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We propose a task-specific digital holographic capture system for three-dimensional scenes, which can
reduce the amount of data sent from the camera system to the receiver and can effectively reconstruct
partially occluded objects. The system requires knowledge of the object of interest, but it does not require
a priori knowledge of either the occlusion or the distance the object is from the camera. Subwindows of
the camera-plane Fresnel field are digitally propagated to reveal different perspectives of the scene, and
these are combined to overcome the unknown foreground occlusions. The nature of the occlusions and the
effect of subwindows are analyzed thoroughly by using the Wigner distribution function. We demonstrate
that a careful combination of reconstructions from subwindows can reveal features that are not apparent
in a reconstruction from the whole hologram. We provide results by using optically captured digital
holograms of real-world objects and simulated occlusions. © 2006 Optical Society of America
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1. Introduction

In this paper we explore the potential use of digital
holograms in a three-dimensional (3D) scene recon-
struction in which particular regions of interest are
occluded under certain perspectives. The study of oc-
clusions in digital holography has been actively re-
searched of late. For the case of digital hologram
watermarking,1 occlusions are considered attacks
and occur in the hologram plane, resulting in a direct
loss of data at that plane. The integration of computer
graphics and holograms has also been investigated,
necessitating the study of occlusion effects.2 Another
technique, which attempts to overcome the problems
of foreground occlusions in a complex scene, is inte-
gral imaging, which uses the concept of ray phase
space to reconstruct the occluded images. It is based
on ray optics and uses different view perspectives
with a microlens array.3 This is a passive sensor, as
opposed to active sensing as in digital holography.

We have simulated the addition of occlusions in
free space4 (i.e., in the region between the object of
interest and the camera), thus modeling opaque and
nonopaque occlusions as they occur in nature. In our
simulated experiments we use optically captured dig-
ital holograms of real-world objects. We show that by
reconstructing the entire hologram it is possible to
overcome the problems of foreground occlusions in a
scene. This is achieved by propagating the wavefront
to the calculated in-focus plane of the object of inter-
est. However, for the purpose of this paper, we inves-
tigate finding a subset of pixels that can successfully
reconstruct partially occluded background objects by
selectively incorporating information from additional
views of the scene. There are three reasons why this
is useful. The first is that different windows in the
hologram plane give different perspectives. In situa-
tions in which a nonopaque occlusion is present, the
reconstruction plane may be corrupted by nonphy-
sical light emanating backward from the occlusion.
This light acts as noise and can saturate features on
the object of interest. Careful selection of windows
from the hologram plane reduces the influence of this
noise and makes visible features that are not discern-
ible when the whole hologram is used for reconstruc-
tion. The second benefit is that the computational
complexity of hologram reconstruction is reduced if
fewer pixels are used to reconstruct the scene. The
third benefit is that reducing the number of pixels
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that must be sent over a communication channel will
result in increased communication efficiency.

Holography5 is an established technique for record-
ing and reconstructing real-world 3D objects. Digital
holography6–11 has become feasible owing to recent
advances in megapixel CCD sensors with high spatial
resolution and high dynamic range. A technique
known as phase-shift interferometry (PSI) was used
to create our in-line digital holograms.12,13 A single
hologram of a scene encodes multiple perspectives of
the scene simultaneously, and we have used this
property to reconstruct the scene from different view-
points, thus overcoming occlusions. Digital holo-
graphic image processing is an area that has seen
increased interest over the past few years.4,12–19

2. Phase-Shift Digital Holography

We record whole Fresnel fields with an optical sys-
tem12,13 based on a Mach–Zehnder interferometer
(see Fig. 1). A linearly polarized argon-ion �514.5 nm�
laser beam is expanded and collimated and then di-
vided into object and reference beams. The object
beam illuminates a reference object placed at a dis-
tance of approximately d � 350 mm from a 10-bit
2028 � 2044 pixel Kodak Megaplus CCD camera. Let
U0�x, y� be the complex amplitude distribution imme-
diately in front of the 3D object. The reference beam
passes through retardation plates RP1 and RP2, and
by selectively removing the plates we can achieve
four phase-shift permutations, for each of which
we record an interferogram. We use these four real-
valued images to compute the camera-plane complex
field H0�x, y� by PSI.8,10 We call this computed field a
digital hologram.

