
rror propagation, and transform a block cipher into an
rbitrary length stream cipher. Four main modes of op-
ration are described below. A comprehensive account of
odes of operation appears in [34]. In this section we at-

empt to adapt the secure coding schemes developed for
onventional cryptography for the DRPE system. There
re obvious differences between the mathematical defini-
ions and the physically realizable optical operations. We
ubstitute straightforward compromises in these in-
tances.

. Notation
e introduce the following notation:
Let Ek�·� denote some encoding scheme in the case of

onventional cryptography and a DRPE encryption with
ome key k in the case of optical encryption.

Let Dk�·� denote the corresponding decoding scheme in
he case of conventional cryptography and a DRPE de-
ryption with the key k in the case of optical encryption.

Let Pi denote the ith plaintext image, where 1� i�m
nd where m is the total number of images being en-
rypted.

Let Ii denote an intermediate image or intermediate
ext.

Let Ci denote the corresponding ciphertext image.
Let IV denote an initial image value required by some
odes of operation.

. Electronic Codebook Mode
he electronic codebook (ECB) mode is the simplest mode,
here blocks are encrypted sequentially,

Ci = Ek�Pi�, 1 � i � m. �3�

ecryption is given by
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Pi = Dk�Ci�, 1 � i � m. �4�

his is the simplest mode and equates directly to the
tandard DRPE system. Equations (3) and (4) above can
e used to directly represent DRPE encryption and de-
ryption, respectively. A flow chart for encryption and de-
ryption is shown in Fig. 2, and an illustration of encryp-
ion is given in Fig. 3(a). We note that the inverse Fourier
ransform has an almost identical optical implementation
o the Fourier transform. Using the defense of Carnicer et
l. [27], this mode is secure against the delta attack. How-
ver, this mode is vulnerable to other attacks because it is
eterministic: Multiple images are encrypted sequentially
ith the same key (k2 in Fig. 1) so that, for example, if

dentical plaintexts are encrypted, this results in identical
iphertexts. If the required number of plaintext–
iphertext pairs is obtained, the key can be discovered by
xploiting either exact attack or approximate attack sen-
itivity, as described previously in Section 3. The key can
hen decrypt the entire sequence as illustrated in Fig.
(b). [To remove this determinism one would need to in-
roduce some limited form of randomization (usually
alled pseudo-randomization), as will be explained in the
ext section, so that the key used for each plaintext is not

dentical to that used for the subsequent plaintext.] Fig-
re 1 illustrates a physically realizable setup for imple-
enting the DRPE in this and all other modes described

n this paper. In this implementation both phase keys are
isplayed on SLMs.

. Cipher Block Chaining
his ciphertext from this mode is dependent not only on
he plaintext block but also on all previous data blocks as

C0 = IV, �5a�

Ci = Ek�Pi � Ci−1�, 1 � i � m, �5b�

here � denotes a bitwise exclusive or (XOR) operation.
ecryption is achieved with Eq. (5a) and

Pi = Dk�Ci� � Ci−1, 1 � i � m. �6�

ote that since IV is treated as a ciphertext block, it need
ot be secret but should change on each encryption ses-
ion. The receiver should be sent the IV along with the ci-
ertexts in order to decrypt. The result of this chaining is

ig. 2. Flow chart for (a) DRPE encryption Ek and (b) DRPE de-
ryption Dk. FT, Fourier transform; IFT, inverse Fourier trans-
orm. The conjugate of the phase key k2 is used in the decryption
rocess. The symbol * denotes complex conjugation.
hat the ciphertext messages are randomized and not de-
erministic as in the case of ECB. It is also worth noting
hat although it initially seems so, the cipher block chain-
ng (CBC) mode cannot provide data integrity protection.
n attack illustrating this appears in [37].
Since in general we will not be dealing with binary im-

ges, we will generalize the �Pi � Ci−1� operation with any
eversible operation, f�Pi ,Ci−1�, where its inverse is de-
ned from Pi= f−1�f�Pi ,Ci−1� ,Ci−1�. In this case Eqs. (5b)
nd (6) describing encryption and decryption above are
eformulated for DRPE as

Ci = Ek�f�Pi,Ci−1��, 1 � i � m, �7�

Pi = f−1�Dk�Ci�,Ci−1�, 1 � i � m. �8�

t is clear that the ciphertext depends on the plaintext
nd all other previous encrypted data blocks. The initial
mage C0=IV is not secret but should change on each ses-
ion. The ciphertexts are pseudo-randomized. Each en-
rypted image is used with the next plaintext image to de-
ive the input image on the first SLM. To derive this input
e use the reversible function f, which could possibly be

mplemented electronically or optically. This mode is de-
igned to confuse an attacker. A flow chart for this mode is
iven in Fig. 4. The setup illustrated in Fig. 1 can be used
o implement this mode.