A digital hologram H0�x, y� contains sufficient
amplitude and phase information to reconstruct the
complex field U(x, y, z) in a plane at any distance z
from the camera.10–12 This can be calculated from the
Fresnel approximation20 as

U�x, y, d� �
�i
�d exp�i 2�

�
d�

� H0�x, y� � exp�i�
�x2 � y2�

�d �, (1)

where � is the wavelength of the light and � denotes

a convolution. At z � d, and ignoring errors in digital
propagation due to pixelation and rounding, the dis-
crete reconstruction U(x, y, z) closely approximates
the physical continuous field U0�x, y�.

As with conventional holography, a digital holo-
gram encodes different views of a 3D object from a
small range of angles.20,21 To reconstruct a particular
two-dimensional (2D) perspective of the object, we
must extract the appropriate windowed subset of pix-
els from the hologram and subject them to simulated
Fresnel propagation.10–12 As the window explores the
field, a different angle of view of the object can be
reconstructed. The range of viewing angles is deter-
mined by the ratio of the window size to the full CCD
sensor dimensions. Our CCD sensor has approximate
dimensions of 18.5 mm � 18.5 mm, and so a 1024 �
1024 pixel window has a maximum lateral shift of
9 mm across the face of the sensor. With an object
positioned d � 350 mm from the camera, viewing
angles in the range of �0.74° are permitted. Smaller
windows will permit a larger range of viewing angles
at the expense of image resolution at each viewpoint.

3. Wigner Distribution Function and Digital Holography

A. Wigner Distribution Function and Properties

The WDF of a complex optical amplitude distribution
provides a graphic means of simultaneously viewing
a signal’s spatial and spatial-frequency distributions
and is particularly useful for visualizing localized
signals.22–25 ��f�x�	�x, k�, which represents the WDF
of a signal f(x), is defined in terms of this spatial
distribution in the following way:

��f�x�	�x, k� �

�	

	

f�x �



2�f*�x �



2�
� exp��j2�k
�d
, (2)

where k represents spatial frequency, (*) denotes
complex conjugation, and � denotes the WDF oper-
ator. Often a plan-view outline of the signal’s energy
is used for illustration. Such a Wigner chart is shown
in Fig. 2. The real-valued WDF has double the num-
ber of dimensions, i.e., a complex one-dimensional
(1D) signal has a 2D WDF, while 2D signals have
four-dimensional (4D) WDFs. The WDF has many
properties26:

(i) Shifting a signal in x correspondingly shifts its
WDF as

��f�x � 
�	�x, k� � ��f�x�	�x � 
, k�. (3)

(ii) The WDF has a convolution property,

Fig. 1. Experimental setup for PSI: BE, beam expander; BS,
beam splitter; RP, retardation plate; M, mirror.
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�	

	

f�
�g�x � 
�d
��x, k� � 
 ��f�x�	

� �x � x�, k���g�x�	�x�, k�dx�, (4a)

��f�x�g�x�	�x, k� � 

�	

	

��f�x�	

� �x, k � k�� ��g�x�	�x, k��dk�. (4b)

(iii) The WDF is bilinear. When two signals are
added, the WDF of the sum is given by the sum of the
individual WDFs plus an additional cross term,

��f�x� � g�x�	�x, k� � ��f�x�	�x, k� � ��g�x�	�x, k�

� 

�	

	

2�f�x � 
�2�g* �x � 
�2��exp�j2�k
�d
. (5)

(iv) The projection of the WDF normal to the k
axis (i.e., integrating along k) gives the spatial inten-
sity distribution of our signal, and the projection nor-
mal to the x axis gives the frequency spectrum

�f�x��2 �

�	

	

��f�x�	�x, k�dk,

�F�k��2 �

�	

	

��f�x�	�x, k�dx. (6)

We note that it is possible for the energy of two sig-
nals that have been added together to overlap in the
projection along x and not to overlap in the projection
along k or vice versa. If the signals do not overlap in
the projection that we are interested in, we may omit
the cross term in Eq. (5) in all of the Wigner analyses.

(v) The Fresnel transform (FST), mentioned

above, has the following effect on the WDF of a signal,
��F�d�f�x�	�x��	�x�, k�� � ��f�x�	�x � �dk, k�. The effect
of applying a FST to our signal can be expressed in
terms of a matrix operating on the phase space coor-
dinate vector

�x�

k��� �1 �d
0 1 ��xk�. (7)

This matrix is known as the ABCD matrix or the
ray-transfer matrix. The FST causes a shearing of a
signal’s WDF along the x direction as shown in
Figs. 2(b) and 2(c), in which we have shown the WDF
for two Fresnel-transformed signals, d2  d1.

(vi) Signal localization. If the FT of a function is
finite in extent, then the spatial distribution must
have an infinite extent. This implies that since our
band-limited signal exists over the entire extent of
space, it must be sampled over all space. However, in
many practical problems, it is assumed with a very
large degree of accuracy that a signal is bounded
within some finite region in both the spatial and the
spatial-frequency domains. The spatial extent W and
the frequency extent B are defined such that

f�x� � 0 �x�  W�2, ��f�x�	�k� � 0 �k�  B�2,
(8)

and therefore the signal energy is negligible outside
these regions.

(vii) Sampling. The WDF of a sampled signal has
been investigated in detail by Stern and Javidi.27,28

Ideal sampling is accomplished by multiplying our
signal by a train of Dirac delta functions or a comb
function, �T�x� � �n��	

	 ��x � nT�, where T is the
sampling interval and ��x� represents the Dirac delta
function. This is equivalent to convolving the signal’s
WDF, ��f�x�	�x, k�, with ����x�	�x, k�, the WDF of the
comb function. We note that

���T�x�	�x, k� �
1

2T �
n

�
q

��1�qn��x �
nT
2 ���x �

q
2T�.

(9)

(viii) Ray tracing, the WDF, and the corner coor-
dinate matrix (CCM). The WDF offers a unified in-
terpretation of optics—wave, geometric, and
quantum. Ray tracing is a widely used application of
geometrical optics and involves following the paths of
light rays as they pass through an optical system. For
a specific ray with known position (x) and direction
(spatial frequency k), we may map any change in
position and direction due to an optical element, in-
cluding free space, by using the ray-transfer matrix
for that optical element. We have shown above, in the
case of free-space propagation in the paraxial approx-
imation, that the ray-transfer matrix may also be
used to map changes in the WDF of a signal. This has
led to the development of the CCM,29 a 2D array
containing a series of x–k coordinates that define the

Fig. 2. Wigner chart of the propagating signal. (a) Wavefield
immediately after the object, (b) Wigner chart after propagation of
distance d1, (c) Wigner chart after further propagation of distance
d2.
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boundary of a localized signal in phase space. For
example, for the signal in Fig. 2(a), we will have a
CCM of

S � ��W�2 W�2 W�2 � W�2
B�2 B�2 � B�2 �B�2�. (10)

After Fresnel transformation for a distance d [e.g.,
the signals shown in Figs. 2(b) and 2(c)], the new
corner coordinates are given by

S� � �1 �d
0 1 �S. (11)

These ideas have led to an optimization of all FST
algorithms.29 We note that Eqs. (10) and (11) may
easily be extended for an arbitrary number of coordi-
nates.30

(ix) The WDF of a rectangular function. We define
the rect function as

rect�x�w� � 1 ∀ �x� � w�2

� 0 ∀ �x�  w�2. (12)

The WDF of rect�x�w� has been investigated in the
context of diffraction31 from a thin slit and is given by

��rect�x�w�	�x, k� �
sin�k�2�x� � w��

k , �x� � w�2,

(13)

which is a type of sinc function in k for the range of x
values allowed. The scale of this sinc function, p(x, w),
is a function of both the width of the rect function and
the value of x. For values of x that are much less than
w, the sinc function will be narrow. As x approaches
the boundary, the sinc function broadens in k. This
effect is due to diffraction at the boundaries. In the
following analysis we will assume that w �� � and
that we may therefore ignore the effect of diffraction
at the edges. In this case we may write

��rect�x�w�	�x, k� � ��k�, �x� � w�2. (14)

We note that this approximation conflicts with the
existence conditions of the WDF (Ref. 23), but it will
simplify the proceeding analysis considerably while
retaining a high degree of accuracy.

(xi) The WDF of a rectangular occlusion. The
transmission function of a rectangular occlusion of
width w may be written as

occlusion�x� � 1 � rect�x�w�. (15)

Using Eqs. (5) and (15), we may calculate the WDF of
the occlusion to be

��occlusion�x�	�x, k� � ��1 � rect�x�w�	�x, k�

� ��k� � ��rect�x�w�	�x, k�
� cos��xk�sinc�wk�. (16)

Once again, if w �� �, we may ignore the effect of
diffraction at the edges and use the following approx-
imation for ease of analysis:

��occlusion�x�	�x, k� � ��k�, �x�  w�2. (17)

We are now in a position to discuss digital holography
from the perspective of Wigner and to analyze (i) the
effect of taking different windows within our holo-
gram for reconstruction and (ii) the effect of occlu-
sions on a digital holography system.