One possible implementation of f�A ,B� might be addi-
ion of the complex functions, A+B. In this case, f−1�A ,B�
ould be given by A−B. This could be performed numeri-

ally or optically by complex (spatial) superposition of two
mages. Another possible f could be multiplication. In this

ig. 3. (Color online) Illustrations of DRPE operation: (a) Se-
uence of plaintext inputs (in white) is encrypted to ciphertext
utputs (shaded). (b) In ECB and CBC modes, if attackers obtain
he key they can immediately decrypt the entire sequence. (c) In
FB mode, if attackers approximate the key with a single
laintext–ciphertext pair, only subsequent images can be de-
rypted because function f1 is not reversible. (d) In both CFB and
FB modes, careful choice of f1 can mean that the propagation of

rrors from an attack that only approximates the key will mean
hat only a very small number of subsequent images will be
ecrypted.
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ase, f−1 would be given by division. Multiplication could
e implemented numerically or optically using an opti-
ally addressed SLM. A third possible implementation
ould be convolution, f�A ,B�=A*B, where the asterisk de-
otes the process of convolution. In this case the inverse
ould be a deconvolution. This could be implemented ef-
ciently in a computer using a fast Fourier algorithm or
ptically using an OFT and a pair of SLMs. Interestingly,
nother possible implementation could be a DRPE sys-
em, f�A ,B�=EB�A�. In this case the inverse function
ould be A=DB�f�A ,B��.
Although initially it might seem that attacks that rely

n multiple plaintext–ciphertext pairs are foiled by this
ptical CBC mode, the reversibility of f means that each
f these attacks could be successfully modified. This is be-
ause the conventional CBC algorithm is designed to be
sed with a nonlinear encryption technique. Modified at-
acks could be mounted as follows. Note that in conven-
ional cryptanalysis we cannot assume that the
ncryption/decryption methods used are secret; only the
ey can be considered secret. With one or more plaintext–
iphertext pairs �Pi ,Ci� and knowledge of the previous ci-
hertext in the sequence, an attacker would compute each
i= f�Pi ,Ci−1� and, using �Ii ,Ci� in the role of each
laintext–ciphertext pair, deduce the key k using pub-
ished techniques [27–31]. With k, the attacker would
ompute Ii=Dk�Ci� from any unbroken ciphertext en-
rypted with k and apply f−1 to the result to obtain the
laintext.

. Cipher Feedback Mode
he conventional cipher feedback (CFB) mode is designed
o provide additional functionality rather than additional
ecurity compared to the previous mode [34]. It provides a
ay to convert a block cipher into a stream cipher [35] so

hat it can be more useful for wireless communications,
or example. This mode feeds successive bits of ciphertext
ack as input to the encryption algorithm. However, in
his paper we look only at the block cipher variant of con-
entional CFB, as described in [38]. Although in conven-
ional cryptography there may not be sufficient motiva-
ion for a block cipher version of CFB, we show below that

ig. 4. Flow chart for CBC mode. (a) Encryption, where the two
hase mask products and two FTs represent the Ek operation. (b)
ecryption, where the two phase mask products and two IFTs

epresent the Dk operation. The flow chart does not show that at
=1, the initial feedback image is C0=IV.
n a DRPE interpretation, CFB has a significant advan-
age over CBC. CFB encryption is defined as

I1 = IV, �9a�

Ii = Ci−1, 2 � i � m, �9b�

Ci = Pi � Ek�Ii�, 1 � i � m, �9c�

here the encrypted version of the previous ciphertext is
ombined using XOR with the next plaintext block. De-
ryption is defined as combining Eqs. (9a) and (9b) with

Pi = Ci � Ek�Ii�, 1 � i � m. �10�

n this mode the encryption function is also used for de-
ryption. This allows much greater flexibility in the choice
f Ek� � and includes the use of one-way hash functions.
or an account of hash functions, see [36].
In the process of adapting this mode, and in order to

ree ourselves of the XOR notation, we rewrite the encryp-
ion in Eqs. (9b) and (9c) in terms of two functions, f1 and
2, as