B. Wigner Distribution Function and Digital Holography

The experimental results displayed in this paper are
obtained by using phase-shifting digital holography.
In the following analysis we consider (without any
loss of generality) such a system to be summarized by
a single camera capable of measuring the complex
amplitudes at the individual pixel positions. The
wave field emanating from an object in the plane just
after the object (plane of focus) is denoted O(x) and
has a WDF denoted by ��O�x�	�x, k�. The Wigner
chart for the signal will be of the form shown in
Fig. 2(a). After Fresnel propagation, the signal’s
chart now takes the form shown in Fig. 2(b), and the
WDF of the propagated signal is given by ��O�x�	
�x � �dk, k�. Capture by the CCD is equivalent to
multiplying by a comb function (sampling interval
equal to T, the distance between the pixels), which
has been convolved by a rect function with a width
equal to that of a CCD pixel, wp. This is followed by
multiplying by a rect function that is representative
of the size �wc� and position �x0� of the CCD aperture.
Thus the CCD function is given by

CCD�x � xc� � ��T�x� � rect� x
wp

�� � rect�x � xc

wc
�.

(18)

Using Eqs. (3), (4a), (4b), (13), and (14), we may cal-
culate the WDF of the CCD(x) in Eq. (18) as

���T�x�	�x, k� �x ��rect�x�wp�	�x, k��
�k ��rect�x�wc�	�x � xc, k�, (19)

where the superscript on the asterisk denotes the
coordinate vector along which the 1D convolution
takes place. Capturing the digital hologram is equiv-
alent to multiplying our complex signal by CCD(x).
The WDF is therefore equivalent to a convolution of
the WDFs along the k axis:

��O�x�	�x � �dk� �k ��CCD�x�	�x, k�. (20)

Recently Wigner analysis has found a significant ap-
plication in digital holography. The generalized sam-
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pling theorem,27,28 which can be derived from Eqs. (9)
and (20) above, allows us to improve the capacity of
any digital holographic system.32 Simply stated, we
need only ensure that the CCD bandwidth is greater
than the local bandwidth of the incident signal, even
if this local bandwidth lies far outside the bandwidth
of the CCD. From this point on, we will assume that
the optical recording is set up to ensure that no alias-
ing occurs in the process and that the sampling is
ideal (i.e., the pixels are ideal delta functions). Thus
we will entirely ignore the effect of sampling. Numer-
ical implementations of the FSTs will also be as-
sumed to be ideal. The true effect of CCD sampling
and numerical Fresnel transformations may be found
in great detail,33 but these effects have little influence
on the results presented in this paper. As such, re-
cording is summarized as convolving the signal’s
WDF with Eq. (14). The position of the WDF of the
rect function can shift in x depending on the center of
the CCD (hologram) window. In Subsection 3.C we
discuss opaque occlusions and nonopaque occlusions
by using the WDF. In the latter case we show how
astute positioning of the camera (or equivalently a
choice of some subsection of the CCD recording) can
lead to a lower signal-to-noise ratio in numerical ob-
ject reconstruction.

C. Occluded Objects and the Wigner Distribution
Function

We consider first the case of an opaque planar occlu-
sion of width wo, positioned at a distance of d1 from

the object and of d2 from the CCD. The plane of the
occlusion is normal to the axis of propagation. The
occlusion may be modeled with the aid of a rect func-
tion as shown in Eq. (14). We may change the lateral
position of the occlusion by setting x → x � xo in
Eq. (14), where x0 is the position of the center.

The object wave field has the Wigner chart shown
in Fig. 2(a). The object has a width W, and at each
position over this width we assume rays of light to be
traveling in all directions over a range of angle pro-
portional to the bandwidth B. The power of the light
in a given position or direction is represented by the
height of the WDF at that coordinate. Since we are
considering the general case, we may use the plan
view of a square WDF for illustrative purposes,
where O(x), with WDF ��O�x�	�x, k�, propagates a dis-
tance d1. The CCM, defining the shape, is given by
Eq. (10). After propagation, the WDF becomes
��O�x�	�x � �d1k, k�. The resulting Wigner chart is
shown in Fig. 3(a), and the new CCM is defined by
Eq. (11), where we set d � d1. In this plane the wave
field is multiplied by occlusion �x � xo��wo. The WDF
of the occlusion, ��occlusion�x�wo�	�x, k�, is defined by
an approximation in Eq. (16) and is illustrated in Fig.
3(b). Using Eqs. (3) and (4), we may define the WDF
of the wave field immediately after the occlusion as