Ii = f1�Ii−1,Ci−1�, 2 � i � m, �11a�

Ci = f2�Pi,Ii�, 1 � i � m, �11b�

here f1 is irreversible and f2 is reversible. Similarly, we
xpress decryption by replacing Eq. (11b) with

Pi = f2
−1�Ci,Ii�, 1 � i � m. �12�

he irreversible function f1 takes the previous ciphertext
nd the previous key and generates the key with which to
ncrypt the next plaintext. These are the same two inputs
efined for the stream cipher variant of CFB [34]. The re-
ersible function f2�Pi ,Ii� has an inverse defined using
i= f2

−1�f2�Pi ,Ii� ,Ii�.
For our specific DRPE adaptation, we let DRPE take

he place of the reversible f2 operation. The irreversible f1
peration can be implemented elsewhere (in optics or
lectronics). It has been shown [45] that DRPE itself
hould not be used for the irreversible f1. In such a sce-
ario, DRPE encryption is defined as

I1 = k2, �13a�

Ii = f1�Ii−1,Ci−1�, 2 � i � m, �13b�

Ci = EIi
�Pi�, 1 � i � m, �13c�

nd DRPE decryption is defined by Eqs. (13a) and (13b)
nd

Pi = DIi
�Ci�, 1 � i � m. �14�

he choice of the irreversible f1 function can be arbitrary
s long as it takes as input a phase mask and complex-
alued image and returns a pure phase mask. In an opti-
al implementation it could utilize a thick semitranspar-
nt block with multiple amplitude scatterings placed in
ront of the illuminated product of the two inputs, and the
cattered intensity recorded, where the intensities
odulo 2� are considered as phase values for the next

ey. Numerically, any of the conventional keyed crypto-
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raphic hash functions [34,36] such as MD5 or SHA-1
ould be adapted for the role.

A flow chart for the CFB mode with DRPE is given in
ig. 5. Again Fig. 1 can be employed as an illustration of a
hysical implementation of the setup. We begin with the
nitial Fourier plane phase mask k2 and encrypt a plain-
ext image. The resulting ciphertext and k2 are used as
nput to some irreversible function f1 to generate the Fou-
ier plane phase mask to encrypt the next plaintext. In
ecryption, k2

* is used to decrypt the first ciphertext, and
hereafter each ciphertext is decrypted using the complex
onjugate of the output of f1. The most important aspect of
he CFB mode with DRPE is that the encryption key
hanges for each plaintext. This is similar to the concept
f autokeying in conventional symmetric cryptography
ystems [46].

Because no two plaintext–ciphertext pairs are en-
rypted using the same key, all exact attacks that require
ultiple plaintext–ciphertext pairs encrypted with the

ame key are foiled by this mode. Namely, the chosen
laintext attacks delta-H, delta-C, and delta-P, as well as
he known-plaintext attacks LA1 and LA2, are foiled by
his mode. Also, delta-P used as an approximation attack
s also foiled, as it requires all pairs to be encrypted with
he same key. Due to the irreversibility of f1, it is unlikely
hat these attacks could be modified in a straightforward
anner. However, approximate attack sensitivity re-
ains for this mode, specifically, attacks SA and PR.
hese attacks require only a single pair to approximate
he key. However, since f1 is not reversible, if one
laintext–ciphertext pair is obtained, only subsequent im-
ges can be decrypted and not the whole sequence. This
oint is illustrated in Fig. 3(c).
Furthermore, a well-chosen irreversible f1 will be

ighly sensitive to the key Ii. This is certainly the case
ith a cryptographic hash function [34,36]. It could be ar-

anged too in an optical implementation by choosing an f1
hat embodied the properties of a chaotic function [47]. By
heir nature, the approximate attacks SA and PR will find

ig. 5. Flow chart for CFB mode. (a) Encryption, where the two
hase mask products and two FTs represent the EI operation. (b)
ecryption, where the two phase mask products and two IFTs

epresent the DI operation. Function * denotes the application of
omplex conjugation. The flow chart does not show that at i=1,
=k .
i 2
he key with some error. As such, when the attacker
asses only an approximated key to f1, it will either com-
ute the incorrect key for the next ciphertext immediately
r else propagate and accumulate the errors so quickly
hat only a small number of subsequent ciphertexts will
e decrypted. This point is illustrated in Fig. 3(d). Unfor-
unately, errors will propagate for the legitimate de-
rypter too. With optical systems operating on gray-scale
mages and incorporating an interferometric measure-

ent technique, one has to allow for the propagation of
rrors. Of course, the errors will not be as large, because
he legitimate user will start with the exact key rather
han just an approximated one, but the errors could still
e significant for highly nonlinear f1.