��O�x�	�x�, k� �k ��rect�occlusion x��wo�	�x� � xo, k�,
(21)

Fig. 3. (a) Wigner chart of the object signal after propagating a distance d1 to the occlusion, (b) occlusion Wigner chart, (c) Wigner chart of the
occluded wavefront obtained by convolving (a) and (b), (d) Wigner chart after the occluded wave field propagation of a distance d2 to the CCD plane,
(e) Wigner chart of the CCD and the captured wave field, (f) Wigner chart of the reconstructed signal against the total reconstructed signal.
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where x� � x � �d. Taking the definition of the WDF
of the occlusion given in Eq. (16), we illustrate the
new Wigner chart in Fig. 3(c). We now require two
CCMs. The coordinates for these two CCMs can be
easily derived by using geometry on the original
CCM.

The signal now propagates a distance d2, and there
is further shearing along the x axis. The Wigner chart
is shown in Fig. 3(d). The two new CCMs may be
calculated by finding the product of the old CCMs
with the Fresnel matrix in Eq. (11). The WDF of the
signal at this point is

��O�x�	�x � , k� �k ��rect�occlusion x��wo�	�x � � xo, k�,
(22)

where x� � x � ��d1 � d2�k. The signal is then mul-
tiplied by CCD�x � xc�, the CCD transmission func-
tion. Based on previous discussions concerning CCD
sampling, it is sufficient for the present analysis to
assume ideal sampling and interpolation and to de-
scribe the CCD by using only CCD�x� � rect�x�wc�.
We show the WDF of such a signal in Fig. 3(e) with
the approximation that it is a delta function over
some region of space as in Eq. (5). In this figure we
also show the section of the signal that would be cut
out by this finite delta function after convolution
along k. Once again, the new CCM may be found by
applying geometry in an obvious fashion to the old
CCMs. The WDF of the signal after capture by the
CCD is given by

��hol�x��	�x � , k� � ��O�x�	�x � , k� �k

� � �rect�occlusion x��wo�	�x � � xo, k�� �k

� � �rect�rect x��wo�	� �x � � xc, k�. (23)

A numerical FST of distance ��d1 � d2� is then ap-
plied to the signal. Assuming the numerical trans-
form to be ideal, we can give the reconstructed signal

by ��hol�x��	�x � ��d1 � d2�, k�. The intensity can be
found by using Eq. (5). The Wigner chart for this
signal is illustrated in Fig. 3(f), plotted against the
backdrop of the original Wigner chart. We have re-
covered a certain amount of the signal’s energy in
phase space. We may interpret this in one sense as
having recovered a specific range of angles for differ-
ent positions. As we vary the position of the camera xc

and its width wc, we may vary the range of angles
recovered for each x. In certain cases the recovered
angles will not exist because they have been removed
by the occlusion. The effect of the occlusion will vary
depending on the position and width of the camera.
We note that while we have made large approxima-
tions in our illustrations, Eq. (23) is free of these
approximations if we use the correct definitions of the
WDF of a rect function.

When we consider the case of a nonopaque occlusion,
we immediately find an application of the theory out-
lined above. In this case we have the sum of two signals
to deal with; as before, we have the occluded wave field
a distance d2 from the CCD, and we have a second
signal that lies within the occlusion. If these two
complex signals are recorded and an inverse Fresnel
transformation is used to return to the in-focus plane
of the first object, we find that nonphysical light from
the second object will be present as a source of noise.
Not only will the intensity of this second signal be a
source of noise but so will its interference with the
desired wave field. We now demonstrate how to min-
imize the signal-to-noise ratio for the desired signal
by making an appropriate choice of CCD position.

The bilinear property (v) above implies that the
WDF of the sum will be given by the sum of the WDFs
plus some cross term. From property (xi), we know that
for a given projection the cross term will exist only in
the region of overlap of the signals for that projection.
We will include the cross term in our analysis, but we
will ignore it in the illustrations of the Wigner charts
given in Fig. 4. We show the Wigner charts of the two

Fig. 4. (a) Wigner chart of both the occluded
wave field (having already propagated a distance
d1) and the second wave field, (b) Two Wigner
charts after propagation to the CCD plane, (c)
Wigner charts after propagation to the CCD and
the result of convolution with the signal’s WDF,
(d) Wigner chart of the reconstructed signals in
the plane of the first object if the CCD had been
large enough to capture the entire wave fields
during recording, (e) reconstruction using the sig-
nal in (c) plotted against total reconstruction.
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signals in Fig. 4(a). We have the occluded WDF as
before, and now we also have a second wave field. At
this point we have three CCMs: two describing the first
signal and one for the second. After propagating a
distance d2, both signals are sheared along the x axis,
and the new CCMs may be easily calculated as be-
fore. The Wigner charts of the sheared wave fields are
illustrated in Fig. 4(b). A CCD then captures the
wave field in some region, and the resulting Wigner
chart is shown in Fig. 4(c). The new CCMs can be
calculated geometrically. Had the entire wave field
been captured and an inverse numerical FST applied
to return to the plane of the first object, the Wigner
chart would look like that shown in Fig. 4(d). In this
case we have recovered all the information that we
can for the first object, but it overlaps with the second
signal and is saturated with the second signal’s in-
tensity and their common interference. In Fig. 4(e) we
show the Wigner chart for the CCD hologram that
was inverse Fresnel transformed. We can see that
while we have less of our signal’s energy, we have an
even smaller amount of the corrupting signals’ en-
ergy. Thus, by changing our CCD position (or equiv-
alently the region of the recorded hologram that we
use in our reconstruction), we may recover multiple
projections, each with a higher signal-to-noise ratio
for a given region and over a different angle of view.
We demonstrate these results by using experimental
data in the following sections. It is straightforward to
find the expression for the WDF of the recorded ho-
logram and of the reconstructed wave field.

4. Reconstruction of an Occluded Object with
Digital Holography

Any complex scene can contain foreground objects
that occlude one’s view of background objects of in-
terest. Digital holography provides a novel way to
overcome these occlusions by permitting unob-
structed reconstructions of desired objects to be com-
puted.4 The 3D objects used in our simulations were
reconstructed from whole Fresnel fields of two ob-
jects: a die and a bolt. They were captured by using
the phase-shift digital holography apparatus de-
scribed in Section 2. Each Fresnel field is represented
as a 2048 � 2048 complex-valued matrix.

To demonstrate the capability of digital holography
to overcome problems of occlusion, we simulated the
addition of a nonopaque occlusion to a scene contain-
ing a die object. The simulated experimental setup is
shown in Fig. 5. This is the part of the optical appa-
ratus from Fig. 1 between the object and the camera.
It depicts a situation in which a foreground occlusion
is obstructing the view of a background object of in-
terest. Each pixel in the occlusion has a phase value
chosen with uniform probability from the range
0, 2��, which simulates a diffuse reflective object.
This occlusion was positioned 260 mm from the ob-
ject. The object was placed 325 mm from the camera
(hologram plane). The hologram plane describes a 2D
complex-valued signal representing a coherent wave-
front that was incident on, and reflected from, a dif-
fuse 3D object. By applying a discrete version of Eq.
(1) to this complex wavefront, we can generate the
whole Fresnel field in any plane. Simulated Fresnel
propagation by a distance z � �d to the camera plane
gives us the whole Fresnel field that would be gener-
ated through PSI by the given object.

In this simulation we demonstrate how digital ho-
lograms, through Fresnel propagation to the correct
distance, have the capability of overcoming the prob-
lems of foreground occlusions, which can be present
in a scene. In Fig. 6(a) both the object and the occlu-
sion are in focus simultaneously, as would be the case
under the weak-perspective model. Figure 6(b) shows
the object wavefront 260 mm from the camera, where
the opaque occlusion was positioned. In Fig. 6(c) we
see the reconstruction of the object by using the full
hologram. Although the quality of this reconstruction
is not equivalent to a reconstruction of the unoc-

Fig. 5. Simulated experimental setup with an occlusion posi-
tioned at 260 mm from the object.

Fig. 6. Occlusion positioned at
280 mm from 3D object: (a) a
weak perspective view of the
scene, (b) the occlusion plane, (c)
the reconstruction along the op-
tical axis of the die.
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cluded die, object information that is not visible ow-
ing to the occlusion in the weak-perspective model
becomes visible through the use of digital holography
and Fresnel propagation to the object plane.