. Output Feedback Mode
he output feedback (OFB) mode is similar to CFB but
iffers in the way the feedback is handled. The feedback
ere happens before the XOR with the plaintext. The
eedback circuit forms a finite-state machine with the
tate determined only by the encryption key of the under-
ying encryption algorithm. The advantage of this is that
ropagation errors will affect only one block of ciphertext
nd will not be amplified as with the other modes. This
akes OFB suitable for noisy channels such as in mobile

r satellite communications. Encryption is defined as

I1 = IV, �15a�

Ii = Ek�Ii−1�, 2 � i � m, �15b�

Ci = Pi � Ii, 1 � i � m, �15c�

nd decryption is defined using Eqs. (15a) and (15b) with

Pi = Ci � Ii, 1 � i � m. �16�

nce again, in order to free ourselves of the XOR nota-
ion, we can rewrite Eqs. (15) and (16) in terms of two
unctions, f1 and f2, where f1 represents Ek and f2 repre-
ents XOR. For conciseness, we do not give these here.
unction f2 is reversible, and f1 can be reversible or irre-
ersible because the values in Eq. (15b) are never ob-
erved directly by the attacker in the attacks under con-
ideration in this paper. Although f1 can be reversible, it
hould not be linear; inputs to f1 should give rise to highly
andomized outputs so that an attacker cannot predict
he behavior of f1. As such, for example, DRPE would not
e a good choice for f1 because a small change in the input
ives rise to a small change in the output. For our DRPE
ormulation of the OFB mode, we choose to employ DRPE
or f2 and some arbitrary competent conventional keyed
ryptographic hash function [34,36] for f1. Encryption is
efined as

I1 = k2, �17a�

Ii = f1�Ii−1�, 2 � i � m, �17b�

Ci = EIi
�Pi�, 1 � i � m, �17c�

nd decryption is defined by Eqs. (17a) and (17b) and
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Pi = DIi
�Ci�, 1 � i � m. �18�

flow chart for the system is given in Fig. 6. Figure 1 il-
ustrates a possible optical implementation. For the first
laintext image we encrypt with the initial Fourier plane
hase key k2. To encrypt subsequent plaintexts i, the
ost recent Fourier plane key is used as input to hash

unction f1 to generate the new Fourier plane key Ii.
The OFB mode foils all exact decryption attacks (delta-

/C/P and LA1/2) and delta-P in an approximation at-
ack, because no two plaintext–ciphertext pairs will have
sed the same Fourier plane key. The SA and PR approxi-
ation attacks will reveal the key from a single

laintext–ciphertext pair, but by their nature they will
ave some errors in the key. By using a cryptographic
ash function for f1 in the OFB mode, only exact knowl-
dge of the key to an arbitrary resolution will permit one
o calculate the next correct key in the sequence. There-
ore, successful attacking of one page of cyphertext will
ot lead to instant decryption of any other pages as illus-
rated in Fig. 3(d).

From the legitimate decrypter’s perspective, the result-
ng system is more robust to the propagation of error; er-
ors will propagate only if the key is approximated, but
ot if it is known exactly. The legitimate decrypter will
ave the key in digital format and will be able to manipu-

ate it digitally without error. Even though the legitimate
ecrypter may have errors in its optical DRPE setup,
hese errors will not propagate to, or be amplified in, sub-
equent ciphertext images. As such, it could be regarded
s a form of error correcting [48].

. DISCUSSION ON IMPLEMENTATION
ptical implementation of any of the modes presented in

his paper will have a number of requisites. First, it is
ecessary that a recorded encrypted image can be digi-
ally recorded and transmitted so that it can be used as a
art of a feedback system that is at the heart of many of
he modes listed in this paper. Second, it is necessary that

ig. 6. Flow chart for OFB mode. (a) Encryption, where the two
hase mask products and two FTs represent the EI operation. (b)
ecryption, where the two phase mask products and two IFTs

epresent the DI operation. Function * denotes the application of
omplex conjugation. The flow chart does not show that at i=1,
i=k2.
he phase masks used in the encryption/decryption sys-
em can be quickly changed electronically so that new in-
ormation can be fed back into these phase masks. This
equires the use of addressed SLMs.