We will now investigate task-specific scene recon-
struction by using a subsection of the hologram. The
task we are interested in is one of trying to reveal a
hidden feature on an occluded object, and we achieve
this by taking a subset of pixels (a window) from the
hologram and reconstructing from that perspective.
By taking a smaller window from the hologram plane,
we can reduce the effects of the out-of-focus occluding
object on the background object of interest, and thus
it is possible to reveal features that had been satu-
rated by noise and therefore not visible. To verify this
phenomena, we deal with a situation by using exper-
imentally recorded PSI data. We have two object
wave fields at two different distances from the holo-
gram plane. The wave field from the background ob-
ject has been occluded by the presence of the
foreground object (see Fig 7). When propagating to
the reconstruction plane of the background object,
nonphysical light from the foreground object satu-
rates this reconstruction. In Fig. 8(a) the entire ho-
logram is used to reconstruct the object of interest.
However, the three dots that are on the right-hand
side of the die have been completely saturated by the
out-of-focus occluding object and cannot be discerned.
When the top right-hand corner (1024 � 1024 pixels
compared with the available 2048 � 2048 pixels) of

the hologram is used to reconstruct the object, as is
shown in Fig. 8(b), at least two of the dots come into
view. It should be noted that median filtering with a
neighborhood of 7 � 7 pixels was applied to both
reconstructions.

We argue that the capability of revealing hidden
features of a partially occluded object is one of the
benefits of using smaller windows in the hologram
plane for reconstruction. It should be noted that this
is relevant only if a nonopaque occlusion is present.
This is due to the fact that the out-of-focus light from
the foreground occlusion can saturate background ob-
ject features. In the case of an opaque occlusion,
smaller windows will not have any benefit over using
the entire hologram in revealing object features.

5. Automated Task-Specific System to Reconstruct
Occluded Background Objects

Our proposed automated task-specific system at-
tempts to reconstruct occluded objects by using a sub-
set of available pixels. The task here is to find a subset
of pixels that can produce reconstructions of the object
that are visually close to what the entire set of pixels
would give. As was discussed in Subsection 4.A, using
smaller windows makes it possible to reveal object fea-
tures that cannot be discerned when the entire holo-
gram is used and when a nonopaque occlusion is
present in the scene. There are two more reasons why
using smaller windows of pixels to reconstruct an oc-
cluded object should be considered. The first is that the
computational complexity of hologram reconstruction
is reduced if fewer pixels are used to reconstruct the
scene. A fast Fourier transform, which has complexity
nlog2 n, is used to numerically reconstruct the holo-
gram. By splitting the entire set of pixels into four
windows and reconstructing them separately, the
complexity is reduced to nlog2�n�4�. Of course, by
choosing fewer pixels than are available, the compu-
tational complexity is reduced by a more significant
factor. Another benefit of using subsections of the
hologram under reconstruction is that reducing the
numbers of pixels needed to reconstruct a scene will
result in an increased communication efficiency dur-
ing transmission over a communication channel.

The difference between our proposed system and a
traditional holographic system4,12,13 is shown in Fig. 9.
Once again, we have used PSI to capture our holo-
grams, which meant the loop was closed between the
Fresnel field and the output. However, in a holo-
graphic single-exposure on-line setup,34 the loop would
be closed between the CCD and the output. In our
system the output is not the complete Fresnel field
obtained by the CCD, but rather a subset of pixels that
can be used to reconstruct the occluded object.

We have developed a general algorithm that auto-
mates the process of choosing a subset of pixels to
reconstruct an occluded object. It is parameterized to
output five 512 � 512 possibly overlapping windows.
Our algorithm needs no a priori knowledge of either
the position of the object or the type of occlusion
present in the scene. To calculate the position at
which to reconstruct the scene, we use a depth-from-

Fig. 7. Simulated experimental setup in which one die acts as an
occlusion to a second die.

Fig. 8. Advantage of using a smaller window of pixels over the
entire set of pixels when an occluded object is reconstructed: (a)
reconstruction using the entire set of pixels and (b) reconstruction
of the scene using the top right 1024 � 1024 window of pixels.
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defocus technique.35 This technique calculates the
depth at which the majority of information about the
object of interest is in focus. Our digital hologram is
split into 256 � 256 sections, giving us an 8 � 8 grid
of windows (see Fig. 10). We choose a starting window
for our search by locating the 512 � 512 window
centered around the pixel with the highest intensity.
A search is then sequentially carried out along each of
the eight directional vectors from the starting win-
dow (see Fig. 10). In each step we shift the window by
256 pixels along the current direction. We reconstruct
each window and combine each one with the recon-
struction of the starting window. This is accom-
plished by taking the pixel with the highest intensity
from each of the two reconstructions. To evaluate this
combination, we compared it with a reconstruction of
the unoccluded object by using an image-quality met-
ric. We choose the normalized rms (NRMS) defined as