The first requisite can be met using digital holography,
means of recording a complex wavefront using a digital

amera and a reference beam. In recent years the practi-
al application of digital holography for recording double
andom phase encoded images has been experimentally
alidated [41–43]. In [41] the authors describe the first
ocumented experimental digital holographic recording of
uch an image for secure storage and data transmission.
n [42] further experimental results were provided for
igital recording of DRPE. This time the input was not a
lanar data image, rather it was a 3-D object scene. It
as shown that different 3-D perspectives and depths

ould be generated from the digitally recorded encrypted
ologram. In [41,42] it was shown that if the phase key
as also digitally recorded, decryption could be imple-
ented numerically. In [43] further experiments of digital

ecording of DRPE images are presented in addition to a
orrelation-based optical reconstruction process for a real-
ime display of the digitally encrypted image.

We also note that the use of electrically addressed
LMs for representing phase keys in optical encryption
chemes has also been experimentally validated [49]. On
his basis we believe that the modes listed in this paper
re experimentally possible, though some errors in de-
ryption can be expected due to quantization differences
etween the recorded image and the SLMs.
As yet, we have no recommendations about how the ex-

ra computation for the various modes could be shared be-
ween electronic and optical systems and between digital
r analog implementations. Of course, all tasks could be
onveniently implemented in digital electronics. If one
ses electrically addressed SLMs, then the data will be in
lectronic form at some points in the computation any-
ay. However, it is worth examining if there are alterna-

ive implementation opportunities. The claimed advan-
ages for digital optical computing include reductions in
peed, interconnection complexity, and power require-
ents [50,51], and recent applications that take advan-

age of information already in an optical representation
such as all-optical packet switching in optical communi-
ations [52]) look promising. However, digital optical com-
uting of the form that is prevalent today [52] would be
onvenient only if the operations are pointwise operations
hat are to be applied to 1-D arrays of pixels at a time—if
here are dependencies between neighboring pixels in
ultiple dimensions (such as in a 2-D convolution), then a

igital optical implementation would not be convenient.
The disadvantages of analog systems for computing in-

lude inherent noise and low dynamic range compared to
igital representations, which puts fundamental limits on
he accuracy achievable. However, if analog optics is al-
eady employed for the basic DRPE steps, then one can
ssume that many of these concerns about analog sys-
ems will already have been alleviated or will be less rel-
vant for the application in hand. The analog computa-
ion could be performed either electronically or optically.
nalog electronics has the same limitation as digital op-

ical computing above—it is not ideally suited to 2-D im-
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ge processing. Analog optical image processing is a
trong contender, as the data are in an optical image rep-
esentation already. In particular, if optically addressed
LMs are employed, the data might not be in electronic

orm at the appropriate time. In principle, it has been
hown that all possible computations can be performed by
nalog optics [53,54]. In principle, general-purpose com-
utations can be performed with resources (time and
pace) equivalent to those required by digital electronics,
hile many image processing operations can be per-

ormed more efficiently. However, care would have to be
aken when specifying a very efficient optical implemen-
ation for the irreversible function f1 in CFB and OFB.
he most efficient nonlinear operation in analog optics

square law detection) could be susceptible to phase-
etrieval techniques and, as has been mentioned, DRPE
tself cannot be used as a cryptographic hash function
45]. In particular, the perfect calculation of f1 in the OFB
ode is required in order to avoid the propagation of er-

ors, and so it would be recommended that this step be
arried out with digital optics or digital electronics.

. CONCLUSION
RPE is vulnerable to both exact decryption and approxi-
ate decryption attacks. Secure modes of operation,

dopted from conventional cryptography, can be used to
oil each of these attacks in the scenario outlined. We
dapt these modes for optical implementation with the
RPE system and discuss their impact in terms of added

ecurity and propagation of error. ECB is conventional
RPE. CBC adds little security due to its reversibility.
FB exhibits security against all attacks. Equipping CFB

o foil approximate decryption attacks requiring only a
ingle plaintext–ciphertext pair results in error propaga-
ion for legitimate decrypters of optical systems. OFB is
hown to be currently secure against all attacks, in addi-
ion to admitting no error propagation for the legitimate
ecrypter.
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