D�U�� � ( �
m�0

Nx�1

�
n�0

Ny�1

�U0�m, n��2 � �U��m, n��2�2

� � �
m�0

Nx�1

�
n�0

Ny�1

�U0�m, n��2�2��1)
1�2

, (24)

where U is the reconstruction of the unoccluded
object, U� is the combined reconstruction, (m, n) are
discrete spatial coordinates in the reconstruction
plane, and Ny and Nx are the height and width of the
reconstructions, respectively. We store the window
along each directional vector, which results in the
lowest reconstruction error value. This gives us a
possible total of eight new windows plus the starting
window. From this set, we choose the starting win-
dow and the subset of four windows that resulted in
the lowest error values.

Our algorithm is generalized to work with both
opaque and nonopaque occlusions. However, a scene
containing an opaque occlusion was simulated to test
our algorithm. This meant that we lost the benefit of
possibly revealing hidden features on the partially
occluded object by reconstructing it with smaller win-
dows from the hologram plane. However, we argue
that even in the case of an opaque occlusion, the
benefits of reducing the computational complexity
and of using fewer pixels for reconstruction warrant
investigation into the calculation of a subset of pixels.
The setup for this experiment is shown in Fig. 11. It
depicts a situation in which the propagated wave-

Fig. 9. Comparison between (a) a traditional ho-
lographic system and (b) the proposed automated
task-specific holographic system.

Fig. 10. Illustration of the grid structure, the starting window
containing the highest intensity pixel, and the directional vectors
used by the algorithm.

Fig. 11. Simulated experimental setup with an opaque occlusion
positioned 60 mm from the object.
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front of the object was severely occluded by an opaque
surface. At the occlusion plane, 72% of the propa-
gated object wavefront was blocked. The pixels cho-
sen by our automated system are shown in Fig. 12(a).
Each pixel in the final reconstruction is the maximum
amplitude value from the corresponding pixels in the
partial reconstructions. The reasoning here is that in
this situation there is no nonphysical light generated
by the occlusion, and thus intensity values should
relate to object information. In the case of a non-
opaque occlusion the complex-valued pixels from dif-
ferent subwindows should be added together. Figure
12(c) shows the reconstruction obtained by combining
the five windows chosen by our automated system.
The reconstruction using the entire set of available
pixels is shown in Fig. 12(b) for comparison. Our
system produced a NRMS error of 0.82817, whereas
the reconstruction using the entire set of available
pixels produced an error of 0.71302. Our system
achieved a reconstruction quality that deviated only
by approximately 12% from the reconstruction ob-
tained by using the total signal energy. It should be
noted that the effect of the occlusion is such that even
when the entire set of pixels is used, parts of the bolt
are still not visible.

This implementation of the algorithm uses the
NRMS to determine the subset of pixels output by the
system. However, if the task was one of object recog-
nition, our algorithm facilitates the integration of an
object-recognition function in place of the NRMS. In
this case a subset of pixels would be returned if the
object were recognized.

6. Conclusion

The nature of opaque and nonopaque occlusions and
the effect of reconstructing subwindows from the ho-
logram plane have been analyzed thoroughly by us-
ing the WDF. Furthermore, we have shown that a
subset of pixels can be used for 3D reconstruction of
complex scenes. In the presence of a nonopaque oc-
clusion, this can have the benefit of revealing hidden
features on a partially occluded object. Independent
of the type of occlusion, using a subset of pixels has
the advantage of being computationally less complex
when the hologram is reconstructed and results in
greater communication efficiency during transmis-
sion over a communication channel. We have detailed
a proposed automated task-specific holographic sys-

tem, which has the capability of reconstructing par-
tially occluded objects and of reducing the amount of
data sent from the camera system to the receiver.
This system would be useful in situations in which
transmission of the whole digital hologram, or ex-
haustive reconstruction of every perspective, was not
feasible.

The authors thank Enrique Tajahuerce and Yann
Frauel for use of their digital hologram data. This
paper has emanated from research conducted with
the financial support of the Science Foundation
Ireland, Enterprise Ireland, and the Embark Initia-
tive of the Irish Research Council for Science, Engi-
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